WorkCentre 7132

Service Documentation

WorkCentre 7132

705P01181 (EDOC/SGS)
Revision

January 2007
×Xerox Private Data*

All service documentation is supplied to Xerox external customers for informational purposes only. Xerox service documentation is intended for use by certified, product-trained service per sonnel only. Xerox does not warrant or represent that it will notify or provide to such customer any future change to this documentation. Customer performed service of equipment, or mod ules, components, or parts of such equipment may affect whether Xerox is responsible to fix machine defects under the warranty offered by Xerox with respect to such equipment. You should consult the applicable warranty for its terms regarding customer or third-party provided service

If the customer services such equipment, modules, components or parts thereof, the custome releases Xerox from any and all liability for the customer actions, and the customer agrees to indemnify, defend and hold Xerox harmless from any third party claims which arise directly or indirectly from such service.

While Xerox has tried to make the documentation accurate, Xerox will have no liability arising out of any inaccuracies or omissions. Changes are periodically made to this document Changes, technical inaccuracies, and typographical errors will be corrected in subsequent editions.
©Copyright 2007 Xerox Corporation. All rights reserved

Global Knowledge \& Language Services
800 Phillips Road - Bldg. 845-17S

Webster, New York 14580-9791

USA

Printed in the United States of America
XEROX®, The Document Company ${ }^{\circledR}$, the stylized X and the identifying product names and numbers herein are trademarks of XEROX CORPORATION

All non-Xerox brands and product names are trademarks or registered trademarks of their respective companies

While Xerox has tried to make the documentation accurate, Xerox will have no liability arising out of any inaccuracies or omissions.

WARNING

This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions documentation, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to subpart B of part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user, at his own expense, will be required to correct the interference

Introduction

About this Manual

This Service Manual is part of the multinational documentation system for
WorkCentre 7132. The Service Documentation is used in order to diagnose machine malfunctions, adjust components and has information which is used to maintain the product in superior operating condition. It is the controlling publication for a service call. Information on its use is found in the Introduction of the Service Documentation.

This manual contains information that applies to NASG (XC) and ESG (XE) copiers.

Service Manual Revision

The Service Manual will be updated as the machine changes or as problem areas are identified.

Organization

This Service Manual is divided into eight sections. The titles of the sections and a description of the information contained in each section are contained in the following paragraphs:

Section 1: Service Call Procedures

This section contains procedures that determine what actions are to be taken during a service call on the machine and in what sequence they are to be completed. This is the entry level for all service calls.

Section 2: Status Indicator RAPs

This section contains the diagnostic aids for troubleshooting the Fault Code and non-Fault Code related faults (with the exception of image quality problems).

Section 3: Image Quality

This section contains the diagnostic aids for troubleshooting any image quality problems, as well as image quality specifications and image defect samples.

Section 4: Repairs/Adjustments

This section contains all the Adjustments and Repair procedures.

Repairs

Repairs include procedures for removal and replacement of parts which have the following special conditions:

When there is a personnel or machine safety issue.
When removal or replacement cannot be determined from the exploded view of the Parts List.
When there is a cleaning or a lubricating activity associated with the procedure.
When the part requires an adjustment after replacement.
When a special tool is required for removal or replacement.
Use the repair procedures for the correct order of removal and replacement, for warnings, cautions, and notes.

Adjustments

Adjustments include procedures for adjusting the parts that must be within specification for the correct operation of the system.

Use the adjustment procedures for the correct sequence of operation for specifications, warnings, cautions and notes.

Section 5: Parts Lists

This section contains the Copier/Printer Parts List.

Section 6: General Procedures/Information

This section contains General Procedures, Diagnostic Programs, and Copier/Printer Information.

Section 7: Wiring Data

This section contains drawings, lists of plug/jack locations, and diagrams of the power distribution wire networks in the machine. This section also contains the Block Schematic Diagrams.

Section 8: Options and Accessories

This section contains installation information for option and accessory.

How to Use this Documentation

The Service Call Procedures in Section 1 describe the sequence of activities used during the service call. The call must be entered using these procedures.

Use of the Circuit Diagrams

All wirenets are shown on the Circuit Diagrams (CDs). Power distribution wirenets are shown in Section 7 (Wiring Data) of the Service Manual. The power distribution wirenets on the CDs will end at the terminal board for the power being distributed. Find the wirenet for that power and locate the terminal board on the wirenet. Use the wirenet to troubleshoot any power distribution wiring not shown on the CD.

Use of the Block Schematic Diagrams

Block Schematic Diagrams (BSDs) are included in Section 7 (Wiring Data) of the Service Manual. The BSDs show the functional relationship of the electrical circuitry to any mechanical, or non-mechanical, inputs or outputs throughout the machine. Inputs and outputs such as motor drive, mechanical linkages, operator actions, and air flow are shown. The BSDs will provide an overall view of how the entire subsystem works.

It should be noted that the BSDs no longer contain an Input Power Block referring to Chain 1. It will be necessary to refer to the Wirenets in order to trace a wire back to its source.

Symbology and Nomenclature

The following reference symbols are used throughout the documentation.

Warnings, Cautions, and Notes

Warnings, Cautions, and Notes will be found throughout the Service Documentation. The words WARNING or CAUTION may be listed on an illustration when the specific component associated with the potential hazard is pointed out; however, the message of the WARNING or CAUTION is always located in the text. Their definitions are as follows:

WARNING

A Warning is used whenever an operating or maintenance procedure, a practice, condition, or statement, if not strictly observed, could result in personal injury.

CAUTION

A Caution is used whenever an operating or maintenance procedure, a practice, condition, or statement, if not strictly observed, could result in damage to the equipment.

NOTE: A Note is used whenever it is necessary to highlight an operating or maintenance procedure, practice, condition, or statement.

Machine Safety Icons

The following safety icons are displayed on the machine:

WARNING

This machine contains an invisible laser. There is no visual indication that the laser beam is present. During servicing, the machine is a Class 3B product because of the invisible laser. the laser beam could cause eye damage if looked at directly. Service procedures must be followed exactly as written without change. The service representative must observe the established local laser safety precautions when servicing the machine. Do not place tools with a reflective surface in the area of the ROS opening. Do not look in the area of the ROS window if the power is On and the laser is energized.
The following symbol and statement appear on a label in the machine. The symbol by itself, or the symbol and the statement may also appear in the service documentation and in the training program. When this symbol appears, the service representative is warned that conditions exist that could result in exposure to the laser beam.

WARNING

Do not try to bypass any laser interlocks for any reason. Permanent eye damage could result if the laser is accidentally directed into your eye.

CAUTION

The use of controls or adjustments other than those specified in the Laser Safety Training Program may result in an exposure to dangerous laser radiation.
For additional information, review the Laser Safety Training program.
An arrow points to the location to install, to gain access to, or to release an object.

Figure 2 Customer Access Label

This symbol indicates that a surface can be hot. Use caution when reaching in the machine to avoid touching the hot surfaces.

Figure 3 Heated Surface Label
Danger label indicates where electrical currents exist when the machine is closed and operating. Use caution when reaching in the machine.

Figure 4 Shock Hazard Label

These symbols indicate components that may be damaged by Electrostatic Discharge (ESD).

700002A-RAP

Laser Hazard Statement
DANGER INVISIBLE LASER RADIATION WHEN OPEN. AVOID DIRECT EXPOSURE TO BEAM.

Electrostatic Discharge (ESD) Field Service Kit

The purpose of the ESD Protection Program is to preserve the inherent reliability and quality of electronic components that are handled by the Field Service Personnel. This program is being implemented now as a direct result of advances in microcircuitry technology, as well as a new acknowledgment of the magnitude of the ESD problem in the electronics industry today.

This program will reduce Field Service costs that are charged to PWB failures. Ninety percent of all PWB failures that are ESD related do not occur immediately. Using the ESD Field Service Kit will eliminate these delayed failures and intermittent problems caused by ESD. This will improve product reliability and reduce callbacks.

The ESD Field Service Kit should be used whenever Printed Wiring Boards or ESD sensitive components are being handled. This includes activities like replacing or reseating of circuit boards or connectors. The kit should also be used in order to prevent additional damage when circuit boards are returned for repair.

The instructions for using the ESD Field Service Kit can be found in ESD Field Service Kit Usage in the General Procedures section of the Service Documentation.

Illustration Symbols

Figure 6 shows symbols and conventions that are commonly used in illustrations.

REFERENCE SYMBOLOGY

Test data, notes, adjustments, and parts lists are supportive to the BSD and RAP information. This supportive data is referenced, using the symbols shown in the following paragraphs:
test data

This symbol appears on the BSD whenever a test data reference is necessary in order to verify the presence of a signal

NOTES

This symbol is used to refer to notes The notes normally appear on the same page.

ADJUSTMENTS
This symbol refers to adjustments on the Service Data Section.

PARTS LISTS

L2-XX

This symbol refers to a parts list on the Service Data Section.
PL indicates that this is a parts list reference and, in this example, the exploded view drawing is on Parts List 2-XX. Parts list reference appear on the BSDs next to all replaceable parts shown on the diagram.

TEST POINTS

TP1 This symbol is used to identify a test point/test hole available for measuring a signal.

BSD GRAPHICS

This symbol indicates the continuation of a signal line in a horizontal direction.

This symbol indicates the direction of signal flow.

This sy
signal.

This symbol is used to show a twisted pair of wires.
[$x-x x x$] This symbol placed above a signal name on a BSD indicates the input or output component control code for that signal.
[$\mathrm{X}-\mathrm{XXX}$] [$\mathrm{X}-\mathrm{XXX}$] This symbol placed above a signal name on a BSD indicates that two component control codes (an output and an input) are required to check that signal.
[$x-x x x / x-x x x$] This symbol placed above a signal name on a BSD indicates component control codes for two components, in this example, two Paper Trays The left hand code is for Paper Tray 1, and the right hand code is for Paper Tray 2.

Fault Codes Indicator shown on BSD.

The Flag symbol indicates a reference The Flag symbol indicates a reference
point into a Circuit Diagram from a RAP Instructions will be given to check for an open circuit, a short circuit, or an intermittent condition

Figure 6 Illustration Symbols

Signal Nomenclature

Refer to Figure 7 for an example of Signal Nomenclature used in Circuit Diagrams and BSDs.

DC Voltage Measurements in RAPs

The RAPs have been designed so that when it is required to use the DMM to measure a DC voltage, the first test point listed is the location for the red (+) meter lead and the second test point is the location for the black meter lead. For example, the following statement may be found in a RAP:

There is +5 VDC from TP7 to TP68.

In this example, the red meter lead would be placed on TP7 and the black meter lead on TP68.
Another example of a statement found in a RAP might be:

There is -15 VDC from TP21 to TP33.

In this example, the red meter lead would be placed on TP21 and the black meter lead would be placed on TP33.

If a second test point is not given, it is assumed that the black meter lead may be attached to the copier frame.

Voltage Measurement and Specifications

Measurements of DC voltage must be made with reference to the specified DC Common, unless some other point is referenced in a diagnostic procedure. All measurements of AC voltage should be made with respect to the adjacent return or ACN wire.
Table 1 Voltage Measurement and Specifications

VOLTAGE	SPECIFICATION
INPUT POWER 220 V	198 VAC TO 242 VAC
INPUT POWER 100 V	90 VAC TO 135 VAC
INPUT POWER 120 V	90 VAC TO 135 VAC
+5 VDC	+4.75 VDC TO +5.25 VDC
+24 VDC	+23.37 VDC TO +27.06 VDC

Logic Voltage Levels

Measurements of logic levels must be made with reference to the specified DC Common, unless some other point is referenced in a diagnostic procedure.
Table 2 Logic Levels

VOLTAGE	H/L SPECIFICATIONS
+5 VDC	$\mathrm{H}=+3.00$ TO +5.25 VDC $\mathrm{L}=0.0$ TO 0.8 VDC
+24 VDC	$\mathrm{H}=+23.37$ TO +27.06 VDC $\mathrm{L}=0.0$ TO 0.8 VDC

Translated Warnings

Introduction

Symbology and Nomenclature

WARNING

A Warning is used whenever an operating or maintenance procedure, a practice, condition, or statement, if not strictly observed, could result in personal injury.
DANGER: Une note DANGER est utilisée à chaque fois qu'une procédure de maintenance ou qu'une manipulation présente un risque de blessure si elle n'a pas été strictement observée.

WARNING

This machine contains an invisible laser. There is no visual indication that the laser beam is present. During servicing, the machine is a Class 3B product because of the invisible laser. the laser beam could cause eye damage if looked at directly. Service procedures must be followed exactly as written without change. The service representative must observe the established local laser safety precautions when servicing the machine. Do not place tools with a reflective surface in the area of the ROS opening. Do not look in the area of the ROS window if the power is On and the laser is energized.
DANGER: L'équipement contient un faisceau laser invisible et aucune indication visible signale la présence du faisceau laser. De ce fait le produit est classé 3B pour tout ce qui concerne la maintenance. L'exposition directe des yeux au faisceau laser peut entraîner des lésions visuelles. Les procédures de maintenance doivent être réalisées sans aucun changement comme indiqué dans la documentation. Le représentant Xerox lors d'interventions sur l'équipement doit respecter les consignes de sécurité locales concernant les faisceaux laser. Ne pas placer d'objet réfléchissant dans la zone du ROS quand il est ouvert. Ne pas regarder dans la zone du ROS lorsque la machine est sous tension et que le laser est en fonctionnement.
The following symbol and statement appear on a label in the machine. The symbol by itself, or the symbol and the statement may also appear in the service documentation and in the training program. When this symbol appears, the service representative is warned that conditions exist that could result in exposure to the laser beam.
DANGER: Les symboles et instructions suivants sont indiqués sur des étiquettes dans la machine et sont identifiés dans la documentation technique et dans le manuel de formation. Quand ces symboles s'affichent le représentant Xerox est prévenu des risques encourus concernant une exposition au rayon laser.

WARNING

Do not try to bypass any laser interlocks for any reason. Permanent eye damage could result if the laser is accidentally directed into your eye.
DANGER: Ne pas essayer de shunter les contacts laser pour quelques raisons que ce soit. Si le faisceau laser est dirigé accidentellement vers les yeux il peut en résulter des lésions oculaires permanentes.

4 Repairs and Adjustments

Drives
REP 1.1.1 Main Drive Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer mainte-
nance ou reglage avec le cordon d'alimentation branche.
Paper Transportation
REP 2.1.1 Feeder 1 Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 2.3.1 Tray Feed/Nudger/Retard Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 2.4.1 Registration Unit

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 2.5.1 Take Away Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 2.6.2 Left Hand (L/H) Upper Cover Unit

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

ROS

REP 3.1.1 ROS Unit

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
Xerographics/Development

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 4.1.2 Toner Cartridge

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 4.2.1 Dispense Motor

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

Fuser

REP 5.1.1 Fuser Unit

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
Exit
REP 6.1.1 Exit 2 +OCT 2

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

MPT

REP 7.1.1 MPT Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 7.2.1 MPT Feed Roll/Retard Pad

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 9.2.1 ESS PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
Covers
REP 10.1.1 Top Cover Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 10.2.1 Rear Lower Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
IIT
REP 11.1.1 Platen Cushion

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.1.2 Control Panel
WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.3.1 Platen Glass

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.3.2 IIT/IPS PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.4.1 Lens Kit Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.5.1 Carriage Cable

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.5.2 Carriage Motor

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 11.6.1 Exposure Lamp

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

Tray Module -2T

REP 12.1.1 Tray 3 Feeder

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 12.1.2 Tray 3 Feeder (2TM)

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 12.3.1 Feed/Retard/Nudger Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 12.6.1 2 Tray Module PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
Tray Module -TT
REP 13.1.1 Tray 3 Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.1.2 Tray 2 Assembly (2TTM)

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.3.1 Front/Rear Tray Cable

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.4.1 Tray 3 Feeder (TTM)

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.5.1 Tray 3 Feeder

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.6.1 Feed/Retard/Nudger Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 13.8.1 Twin Tray Module PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

DADF

REP 15.1.1 DADF Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.1.2 DADF Platen Cushion

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.2.1 DADF Document Tray

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.2.2 DADF Feeder Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.2.3 DADF Front Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.2.4 DADF Rear Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.3.1 DADF PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.3.2 Left Counter Balance

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.3.3 Right Counter Balance

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.4.1 Retard Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.4.2 Top Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.6.1 Nudger Roll, Feed Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 15.8.1 Registration Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

Finisher

REP 16.1.1 H-Transport Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.3.1 H-Transport Belt

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.1.2 Finisher Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.4.1 Front Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.4.2 Rear Cover

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.5.1 Stack Height Sensor Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.5.2 Eject Roll Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.6.1 Decurler Roll

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.6.2 Finisher Drive Motor

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.7.1 Belt

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.8.1 Rail

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.8.2 Staple Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.9.1 Compiler Tray Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.10.1 Stacker Motor Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer mainte-
nance ou reglage avec le cordon d'alimentation branche.
REP 16.10.2 Elevator Belt Assembly

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.11.1 Paddle Gear Shaft

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.
REP 16.12.1 Finisher PWB

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

IIT

ADJ 11.6.1 Full/Half Rate carriage Position Adjustment

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
DANGER: Afin d'eviter des blessures ou des chocs electriques, ne pas effectuer maintenance ou reglage avec le cordon d'alimentation branche.

8 Options and Accessories

8.1 FAX KIT

WARNING

Switch off the machine and disconnect the power cord.
DANGER: Mettre la machine sur ARRET et debrancher le cordon dalimentation. 8.2 Foreign Interface

WARNING

Switch off the machine and disconnect the power cord.
DANGER: Mettre la machine sur ARRET et debrancher le cordon dalimentation.

Service Call Procedures... 1-3
Initial Actions ... 1-3

Detailed Maintenance Activities (HFSI)... 1-6
Cleaning Procedures.. $1-7$
Final Actions... 1-7

Service Call Procedures

Service Strategy

The service strategy for the WorkCentre 7132 is to perform any High Frequency Service Item (HFSI) actions before attempting to repair any problems. Some problems will be corrected by this strategy without the need to diagnose them. The Repair Analysis Procedures (RAPs) will be used for any remaining problems.

Problems that occur in the Basic Printer mode will be repaired before problems that occur when using the accessories.

Image Quality problems should be repaired after all other problems are repaired.

Service Call Procedures

The Service Call Procedures are a guide for performing any service on this machine. The procedures are designed to be used with the Service Manual. Perform each step in order.

Initial Actions

The Initial Actions gather information about the condition of the machine and the problem that caused the service call.

Call Flow

Call Flow summarizes the sequence of the Service Call Procedures.

Detailed Maintenance Activities

Detailed Maintenance Activities section provides the information needed to perform the High Frequency Service Item (HFSI) actions.

Cleaning Procedures

The Cleaning Procedures list what needs to be cleaned at each service call.

Final Actions

The Final Actions will test the copier/printer and return it to the customer. Administrative activities are also performed in the Final Actions.

Initial Actions

Purpose

The purpose of the Initial Action section of the Service Call Procedures is to determine the reason for the service call and to identify and organize the actions which must be performed.

Procedure

1. Gather the information about the service call and the condition of the copier/printer.
a. Question the operator(s). Ask about the location of most recent paper jams. Ask about the image quality and the copier/printer performance in general, including any unusual sounds or other indications.
b. After informing the customer, disconnect the machine from the customer's network.
c. Check that the power cords are in good condition, correctly plugged in the power source, and free from any defects that would be a safety hazard. Repair or replace the power cords as required. Check that the circuit breakers are not tripped.
d. Inspect any rejected copies. Inquire as to, or otherwise determine, the paper quality and weight, the specified paper for optimum Image Quality, 24\# Xerox Color Expressions (NASG) or ColorTech+90gsm (ESG). Look for any damage to the copies, oil marks, image quality defects, or other indications of a problem.
e. Record the billing meter readings.
f. Access Diagnostic Routines.
i. Enter UI Diagnostics (Entering UI Diagnostics in UI Diagnostic Mode).
ii. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
NOTE: If a fault code is displayed while performing a diagnostics procedure, go to that fault code RAP and repair the fault. Return to Diagnostics and continue with the $d C$ procedure that you were performing.
g. Print the HFSI Report and determine what HFSI action is required based on the customer output volume. Refer to the Detailed Maintenance Activities section for the detailed HFSI information. Record any items that require action.
h. Display and record the information in the Jam Counter, Fault Counter, and Shutdown History. Classify this information into categories:

Information that is related to the problem that caused the service call.
Information that is related to secondary problems.
Information that does not require action, such as a single occurrence of a problem.
i. Check the Service Log for any recent activities that are related to the problem that caused the service call or any secondary problem.
2. Perform any required HFSI activities identified above. Refer to the Detailed Maintenance Activities section.
3. Exit diagnostics. Try to duplicate the problem by running the same jobs that the customer was running.
4. Check the Image Quality in the Basic Copier Mode. Select the tray that is loaded with 11 x 17 or A3 paper, if unable to complete tray selection, go to Call Flow.
Set the copier/printer to the following setup:

- Output Color - Auto
- Original Type - Photo and Text Halftone
- R/E - Auto
- Lighter/Darker - Auto Contrast
- Sharpness - Normal
- Preset Color Balance - Normal
- Color Shift - Normal
- Color Saturation - Normal
- Copy Position - No Shift
- Variable Color Balance - Normal

Run four copies of the Color Test Pattern.
Check the Image Quality. If the customer has identified any Image Quality Defects or problems, go to IQ1 IOT Image Quality Entry RAP.
5. Go to Call Flow

Call Flow

This procedure should be performed at every service call.

Initial Actions

Ask the operator about the problem. If the problem appears to be related to operator error, or an attempt to perform a job outside of the machine specifications, assist the customer in learning the correct procedure.

Procedure

If the machine does not power up, Go to Power On RAP.
Ask the operator about the problem.

- If the problem is identified by a fault code (including Paper/Document Jams), refer to Chapter 2 for the procedure and then proceed with servicing.
- If the problem is noise or smell, select a mode (1 Sided/2Sided, Finisher etc.), find the cause of the problem and proceed with servicing.
The operator operated the machine correctly.
Y N
Explain to the operator how to operate the machine correctly.
The UI display is normal.
Y $\quad \mathrm{N}$
Go to OF 6 Dark/Blank Display. Refer to BSDs ($\mathrm{CH} 2.1-\mathrm{CH} 2.4$).
The problem occurs only in Print mode.
$\mathbf{Y} \quad \mathbf{N}$
The problem occurs only in Copy mode.
Y N
The problem occurs only in Fax mode.
N
The problem is an accessory or the Foreign Accessory.
Y N
Refer to Table 1 Other Faults and identify the problem and follow the corrective action.

If the cause of the problem is an accessory or the Foreign Interface, check that the machine settings are correct, refer to the appropriate service manual for the procedure and then proceed with servicing.

The problem occurs only in certain modes such as Broadcast transmission.

Y N
Perform a transmission test with the call center or station. The problem reoccurs.
Y N
Ask the customer for permission to establish communications with the remote machine that is causing the problem. Perform a Send transmission test with the remote machine. Transmission was normal.

Y N

Print the protocol trace to identify whether it is the remote machine or the machine that is causing the problem.

- If the problem lies in the machine:

Analyze the protocol trace, refer to Chapter 2 and then proceed with servicing.

- If the problem appears to lie in the remote machine:

Ask the customer to check the status of the remote machine.
There is a problem with Receive transmission test. Perform Receive transmission tests with other stations within the company. Check that there is no problem with the machine and then ask the customer to check the status of the remote machine.

Analyze the protocol trace, refer to Chapter 2 and then proceed with servicing.
Check the machine settings and if necessary, ask the customer for permission to tes the machine in the mode in which the problem occurs.
Analyze the protocol trace when the problem reoccurs, refer to Chapter 2 and then proceed with servicing

There is an image quality problem

Y N
If there is an alignment problem, obtain separate Platen/DADF output samples, refer to Chapter 4 Adjustments and then proceed with servicing.

Refer to Chapter 3 IQ1 IOT Image Quality Entry RAP and then proceed with servicing.

There is a problem with the network.

Y
There is a problem with the USB connection.
Y $\quad \mathrm{N}$
There is an image quality problem.
Y N
The problem lies in a certain Client PC.
Y $\quad \mathbf{N}$
There is a problem with a certain application or programming language A. Obtain the latest information on restrictions and technical information. Proceed accordingly

Check the settings of that particular Client PC and if necessary ask the user to reinstall the printer driver.

Refer to IQ1 IOT Image Quality Entry RAP and then proceed with servicing If the problem persists, ask the user to reinstall the printer driver.

Check the machine settings and if necessary ask the user to reinstall the printer driver.

If the problem continues, replace the network cable. If the problem persists, replace the USB cable. Check the machine settings and discuss the problem with the customer's network administrator.

Table 1 Other Faults	
Problem	Corrective Action
Duplexing is not available as a selection on the display.	Ensure the Duplex electrical connector is secure (PL $10.1)$
Copies jam in the Finisher when the output tray is near maximum capacity.	Verify condition of paper. If good, check that part $655 N 128$ can be used to support tray.
ADF inoperative after PWB replacement.	Reload Software ADJ 9.3.1.
Can not make copies when Auditron is enabled.	Enter UI Diagnostic Mode. Select Copy on screen. Machine will operate without auditron restriction.
Loud snapping noise is heard. Enter Component Control [042-003] and press the Start button. If noise is present there is binding in toner auger drive system. Repair as required (PL 1.2) Sets are not offset in Center Tray. Perform Center Tray Offsetting. E-mail icon not visible in display on email enabled machine. Perform E-Mail Icon. Customer wishes to distinguish FAX output from prints or copies. Perform FAX Output Separation.	

Detailed Maintenance Activities (HFSI)

Procedure

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics in UI Diagnostic Mode).
b. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
2. Select NVM Read/Write
3. Refer to Table 1 and enter a counter number for any High Frequency Service Item (HFSI) counters to be checked. Use the customer's output volume numbers to help determine which HFSI components should be serviced. Consider components near threshold as candidates for service.
4. Refer to Cleaning Procedures for detailed cleaning instructions.

Table 1 High Frequency Service Items

Counter	Name	Threshold	Service Action to be performed
$954-800$	Tray 1 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-801$	Tray 2 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-802$	Tray 3 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-803$	MSI Feed counter	50 K	Replace the Feed Roll, Retard Pad.
$954-824$	IBT Belt counter	480 K	Replace the IBT Assembly.
$954-825$	IBT Cleaner counter	100 K	Replace the IBT Cleaner.
$954-826$	2nd BTR Counter	300 K	Replace the Bias Transfer Roll.
$954-830$	K Developer Counter	420 K	Replace the K Developer.
$954-831$	Y Developer Counter	420 K	Replace the Y Developer.
$954-832$	M Developer Counter	420 K	Replace the M Developer.
$954-833$	C Developer Counter	420 K	Replace the C Developer.
$954-837$	Xero Drum Counter	10 M	Replace the Xero Drum Assembly.
$954-842$	Fuser Counter	10 M	Replace the Fuser Assembly.
$956-802$	Lamp Scan Counter	6000 K	Replace the Exposure Lamp.
$956-803$	Exposure Lamp Time Counter	7200 K	Replace the Exposure Lamp.
$956-804$	Exposure Lamp On Counter	6000 K	Replace the Exposure Lamp.
$955-806$	CVT Feed Counter	200 K	Replace the Document Nudger Roll, Feed Roll, Retard Roll, Registration Roll.
$955-807$	Simplex Feed Counter	912 K	Replace the Document Nudger Roll, Feed Roll, Retard Roll, Registration Roll.
Platen Interlock	260 K	Replace the Document Nudger Roll, Feed Roll, Retard Roll, Registration Roll.	
Counter	Replace the Platen Interlock Switch.		
		912 K	
9508		Feed Counter	
950			

Cleaning Procedures

Purpose

To provide cleaning procedures to be performed at every service call.

Procedure

CAUTION

Do not use any solvents unless directed to do so by the Service Manual.

General Cleaning

Use a dry lint free cloth or a lint free cloth moistened with water for all cleaning unless directed otherwise by the Service Manual. Wipe with a dry lint free cloth if a moistened cloth is used.

1. Feed Components (Rolls and Pads)

Follow the General Cleaning procedure above.
2. Toner Dispense Units

Vacuum the Toner Dispense units.
3. Jam Sensors

Clean the sensors with a dry cotton swab.
4. Scanner
a. Switch off the power and allow the Exposure Lamp to cool off.
b. Using the optical Cleaning Cloth, clean the front and rear of the Document Glass, Document Cover, White Reference Strip, Reflector, and Mirror.
c. Clean the Exposure Lamp with a clean cloth and Film Remover.
d. Clean the Lens with Lens and Mirror Cleaner and lint free cloth.
5. DADF

Check the paper path for debris or damage. Clean the rolls with a clean cloth and Film Remover as required.
6. Document Glass and Constant Velocity Transport Glass

Follow the General Cleaning procedure above.
7. ROS Window

Remove and reinstall the ROS CLeaning Wand.
8. IBT Belt

Check the Transfer Belt System and wipe with a dry lint free cloth. If the surface is excessively dirty, replace the IBT Belt (PL 6.2)
NOTE: Do not rub the IBT CLeaning Blade. If it is necessary to clean the blade, use a soft brush or dry swab to remove any contamination. Rubbing the blade will remove the protective coating.
9. Finisher

Check the paper path for debris or damage. Clean the Finisher with a dry lint free cloth.

Final Actions

Purpose

To provide a guide for procedures to be done at the end of every service call.

Procedure

1. Ensure that the exterior of the copier/printer and the adjacent area are clean. Use a dry cloth or a cloth moistened with water to clean the copier/printer. Do not use solvents.
2. Check the supply of consumables. Ensure that an adequate supply of consumables is available according to local operating procedures.
3. Complete the Service Log.
4. Perform the following steps to make a copy of the Demonstration Original for the customer:
a. Load Tray 1 with 8.5×11 inch (A4) or 11×17 inch paper.
b. Place the Color Test Pattern on the glass with the short edge of the test pattern registered to the left edge of the glass. Select Tray 1 and make a single copy.
c. Print out the Machine Settings (Configuration Report). Store this report with the service log in the Inner Cover.
d. Ask the customer to verify the Print and Scan functions.
e. Present the copies to the customer.
5. Reconnect the machine to the customer network. Verify the function.
6. Issue copy credits as needed.
7. Discuss the service call with the customer to ensure that the customer understands what has been done and is satisfied with the results of the service call.
001 Power RAP
Power On RAP. 2-17
002 HDD
002-770 Job Template Processing - HDD Full RAP 2-19
003 IPS-ESS Communication
003-318 IIT Software RAP 2-21
003-319 IIT Video Driver Detection RAP 2-21
003-320 IISS-ESS Communication 1 RAP 2-22
003-321 IISS-ESS Communication 2 RAP -22
003-322 IISS-ESS Communication 3 RAP -23
003-323 IISS-ESS Communication 4 RAP -23
003-324 IISS-ESS Communication 5 RAP 2-24
003-325 IISS-ESS Communication 6 RAP 2-24
003-326 IISS-ESS Communication 7 RAP 2-25
003-327 IISS-ESS Communication 8 RAP 2-25
003-328 IISS-ESS Communication 9 RAP 2-26
003-329 IISS-ESS Communication 10 RAP 2-26
003-330 IISS-ESS Communication 11 RAP -27
003-331 IISS-ESS Communication 12 RAP 2-27
-28
003-333 IISS-ESS Communication 14 RAP -28
003-334 IISS-ESS Communication 15 RAP -29
003-335 IISS-ESS Communication 16 RAP 2-29
003-336 IISS-ESS Communication 17 RAP -30
003-337 IISS-ESS Communication 18 RAP 2-30
003-338 IISS-ESS Communication 19 RAP -31
003-339 IISS-ESS Communication 20 RAP -31
003-340 IISS-ESS Communication 21 RAP -32
003-341 IISS-ESS Communication 22 RAP 2-32
003-342 IISS-ESS Communication 23 RAP -33
003-343 IISS-ESS Communication 24 RAP 2-33
003-344 Hotline Power On 2-34
003-345 PIO Unlatched 1 RAP 2-34
003-346 PIO Unlatched 2 RAP 2-35
003-750 Book Duplex Documents RAP -35
003-751 Panther Capacity RAP2-36
003-754 S2X Recovery RAP 2-36
003-755 S2X Command Error RAP 2-37
003-756 Blank Originals RAP -37
003-760 Scan Settings RAP -38
003-761 Incorrect Paper Tray Size RAP -38
003-763 Adjustment Chart RAP 2-39 -39
003-764 Image Overlay RAP
003-780 Scanned Image Compression RAP 2-40
003-795 AMS Limit RAP -40
003-930 300 DPI Scan RAP
003-931 400 DPI Scan RAP 2-41
003-932 600 DPI Scan RAP 2-42
003-933 300 DPI Scan RAP 2-42
003-934 400 DPI Scan RAP 2-43
003-935 600 DPI Scan RAP 2-43
003-940 Memory RAP 2-44
003-942 Document Size Auto Detect RAP. 2-44
003-944 Image Repeat Count RAP $2-45$
003-946 Image Rotation (Copy APS) RAP 2-45
003-947 Return Documents Count RAP 2-46
003-948 Return Documents Mismatch RAP 2-46
003-952 Document Color Mismatch RAP 2-47
003-955 Documents Size Exchange RAP 2-47
003-956 Coping from the Platen Failure RAP 2-48
003-963 APS Object Tray RAP 2-48
003-965 ATS/APS Paper Detect RAP 2-49
003-966 ATS/APS Destination (IIT) RAP 2-49
003-970 Fax Line Memory RAP 2-50
003-972 Maximum Stored Page RAP 2-50
003-973 Image Rotation RAP 2-51
003-974 Next Original Specification RAP 2-51
003-976 FAX Line Memory Overflow RAP 2-52
003-977 Document Mismatch (Multiple Scan) RA 2-52
003-978 Color Document Miss Match (Multi Scan) RAP 2-53
003-980 Staple Position RAP 2-53
003-981 Staple Size RAP. 2-54
003-982 IIT HDD Access Error RAP 2-54
005 DADF
005-110 Belt DADF Regi Sensor On Dynamic Jam RAP 2-55
005-111 Belt DADF Regi Sensor Off Dynamic Jam RAP 2-55
005-112 Belt DADF Regi Sensor On Dynamic Jam RAP (Document Reverse) 2-56
005-113 Belt DADF Regi Sensor Off Dynamic Jam RAP (Document Reverse) 2-56
$005-115$ Belt DADF Exit Sensor On Dynamic Jam 2-57
005-116 Belt DADF Exit Sensor Off Dynamic Jam 2-57
005-121 CVT Feed Sensor On Jam RAP 2-58
005-122 CVT Simplex/Side1 Pre-Registration On Jam RAP 2-59
005-123 CVT Simplex/Side1 Registration Jam RAP 2-60
005-124 CVT Lead Reg Sensor On Jam 2-61
005-125 CVT Registration Sensor Off Jam RAP 2-6
005-126 CVT Out Sensor On Jam 2-62
005-127 CVT Out Sensor Off Jam 2-63
005-128 CVT Simplex Exit 1 Sensor On Jam 2-63
005-129 CVT Simplex Exit 1 Sensor Off Jam 2-64
005-130 CVT Invert Sensor On Jam 2-64
005-131 CVT Invert On Jam RAP 2-65
005-132 CVT Invert On Jam 2 RAP 2-66
005-133 CVT Invert Sensor Off Jam 2-67
005-134 CVT Invert Sensor Off Jam (Inverter) RAP 2-67005-136 CVT Side2 Registration On Jam RAP2-69
005-137 CVT Exit 2 Sensor On Jam 2-70
005-138 CVT Exit 1 Sensor On Jam (Side 2) 2-712-71
2-72005-141 CVT Feed Sensor Off Jam2-73005-142 CVT Exit 1 Sensor Off Jam (Side 2)005-143 CVT Exit 2 Sensor Off Jam$2-73$
005-144 CVT Pre Reg Sensor Jam
005-145 CVT Registration Sensor Off Jam (Invert) RAP 2-74005-146 CVT Pre Registration Sensor Off Jam RAP
2-75
005-147 CVT Pre Registration Sensor Off Jam (Invert) RAP 2-76
2-77
$05-151$ CVT Holed Paper Pre Reg Sensor Off Jam 2-78
005-152 CVT Holed Paper Reg Sensor Off Jam -78
005-153 CVT Holed Paper Pre Reg Sensor Off Jam2-792-79
005-155 CVT Holed Paper Simplex Exit 1 Sensor Off Jam2-80
005-157 CVT Holed Paper Invert Sensor Off Jam 2-81
005-158 CVT Holed Paper Exit 2 Sensor Off Jam-81
005-160 DADF Tray Lift Up Fail on running (Document Set) 2-822-82
005-194 Mixed Size Mismatch RAP -83
005-195 Size Mismatch Jam -83005-197 Prohibit Combine Size RAP005-198 Document Length RAP2-86
005-199 Document Length RAP2-87
005-902 Belt DADF Regi Sensor Static Jam 2-10
005-903 Belt DADF Exit Sensor Static Jam 2-102
005-904 Belt Dup Sensor Static Jam -102
005-909 DADF Lead Sensor Static Jam 2-103
005-910 DADF Out Sensor Static Jam 2-103
005-911 DADF Exit 1 Sensor Static Jam 2-104
005-912 DADF Exit 2 Sensor Static Jam 2-104
005-913 CVT Invert Sensor RAP 2-105
005-914 DADF APS1, 2, 3, Sensor Static Jam 2-105
005-915 CVT APS No1 Sensor RAP 2-106
005-916 CVT APS No2 Sensor RAP 2-106
005-917 CVT APS No3 Sensor RAP -107
005-918 CVT Invert Sensor Static Jam. 2-107
005-919 DADF Tray Lift Up Failure not during Job 2-108
005-940 DADF No Original Failure 2-108
005-941 DADF Not Enough Documents Failure 2-109
005-942 Document Loading RAP 2-109
005-943 DADF Tray Lift Up RAP 2-110
010 Fuser
010-311 Fuser Rear Thermistor Disconnected RAP 2-113
010-313 Control (Center) Thermistor RAP 2-114
010-314 Rear Thermistor RAP 2-114
010-318 Hot-Sagging Recovery RAP 2-115
010-319 Fuser Center Thermistor Differential Amp RAP. 2-115
010-320 Heat Roll Over Temperature RAP -116
010-327 Fuser On Time RAP 2-117
010-328 Fuser Warm-up Time RAP 2-118
010-330 Fuser Motor Failure RAP 2-119
010-331 Fuser Rear Thermistor Over Temp RAP 2-119
010-332 Fuser Center Thermistor Disconnected RAP 2-120
010-333 Fuser Center Thermistor Overtemp RAP 2-121
010-334 Fuser Center Thermistor Broken RAP -122
010-335 Fuser Center Thermistor Out of Range RAP 2-123
010-336 Sub Lamp Disconnection Failure RAP 2-124
010-398 Fuser Lock RAP 2-125
010-420 Fuser Near end of life RAP 2-126
010-421 Fuser end of life RAP 2-126
012 Finisher
012-111 Finisher H-Transport Entrance Sensor Off Jam RAP 2-127
012-112 Finisher H-Transport Entrance Sensor On Jam RAP 2-128
012-121 H-Transport Exit Sensor Off Jam RAP. 2-129
012-126 H-Transport Entrance Sensor OFF Jam B RAP 2-130
012-151 Compile Entrance Sensor Off Jam RAP 2-131
012-152 Compile Entrance Sensor On Jam RAP 2-132
012-161 Finisher Set Eject Jam RAP 2-133
12-162 H-Tra EXIT Sensor On Jam RAP. 2-134
012-211 Stacker Tray RAP 2-135
012-212 Stacker Tray Upper Limit RAP 2-136
012-221 Front Tamper Home Sensor On RAP 2-137
012-223 Front Tamper Home Sensor Off RAP 2-138
012-224 Rear Tamper Home Sensor Off RAP 2-139
012-260 Eect Clamp Ho Sensor ONAP2-140
12-263 Rear Tamper Home Sensor ON RAP 2-141
012-282 Eject Clamp Home Sensor Off RAP2-142
012-283 Set Clamp Home Sensor On RAP2-143
012-284 Set Clamp Home Sensor Off RAP 2-144012-285 Finisher Error
012-291 Stapler RAP2-145
2-145012-293 Staple Front Corner Sensor On RAP012-294 Staple Front Corner Sensor Off RAP012-295 Staple Move Sensor On RAP2-1462-147012-296 Staple Move Sensor Off RAP-012-296 Staple Move Sensor Of RAP2-149012-301 Finisher Top Cover Open RAP-149
012-302 Finisher Front Cover Open RAP2-151
012-303 Finisher H-Transport Cover Open RAP 2-151
12-310 Front Tamper Home Sensor On Fail RAP 2-152
012-311 Front Tamper Home Sensor Off Fail RAP 2-15312-313 Rear Tamper Home Sensor Off Fail RAP
2-156
12-314 Eject Clamp Home Sensor On Failure RAP
-157
012-315 Eject Clamp Home Sensor Off Failure RAP 2-157
012-316 Stapler Failure RAP 2-158
012-317 Stapler Feed Ready Failure RAP 2-159
012-318 Set Clamp Home Sensor On Failure RAP 2-159
012-319 Set Clamp Home Sensor Off Failure RAP 2-160 -160
12-350 Finisher Communications Failure RAP
12-5002-162
12-600 Staple Mode Logic 2-163
12-901 Finisher H-Transport Entrance Sensor RAP 2-163012-902 H-Transport Exit Sensor RAP012-903 Paper Remains at Compiler Entrance Sensor RAP012-905 Compile Paper Sensor RAP2-1642-1642-165
012-923 H-Transport Entrance Sensor B RAP 2-165
012 a-finisher
012-132 (A-Finisher) Ent Sensor ON Jam 2-167
012-151 (A-Finisher) Compiler Exit Sensor OFF Jam 2-168
012-152 (A-Finisher) Compiler Exit Sensor ON Jam 2-169
12-161 (A-Finisher) Set Eject Jam2-170
012-211 (A-Finisher) Stacker Tray Fail
12-221 (A-Finisher) Front Tamper Home Sensor ON Fai2-171
012-223 (A-Finisher) Front Tamper Home Sensor OFF Fail2-173
012-224 (A-Finisher) Rear Tamper Home Sensor OFF Fail2-1752-175
012-259 (A-Finisher) Eject Home Sensor ON Fail 2-176
12-263 (A-Finisher) Rear Tamper Home Sensor ON Fail 2-177
012-280 (A-Finisher) Eject Home Sensor OFF Fail 2-178
12-283 (A-Finisher) Set Clamp Home Sensor ON Fail 2-179
012-284 (A-Finisher) Set Clamp Home Sensor OFF Fail 2-180
012-291 (A-Finisher) Stapler Fail 2-181
12-301 (A-Finisher) Top Cover Interlock OPEN 2-182
012-302 (A-Finisher) Front Cover Interlock OPEN 2-183
12-903 (A-Finisher) Paper Remains at Compiler Exit Sensor
012-935 (A-Finisher) Paper Remains at Ent Sensor -184
016 FAX Service
016-210 Software Option (HDD Error) RAP 2-185
016-211 Software Option (System Memory Low) RAP 2-185
016-212 Software Option (Page Memory Low) RAP. 2-186
016-213 Software Option (Printer PWB) RAP 2-186
016-214 Serial Number Mismatch RAP -187
016-215 Software Option RAP -187
016-216 Software Option RAP 2-188
016-217 Software Option RAP 2-188
016-219 Software Option RAP 2-189
016-311 Scanner Install RAP -189
016-315 IIT Interface RAP 2-190
016-316 Page Memory Not Detected RAP 2-190
016-317 Page Memory Error- Standard RAP 2-19
016-318 Page Memory Error- Option RAP. -191
016-321 Fax Module RAP 2-192
016-322 JBA Account Full RAP 2-192
016-323 B Formatter RAP 2-193
016-450 SMB Host Name Duplicated RAP 2-193
016-454 DNS Dynamic Update RAP 2-194
016-455 SMTP Server Time-out RAP 2-194
016-456 SMTP time asynchronous RAP 2-195
016-461 TBD RAP. 2-195
016-500 DIMM RAP -196
016-501 S2X RAP 2-196
016-502 ROM Write RAP 2-197
016-503 SMTP Redirector RAP -197
16-504 Redirector POP Server RAP 2-198
016-505 Redirector POP Authentication RAP 2-198
016-506 Image Log RAP 2-199
016-507 Image Log Send RAP 2-199
016-508 Image Log RAP 2-200
016-509 Image Log RAP 200
016-510 Image Log RAP 2-201
016-511 Image Log RAP -20
016-512 Image Log RAP -202
016-522 LDAP RAP -202
016-523 LDAP RAP 2-203
016-524 LDAP RAP -203
016-525 LDAP RAP 2-204
016-526 LDAP RAP 202
016-527 LDAP RAP 2-205
016-533 LDAP RAP 2-205
016-534 LDAP RAP 2-206
016-539 LDAP RAP 2-206
016-539 LDAP RAP 2-207
016-574 Host Name Error RAP 2-207
016-575 DNS Server Error in FTP RAP 2-208
-576 Server Connecion Error in FTP RAP 2-208
$016-577$ FTP Service RAP
016-578 Login/Password Error RAP 2-209016-580 File Name Acquisition Failure RAP2-210
016-581 File Name Suffix Limit Error RAP 2-211
16-582 File Creation Failure RAP2-211
016-583 Lock Folder Creation Failure RAP 2-212
016-584 Folder Creation Failure RAP 21
016-585 File Delete Failure RAP 2-213
016-586 Lock Folder Delete Failure RAP 2-213
016-587 Folder Delete Failure RAP2-214
016-588 Data Write-in Failure RAP 2-214
16-589 Data Read Failure RAP 2-215
016-590 Data Reading Failure RAP2-215
016-591 Scan Filing Policy Injustice RAP 2-216
016-592 NEXTNAME.DAT file access error RAP 2-216
16-593 Internal Scan Error RAP 2-217
016-594 TYPE Command Failure RAP 2-217
016-595 Port Command Failure RAP 2-218
016-596 CDUP Command Failure RAP 2-218
16-597 Same Name File Exists RAP2-219
016-600 Key Operator Authentication Locked RAP 2-219
016-601 Illegal Access Detection RAP 2-220
016-701 ART EX Memory Expended RAP 2-220
016-702 Out of Page Buffer RAP 2-221
016-703 E-mail To Invalid Box RAP 2-221
016-704 Mailbox Full RAP 2-222
16-705 Secure Print RAP 2-222
016-706 Maximum Users Exceeded RAP 2-223
016-707 Sample Print RAP 2-223
016-708 HDD Full Annotation/Watermark RAP 2-224
016-709 ART EX Command RAP 2-224
016-710 Delayed Print RAP 2-225
16-711 E-mail Transmission Size Limit RAP 2-225
016-712 Panther Capacity (I-Formatted) RAP 2-226
16-713 Security Box Password RAP
016-714 Security Box Enable RAP 2-226
16-716 TIFF Data Overflow RAP2-227
016-717 FaxliFax Send RAP22
016-718 PCL6 Memory RAP 2-2282-228
016-719 Out of PCL Memory RAP
16-720 PCL Command RAP2-229
016-721 Other Errors RAP 2-230
016-722 Staple Position RAP 2-230
016-724 Staple Position RAP 2-231
016-725 B-Formatter Image RAP 2-231
016-726 PDL Auto Switch RAP 2-232 -232016-727 Printer Request
16-728 TIFF Data Unsupported RAP 2-233
16-729 TIFF Data Size RAP 2-233
16-730 ART Command Unsupported RAP 2-234 2-234016-731 TIFF Data Invalid RAP
2-234
16-732 Form Not Registered RAP
016-733 Destination Address RAP 2-235
016-734 Transmission Report RAP 2-236
016-735 Updating Job Template RAP 2-236
16-736 Remote Directory Lock RAP 2-237
016-737 Remote Directory Removal RAP 2-237
016-741 Downloading Mode RAP 2-238
016-742 TBD RAP 2-238
016-743 TBD RAP -239
016-744 TBD RAP 2-239
016-745 TBD RAP 2-240
016-746 Unsupported PDF File RAP 2-240
16-747 Insufficient Memory 2-241
016-748 HDD Full RAP 2-241
016-749 Post Script Font RAP 2-24
016-750 Print Job RAP 2-242
016-751 PDF RAP -243
016-752 PDF Memory Limit RAP 2-243
016-753 PDF Password Mismatch RAP 2-244
016-754 PDF LZW Not Installed RAP 2-244
016-755 PDF Print Prohibited RAP 2-245
16-756 Auditron - Prohibit Service RAP 2-245
016-757 Auditron - Invalid User RAP 2-246
016-758 Auditron - Disabled Function RAP 2-246
016-759 Auditron - Reached Limit RAP -247
016-760 PostScript Decompose RAP 2-247
016-761 FIFO Empty RAP 2-248
016-762 Print Language RAP 2-248
016-764 SMTP Server Connection RAP 2-249
016-765 SMTP Server HDD Full RAP -249
016-766 SMTP Server File System RAP 2-250
016-767 Invalid E-mail Address RAP 2-250
016-768 Invalid Sender Address RAP 2-25
016-769 SMTP Server Unsupported DSN RAP 2-25
$016-770$ FAX Function Cancelled RAP 2-252
016-771 JBIG Parameter RAP 2-252
016-772 JBIG Parameter RAP 2-253
016-773 JBIG Parameter RAP 2-253
016-774 JBIG Parameter RAP 2-254
016-775 JBIG Parameter RAP 2-254
016-776 JBIG Parameter RAP 2-255
016-777 JBIG Parameter RAP -255
016-778 JBIG Parameter RAP 2-256
016-779 Scanned Image Conversion Error RAP 2-256
016-780 Attached Document TIFF RAP 2-257
016-781 Scan Server Connect Error RAP 2-257
016-782 Scan Server Login Error RAP 258
016-783 Invalid Server Path RAP 2-258
016-784 Server Write Error RAP 2-259
016-785 Server HD Full RAP 2-259
016-786 HD Full-Scan Write Error RAP -
016-787 Invalid Server IP ADD RAP 2-260
016-788 Retrieve to Browser RAP 2-261
016-789 HD Full - Job Memory RAP 2-261016-791 File Retrieve RAP2-262
016-792 Specified Job RAP 2-262016-793 MF I/O HD Full RAP2-263
016-798 No Trust Marking Option RAP 2-264
016-799 PLW Print Instruction RAP 2-264
016-981 HDD access error RAP 2-265
16-982 HDD access error 2 RAP 2-265
016-983 Log Image Storage Area on Disk Full RAP 2-266
016-985 Data size overflow (Scan to E-mail) RAP 2-266
018 LDAP
018-505 SMB-DOS protocol error RAP 2-267
018-543 Shared name error in SMB server RAP 2-267
018-547 Number restriction over of SMB scan users RAP 2-268
018-595 LDAP protocol error RAP 2-268
018-701 LDAP RAP 2-269
018-702 LDAP RAP 2-269
018-703 LDAP RAP 2-270
018-704 LDAP RAP 2-2702-2712-271
2-271018-705 LDAP RAP2-2722-2722-2732-273
018-768 LDAP RAP 2-286
018-769 LDAP RAP 2-287
018-770 LDAP RAP 2-287
018-771 LDAP RAP 2-288
018-780 LDAP RAP 2-288
018-781 LDAP RAP 2-289
018-782 LDAP RAP 2-289
018-783 LDAP RAP -290
018-784 LDAP RAP 2-290
018-785 LDAP RAP -29
018-786 LDAP RAP 2-29
018-787 LDAP RAP
-292
-292
018-788 LDAP RAP 2-292
018-789 LDAP RAP 2-293
018-790 LDAP RAP 2-293
018-791 LDAP RAP -294
018-792 LDAP RAP 2-294
018-793 LDAP RAP 2-295
018-794 LDAP RAP 2-295
018-795 LDAP RAP 2-296
018-796 LDAP RAP 2-296
018-797 LDAP RAP 2-297
021 FAX
021-360 EP Accessory Failure RAP 2-299
021-361 EP Accessory Kind Configuration Error RAP 2-299
021-731 EP Accessory - Function Disabled RAP 2-300
021-732 EP Accessory - Service Canceled By Disable RAP 2-300
021-733 EP Accessory - Service Canceled By Color Mode Restriction RAP 2-301
021-750 Used Parts Request Failure (EP-SV) RAP 2-30
021-751 Maintenance Request Failure (EP-SV) RAP 2-302
021-770 Used Parts Request Failure (EP-DX) RAP 2-302
021-771 Maintenance Request Failure (EP-DX) RAP 2-303

- 772 EP -DX - Installation/Removal Failure RA 2-303
021-941 EP - Scan Service Paused By Disable RAP 2-304
021-942 EP - Scan Service Paused By Color Mode RAP 2-304
021-943 EP - Print Service Paused By Disable RAP 2-305
021-944 EP - Print Service Paused By Color Mode RAP 2-305
021-945 EP - Service Paused By Disable RAP 2-306
021-946 EP - Service Paused By Color Mode RAP 2-306
024 IOT-ESS Communication
024-340 IOT-ESS Communication 1 RAP 2-307
024-341 IOT-ESS Communication 2 RAP -307
024-342 IOT-ESS Communication 3 RAP 2-308
024-343 IOT-ESS Communication 4 RAP 2-308
024-345 IOT-ESS Communication 5 RAP 2-309
024-346 IOT-ESS Communication 6 RAP 2-309
024-347 IOT-ESS Communication 7 RAP 2-310
024-348 IOT-ESS Communication 8 RAP $2-310$
024-349 IOT-ESS Communication 9 RAP -31
24-350 IOT-ESS Communication 10 RAP 2-31

Revision

024-351 IOT-ESS Communication 11 RAP 2-312
24-352-312
24-356 IOT-ESS Communication 16 RAP 2-313
024-360 IOT-ESS Initialization RAP 2-313
024-362 Page Sync Start RAP2-314
2-314
024-363 Page Sync Stop RA 2-315
024-367 Decompression Synchronization RAP 2-315
$024-368$ PCI RAP 2-316
024-370 Marker Code Detection RAP 2-316
024-371 IOT-ESS Communication 21 RAP 2-317
24-372 IOT-ESS Communication 22 RAP 2-317
024-373 IOT-ESS Communication 23 RAP 2-318
2-318
24-375 IOT-ESS Communication 24 RAP 2-319
024-601 Billing Backup Counter 1 RAP 2-319
024-602 Billing Backup Counter 2 RAP 2-320
024-603 Software Key Master Counter RAP 2-320
24-604 Software Key Backup Counter 1 RAP 2-321
24-605 Software Key Backup Counter 2 RAP 2-321
024-747 Print Instruction RAP 2-322
024-910 Tray 1 size mismatch RAP 2-323
024-911 Tray 2 size mismatch RAP 2-324
024-912 Tray 3 size mismatch RAP 2-325
024-916 Mix Full Stack RAP 2-326
024-917 Stacker Tray Staple Set Over Count RAP 2-327
24-919 Face UP Tray Close RAP 2-327
024-920 Face Down Tray 1 Paper Full RAP 2-328
24-922 Face Down Tray 1 Paper Full RAP 2-328
024-923 Y Toner Empty 2-329
024-924 M Toner Empty 2-329
024-925 C Toner Empty 2-330
24-928 Scratch Sheet Compile RAP 2-330
024-930 Stacker Tray Full RAP 2-331
24-934 Paper Type Mismatch RAP 2-331
2-332
024-946 Tray 1 Position RAP. 2-332
24-947 2TM Tray 2 Position RAP 2-333
024-947 TTM Tray 2 Position RAP 2-3332-334
2-334 2-335
24-948 TTM Tray 3 Position RAP
-335
024-951 2TM Tray 2 Empty RAP
2-336
2-336
024-951 TTM Tray 2 Empty RAP 2-336
024-952 TTM Tray 3 Empty RAP 2-337
024-954 MSI Empty RAP 2-337
224-958 MSI Size RAP 2-338
024-959 Tray 1 Paper Size RAP 2-339
024-960 Tray 2 Paper Size RAP 2-340
024-961 Tray 3 Paper Size RAP2-341
24-965 ATS/APS Paper (IOT detect) RAP 2-342
024-966 ATS/APS Destination RAP
024-967 Mixed Width Paper (Staple Job) RAP 2-344
024-976 Staple Status Failed RAP -345
24-977 Stapler Feed Ready RAP -346
024-979 Stapler Near Empty RAP 2-346
024-980 Stacker Tray Full RAP 2-347
024-982 Stacker Lower Safety Warning RAP
2-348
2-348
024-985 MSI Feed RAP -349
024 IOT-ESS Communication-a-finisher
024-916 (A-Finisher) Mix Stack Full 2-351
024-917 (A-Finisher) Stacker Tray Staple Set Over Count. 2. 35
024-928 (A-Finisher) Scratch Sheet Compile. 2-35
24-930 (A-Finisher) Stacker Tray Full Stack 2-354
24-976 (A-Finisher) Staple NG 2-356
024-977 (A-Finisher) Stapler Feed Ready Fail. 2-357
024-979 (A-Finisher) Stapler Near Empty -35
24-980 (A-Finisher) Stacker Tray Full Stack -358
24-982 (A-Finisher) Stacker Lower Safety Warning -359
025 HDD Diagnostics
025-596 Diagnostic HDD Maintenance RAP 2-36
025-597 Diagnostic HDD Initialize RAP 2-36
026 Address Book
026-700 LDAP Protocol Max Error RAP 2-363
026-701 Address Book Request Overflow RAP 2-363
026-702 Address Book Directory Service Overflow RAP. 2-364
027 MAIL
027-452 Duplicate IP Address RAP 2-365
027-500 SMTP Server Mail I/O RAP 2-365
027-501 POP Server RAP 2-366
27-502 POP Authentication RAP -366
027-513 SMB Scan Client RAP 2-367
27-514 Host Name Solution Error RAP 2-367
027-515 DNS Server Error in SMB RAP 2-368
027-516 Server Connection Error in SMB RAP 2-368
027-518 Login/Password Error RAP 2-369
27-519 Scanning Picture Error RAP -369
027-520 File Name Acquisition Failure RAP 2-370
027-521 File Name Suffix Limit Error RAP 2-370
027-522 File Creation Failure RAP 2-37
27-523 Lock Folder Creation Failure RAP -37
027-524 Folder Creation Failure RAP 2-372
027-525 File Delete Failure RAP 2-372
027-526 Lock Folder Delete Failure RAP 2-373
027-527 Folder Delete Failure RAP 2-373
027-528 Data Write-in Failure RAP 2-374
027-529 Data Read Failure RAP 2-374
027-530 Data Reading Failure RAP 2-375
027-531 Scan Filing Policy Injustice RAP 2-375
027-532 NEXTNAME.DAT file access error RAP 2-376
027-533 Internal Scan Error RAP 2-376
27-543 Server Name Specification Error RAP 2-377
027-547 SMB Protocol error 4-007 RAP 2-377
027-548 SMB Protocol error 4-008 RAP. 2-378
027-549 SMB Protocol error 4-009 RAP 2-3782-379
2-379
027-565 SMB Protocol error 4-025 RAP
2-380
027-566 SMB Protocol error 4-026 RAP2-380
$27-569$ SMB (TCP/IP) is not Started RAP 2-381
27-572 SMB Protocol error 4-032 RAP
27-572 SMB Protocol error 4-032 RAP 2-381
027-574 SMB Protocol error 4-034 RAP 2-3822-3822-3832-3832-3842-3842-3852-3852-3862-3862-3872-3872-3882-3882-3892-3892-3902-390
2-3912-3912-3922-3922-3932-3932-3932-3942-3942-395
2-3952-3962-3962-3972-3972-3982-3982-399
2-3992-3992-4002-4002-4012-4012-4022-402
027-750 Fax Document Inhibited RAP 2-403
027-751 Job Template Analysis RAP 2-403
027-752 Required User Entry Not Entered RAP -404
027-753 Job Flow Service Disabled RAP 2-404
027-754 Job Flow Service File Signature Mismatch RAP 2-405
027-796 E-mail Not Printed RAP. 2-405
027-797 Invalid Output Destination RAP -406
033 FAX Contro
033-363 Fax Control RAP 2-407
033-710 Fax Control RAP -407
033-712 Fax Control RAP -408
033-713 Fax Control RAP 2-408
033-715 Fax Control RAP 2-409
033-716 Fax Control RAP 2-409
033-717 Fax Control RAP 2-410
033-718 Fax Control RAP 2-410
033-719 Fax Control RAP 2-411
033-721 Fax Control RAP 2-411
033-722 Fax Control RAP 2-412
033-724 Fax Control RAP 2-412
033-725 Fax Control RAP 2-413
033-726 Fax Control RAP 2-413
033-727 Fax Control RAP 2-414
033-728 Fax Control RAP 2-414
033-731 Fax Control RAP 2-415
033-732 Fax Control RAP 2-415
033-733 Fax Control RAP 2-416
033-734 Fax Control RAP 2-416
033-735 Fax Control RAP -417
033-736 Fax Control RAP 2-417
033-737 Fax Control RAP 2-418
033-738 Fax Control RAP 2-418
33-740 Fax Control RAP 2-419
033-741 Fax Control RAP 2-419
033-742 Fax Control RAP 2-420
033-744 Fax Control RAP -420 -420
033-745 Fax Control RAP 2-421
033-746 Fax Control RAP 2-421
033-747 Fax Control RAP 2-422
033-749 Fax Control RAP 2-423
333-750 Fax Control RAP 2-423
033-751 Activity Report suspended RAP 2-424
033-755 Fax printing is canceled Fax RAP 2-424
033-790 Fax Control RAP 2-425
033-755 Fax Control RAP 2-425
033-792 Fax Control RAP 2-426
034 FAX Communication
034-211 Fax Communication RAP 2-427
034-212 Fax Communication RAP 2-427

Revision

WorkCentre 7132
034-500 Fax Communication RAP 2-428ication RAP2-428
034-505 Fax Communication RAP 2-429
034-506 Fax Communication RAP 2-429
034-507 Fax Communication RAP 2-430
034-508 Fax Communication RAP 2-4302-431
034-510 Fax Communication RAP 2-431
034-511 Fax Communication RAP 2-432
034-512 Fax Communication RAP 2-432
034-513 Fax Communication RAP 2-433
034-514 Fax Communication RAP 2-433
034-515 Fax Communication RAP 2-434
034-520 Fax Communication RAP 2-435
-034-522 Fax Communication RAP2-436
2-436 2-437 2-437
034-528 Fax Communication RAP

034-530 Fax Communication RAP 2-438
2-438 2-439
034-702 Fax Communication RAP
2-439
034-704 Fax Communication RAP 2-440034-705 Fax Communication RAP2-440
034-738 Fax Communication RAP 2-454
034-739 Fax Communication RAP 2-454
034-740 Fax Communication RAP 2-455
034-741 Fax Communication RAP 2-455
034-742 Fax Communication RAP 2-456
034-743 Fax Communication RAP -456
034-744 Fax Communication RAP 2-457
034-745 Fax Communication RAP 2-457
034-746 Fax Communication RAP 2-458
034-747 Fax Communication RAP -458
034-748 Fax Communication RAP 2-459
034-749 Fax Communication RAP $2-459$
034-750 Fax Communication RAP 2-460
034-751 Fax Communication RAP 2-460
034-752 Fax Communication RAP 2-461
034-753 Fax Communication RAP 2-461
034-754 Fax Communication RAP. 2-462
034-755 Fax Communication RAP 2-462
034-756 Fax Communication RAP 2-463
034-757 Fax Communication RAP 2-463
034-758 Fax Communication RAP 2-464
034-759 Fax Communication RAP 2-464
034-760 Fax Communication RAP 2-465
034-761 Fax Communication RAP 2-465
034-762 Fax Communication RAP 2-466
034-763 Fax Communication RAP 2-466
034-764 Fax Communication RAP 2-467
034-765 Fax Communication RAP 2-467
034-766 Fax Communication RAP 2-468
034-767 Fax Communication RAP 2-468
034-768 Fax Communication RAP 2-469
034-769 Fax Communication RAP 2-469
034-770 Fax Communication RAP $2-470$
034-771 Fax Communication RAP 2-470
034-772 Fax Communication RAP 2-471
034-773 Fax Communication RAP 2-471
034-774 Fax Communication RAP 2-472
034-775 Fax Communication RAP 2-472
034-776 Fax Communication RAP 2-473
034-777 Fax Communication RAP 2-473
034-778 Fax Communication RAP 2-474
034-779 Fax Communication RAP. 2-474
034-780 Fax Communication RAP 2-475
034-781 Fax Communication RAP -475
034-782 Fax Communication RAP 2-476
034-783 Fax Communication RAP 2-476
034-784 Fax Communication RAP 2-477
034-785 Fax Communication RAP 2-477
034-786 Fax Communication RAP 2-478
034-787 Fax Communication RAP 2-478
034-788 Fax Communication RAP 2-479
034-789 Fax Communication RAP 2-479
034-790 Fax Communication Channel 0 RAP 2-480034-792 Fax Communication Channel 2 RAP2-481
334-794 Fax Communication Channel 4 RAP
2-483
034-796 Fax Communication Channel RAP2-485035-500 Fax Protocol RAP
035-550 Write to FaxG3-ROM error detection RAP 2-485
035-700 Fax Protocol RAP 2-486
035-701 Fax Protocol RAP 2-486
035-702 Fax Protocol RAP 2-487
035-703 Fax Protocol RAP 2-4872-4882-488
2-4892-4892-4892-4902-4902-4912-491
035-741 Fax Protocol RAP 2-506
035-742 Fax Protocol RAP 2-507
035-743 Fax Protocol RAP 2-507
035-744 Fax Protocol RAP 2-508
035-745 Fax Protocol RAP 2-508
035-746 Fax Protocol RAP 2-509
035-747 Fax Protocol RAP 2-509
035-748 Fax Protocol RAP 2-510
035-749 Fax Protocol RAP 2-510
035-750 Fax Protocol RAP -51
035-751 Fax Protocol RAP 2-51
035-752 Fax Protocol RAP 2-512
035-762 Fax Protocol RAP 2-512
036 FAX Parameter
036-500 Fax Parameter RAP 2-513
036-501 Fax Parameter RAP -513
036-502 Fax Parameter RAP 2-514
036-503 Fax Parameter RAP 2-514
036-504 Fax Parameter RAP 2-515
036-505 Fax Parameter RAP 2-515
036-506 Fax Parameter RAP -516
036-507 Fax Parameter RAP 2-516
036-508 Fax Parameter RAP 2-517
036-509 Fax Parameter RAP 2-517
036-510 Fax Parameter RAP 2-518
036-511 Fax Parameter RAP 2-518
036-512 Fax Parameter RAP 2-519
036-513 Fax Parameter RAP 2-519
036-514 Fax Parameter RAP 2-520
036-515 Fax Parameter RAP 2-520
036-516 Fax Parameter RAP 2-521
036-517 Fax Parameter RAP -521
3-518 Fax Parameter RAP 2-522
036-519 Fax Parameter RAP 2-522
036-520 Fax Parameter RAP 2-523
036-521 Fax Parameter RAP 2-523
36-522 Fax Parameter RAP 2-524
036-523 Fax Parameter RAP 524
036-524 Fax Parameter RAP 2-525
036-525 Fax Parameter RAP 2-525
36-526 Fax Parameter RAP 2-526
036-527 Fax Parameter RAP 2-526
036-528 Fax Parameter RAP 2-527
036-529 Fax Parameter RAP 2-527
036-530 Fax Parameter RAP 2-528
036-531 Fax Parameter RAP 2-528
036-532 Fax Parameter RAP 2-529
036-533 Fax Parameter RAP 2-529
53 Fax Parameter RAP 2-530
036-536 Fax Parameter RAP -530

Revision

036-538 Fax Parameter RA	32
036-539 Fax Parameter RAP	32
036-540 Fax Parameter RA	2-533
036-541 Fax Parameter RA	
036-542 Fax Parameter RA	2-534
036-550 Fax Parameter RA	2-534
036-700 Fax Parameter RA	2-535
036-701 Fax Parameter RA	2-535
036-702 Fax Parameter RAP	2-536
036-703 Fax Parameter RAP	2-536
036-704 Fax Parameter RA	2-537
036-705 Fax Parameter RA	2-537
036-706 Fax Parameter RA	2-538
036-707 Fax Parameter RA	2-538
036-708 Fax Parameter RA	2-539
036-709 Fax Parameter RA	2-539
036-710 Fax Parameter RA	2-540
036-711 Fax Parameter RA	2-540
036-712 Fax Parameter RA	2-541
036-713 Fax Parameter RA	2-541
036-714 Fax Parameter RA	2-542
036-715 Fax Parameter RA	2-542
036-716 Fax Parameter RA	2-543
036-717 Fax Parameter RA	2-543
036-718 Fax Parameter RA	2-544
036-719 Fax Parameter RA	2-544
036-720 Fax Parameter RA	2-545
036-721 Fax Parameter RA	2-545
036-722 Fax Parameter RA	2-546
036-723 Fax Parameter RA	2-546
036-724 Fax Parameter RA	2-547
036-725 Fax Parameter RA	2-547
036-726 Fax Parameter RA	2-548
036-727 Fax Parameter RA	2-548
036-728 Fax Parameter RA	2-549
036-729 Fax Parameter RAP	2-549
036-730 Fax Parameter RA	2-550
036-731 Fax Parameter RA	2-550
036-732 Fax Parameter RA	2-551
036-733 Fax Parameter RA	2-551
036-734 Fax Parameter RA	2-552
036-735 Fax Parameter RA	2-552
036-736 Fax Parameter RA	2-553
036-737 Fax Parameter RA	2-553
036-738 Fax Parameter RA	2-554
036-739 Fax Parameter RA	2-554
036-740 Fax Parameter RA	2-555
036-741 Fax Parameter RA	2-555
036-742 Fax Parameter RA	2-556
036-743 Fax Parameter RA	2-556
6-744 Fax Parameter	

036-745 Fax Parameter RAP 2-557
036-746 Fax Parameter RAP 2-558
036-747 Fax Parameter RAP 2-558
036-748 Fax Parameter RAP 2-559
036-749 Fax Parameter RAP 2-559
036-750 Fax Parameter RAP -560
036-751 Fax Parameter RAP 2-560
036-752 Fax Parameter RAP 2-561
036-753 Fax Parameter RAP 2-561
036-754 Fax Parameter RAP 2-562
036-755 Fax Parameter RAP 2-562
036-756 Fax Parameter RAP 2-563
036-757 Fax Parameter RAP 2-563
036-758 Fax Parameter RAP 2-564
036-759 Fax Parameter RAP 2-564
036-760 Fax Parameter RAP 2-565
036-761 Fax Parameter RAP 2-565
036-762 Fax Parameter RAP 2-566
036-763 Fax Parameter RAP 2-566
036-764 Fax Parameter RAP 2-567
036-765 Fax Parameter RAP 2-567
036-766 Fax Parameter RAP 2-568
036-767 Fax Parameter RAP 2-568
036-768 Fax Parameter RAP 2-569
036-769 Fax Parameter RAP 2-569
036-770 Fax Parameter RAP 2-570
036-771 Fax Parameter RAP 2-570
036-772 Fax Parameter RAP 2-571
036-773 Fax Parameter RAP 2-571
036-774 Fax Parameter RAP 2-572
036-775 Fax Parameter RAP 2-572
036-776 Fax Parameter RAP 2-573
036-777 Fax Parameter RAP 2-573
036-778 Fax Parameter RAP 2-574
036-779 Fax Parameter RAP 2-574
036-780 Fax Parameter RAP 2-575
036-781 Fax Parameter RAP 2-575
036-782 Fax Parameter RAP 2-576
036-783 Fax Parameter RAP 2-576
036-784 Fax Parameter RAP 2-577
036-785 Fax Parameter RAP 2-577
036-786 Fax Parameter RAP 2-578
036-787 Fax Parameter RAP 2-578
036-788 Fax Parameter RAP 2-579
036-789 Fax Parameter RAP 2-579
036-790 Fax Parameter RAP 2-580
036-791 Fax Parameter RAP 2-580
036-792 Fax Parameter RAP 2-581
036-73 Fax Parameter RAP 2-581
036-794 Fax Parameter RAP 2-582
036-795 Fax Parameter RAP 2-582
036-796 Fax Parameter RAP
036-797 Fax Parameter RAP 2-583
036-799 Fax Parameter RAP2-584
041 NVM
041-310 IM Logic Failure 2-585
041-311 MCU PWB Fuse F2 2-585
041-312 MCU PWB Fuse F1 2-586
41-314 MCU PWB Fuse FA2-586
041-319 MCU PWB Interlock Fuse F4 2-587
041-320 MCU PWB Interlock Fuse F3 2-587
041-323 MCU PWB Fuse F5 2-588
41-340 MCU PWB Data RAP -588
041-341 MCU PWB Access RAP 2-589
441-342 MCU PWB Buffer RAP 2-589
041-500 2-590
041-501 2-590
042 Drives
042-311 Auger Motor Failure RAP 2-591
042-313 Rear Cooling Fan Failure RAP 2-591
42-324 Drum Motor Drive Failure RAP 2-592
042-325 Main Motor Failure RAP 2-592
42-400 Filter Life RAP 2-593
045 Marking
045-310 Image RAP 2-595
045-311 Controller Communications RAP 2-595
045-321 Marking Panel RAP 2-596
045-322 Marking Pitch RAP. 2-596
045-323 Marking Y RAP 2-597
045-324 Marking M RAP 2-597
045-325 Marking C RAP 2-598
045-326 Marking K RAP 2-598
045-327 Marking Y RAP 2-599
045-328 Marking M RAP 2-599
045-329 Marking C RAP 2-600
045-330 Marking K RAP 2-600
045-331 Marking Reject RAP 2-601
045-332 Marking Reject RAP 2-601
045-333 Marking Communication RAP 2-602
045-334 Marking Drive Communication RAP 2-602
045-335 Marking Fuser Communication RAP 2-603
045-336 Marking ROS Communication RAP 2-603
045-337 Marking Imaging Communication RAP 2-604
047 Communication
047-211 OCT 2 RAP 2-605
047-214 MCU Duplex Module RAP 2-605
047-216 MCU Finisher Communication RAP 2-606
061 ROS
061-320 ROS Motor RAP 2-607
Revision
061-325 SOS RAP 2-608
061-333 ROS Fan defect RAP 2-608
061-344 Video Processor RAP -609
061-345 +5 VDC Interlock RAP 2-609
062 IIT
062-210 IIT Hot Line RAP 2-611
062-211 IIT/IPS PWB EEPROM RAP 2-611
S PWB RAP 2-612
$062-277$ IIT/IPS PWB DADF PWB Communication RAP 2-612
062-278 IIT/IPS PWB RAP 2-613
062-300 Platen Interlock Open RAP 2-613
相 2-614
062-311 IIT/IPS Software RAP 2-614
062-345 IIT/IPS Subsystem RAP 2-615
062-357 CCD Fan Failure RAP -615
62-360 Carriage Position RAP 2-616
062-362 IIT/IPS PWB RAP 617
062-371 Lamp Illumination RAP 2-617
062-380 Platen AGC CH1 RAP -618
062-386 Platen AOC CH1 RAP 2-618
062-389 Carriage Over Run RAP 619
062-392 IIT/IPS PWB Memory Failure-1 RAP 2-619
062-393 IIT/IPS PWB RAM RAP 2-620
062-500 IISS ROM RAP 2-620
662-790 Prohibited Document Detection RAP 2-621
063 EXT PWB
063-210 Extension EPROM RAP 2-623
063-220 IIT/IPS PWB Extension PWB Sync RAP -623
063-230 Extension PWB DIMM RAP -624
063-240 Extension PWB Processing RAP 2-624
063-500 IISS Extension ROM RAP 2-625
065 CIS
065-210 Extension PWB DIMM RAP 2-627
065-211 CIS Flash ROM RAP 2-627
065-212 CIS Shading RAP 2088
065-213 CIS Light RAP 2-628
065-215 Extension PWB DIMM 2 RAP -629
065-216 Extension PWB DIMM 3 RAP 2-629
065-219 CIS BlackWhite RAP 2-630
065-220 IF PWB Sync RAP 2-630
071 Tray 1
071-100 Tray 1 Pre Feed RAP -63
071-101 Tray 1 Misfeed RAP -632
071-105 Registration Sensor RAP -633
071-211 Tray 1 RAP 2-634
071-212 Tray 1 Ready RAP -63
071-210 Tray 1 Lift Up RAP -635
071-401 Tray 1 Feed Roll Life RAP 2-636
071-402 Tray 1 Feed Roll Replacement RAP 2-637
071-900 Tray 1 Feed Out Sensor RAP 2-638
071-940 Tray 1 Lift Up RAP 2-639
072 Tray 2
072-100 Tray 2 Pre Feed RAP 2-641
072-101 Tray 2 Misfeed Jam RAP 2-642 2-642
072-102 Tray 2 Feed Out Sensor On Jam (Tray 3 Feed) RAP
072-105 Tray 2 Registration Sensor On Jam RAP 2-644072-211 Tray 2 RAP2-6452-646
072-212 Tray 2 Ready RAP 2-647
072-401 Tray 2 Feed Roll Life RAP 2-648
072-402 Tray 2 Feed Roll Replacement RA 2-649
072-900 Tray 2 Feed Out Sensor Jam RAP 2-650
072-940 Tray 2/TTM 2 Lift Up RAP 2-651
073 Tray 3
073-100 Tray 3 Pre Feed RAP 2-653
073-101 Tray 3 Misfeed Jam RAP -654
073-102 Tray 3 Feed Out Sensor On Jam RAP 2-656
073-105 Tray 3 Registration Sensor On Jam RAP 2-657
073-210 Tray 3 Lift Up RAP 2-658
073-211 Tray 3 RAP2-659
073-212 Tray 3 Ready RAP 2-660
073-401 Tray 3 Feed Roll Life RAP 2-661
073-402 Tray 3 Feed Roll Replacement RAP 2-662
073-900 Tray 3 Feed Out Sensor On Jam RAP 2-663
73-940 Tray 3/TTM 3 Lift Up RAP 2-664
075 MPT
075-135 MSI Registration Sensor On Jam RAP 2-665
075-401 MSI Feed Roll Life RAP 2-666
075-402 MSI Feed Roll Replacement RAP 2-667
077 Paper Transport-Covers
077-101 Registration Sensor Off Jam RAP 2-669
077-103 Exit Sensor 1 Off Jam (too long) RAP 2-670
077-104 Exit Sensor 1 Off Jam (too short) RAP 2-670
077-105 Exit Sensor 2 Off Jam RAP2-671
077-106 Exit Sensor 1 On Jam RAP. 2-672
077-108 Exit Gate Jam RAP 2-672
077-109 IOT Exit Sensor 2 On Jam RAP 2-673
077-110 POB Sensor On Jam RAP 2-674
077-123 Registration Sensor On Jam RAP 2-675
077-130 Duplex Out Sensor On Jam RAP 2-676
077-131 Duplex Wait Sensor On Jam RAP 2-677
077-215 Tray Module Communication RAP 2-678
077-300 IOT Front Cover Open RAP 2-679
077-301 Left Hand Interlock Open RAP 2-680
077-305 Tray Module Left Hand Cover Interlock Open RAP 2-681
077-307 DUP Cover Open RAP 2-682
077-308 Left Hand High Interlock Open RAP 2-683
077-309 Left Hand Low Interlock Open RAP
Status-indicator-raps
077-314 Tray Module Logic RAP -685
077-602 OHP Sensor RAP -685
077-900 Tray/Registration Sensor Jam RAP -686
077-901 Fuser Exit Sensor Jam RAP 2-687
077-902 Exit Sensor 2 On Jam RAP -688
077-903 POB Sensor JAM RAP. 2-689
-907 Duplex Wait Sensor RAP -
077-968 Paper Type Changed RAP -690
078 Controller
078-210 TTM Tray 2 Lift RAP -693
078-211 TTM Tray 3 Lift RAP 2-694
078-500 Write to HCF-ROM error detection (During DLD method) 2-695
078-940 Tray Lift RAP 2-695
ray 3 Lift RAP 2-697
Destination
081-799 Registered Destination RAP 2-699
089 Belt/BTR
089-311 IOT Belt Home RAP 2-70
089-312 IOT Belt Home RAP -70
089-630 IOT Belt Speed RAP -702
Bett Slip RA -702
089-632 IBT Belt Cleaner RAP 2-703
089-633 2nd BTR RAP -703
091 Drum
RAP 2-705
091-400 Waste Toner Near Full RAP -705
091-402 Drum Life Over RAP 2-706
091-441 Drum Life Near End of Life RAP 2-706
Position RAP
091-911 Waste Toner Full RAP -707
091-912 Xerographics Drum Module Installation RAP $2-708$
091-914 Xero CRUM Comm RAP 2-708
2-709091-916 Xero CRUM Match RAP
091-921 Xerographics Drum Module Installation RAP
091-935 Xero Drum Cartridge End of Life RAP 2.710
092 Process Control
092-310 ADC Sensor RAP 2-71
092-934 Print Count RAP. $2-71$
092-649 ADC Shutter Open RAP $2-712$
092-650 ADC Shutter Close RAP 2-712
-651 ADC Shutter Clean RA $2-713$
092-662 Humidity Sensor RAP 2
093 Toner Supply093-310 Rotary Position Failure-715
093-311 Rotary Assembly Failure 2-715
093-320 Dev Mor2-716
93-400 Black Toner Near Empty 2-716
093-406 Black Toner Pre-Near Empty 2-717
093-407 Y Toner Pre-Near Empty2-7172-7182-718093-409 C Toner Pre-Near Empty
719
$093-414$ Y Developer Housing is near End of Life 2-7192-7192-7202-720

$$
2-721
$$

$$
\begin{aligned}
& 2-721 \\
& 2-721
\end{aligned}
$$

$$
\begin{aligned}
& 2-721 \\
& 0 \\
& \hline
\end{aligned}
$$

$$
2-722
$$

2-722

$$
2-723
$$

$$
\begin{aligned}
& 2-123 \\
& 2.723
\end{aligned}
$$

2-723

$$
2-724
$$

$$
2-724
$$

2-725

$$
2-725
$$

2-725
2-726
2-726
2-727

$$
2-727
$$

2-727093-971 Toner M CRUM not in position Failure
094 BTR/IBT
094-320 2nd BTR Retract RAP 2-733
094-321 2nd BTR Contact RAP 2-733
094-322 2nd BTR Retract RAP 2-733 2-733 2-734
094-323 2nd BTR Contact RAP 2-7342-735
094-418 IBT Cleaner Near End of Life RAP 2-735
094-419 2nd BTR Near End of Life RAP 2-736
094-420 IBT End of Life RAP $2-736$
$2-736$
094-421 IBT Cleaner End of Life RAP 2-737
094-422 2nd BTR End of Life RAP 2-737
102 User Interface
02-356 Controller Software RAP 2-739
02-380 UI Control RAP 2-739
102-381 UI Data Link RAP 2-740
102-382 Application Layer Command RAP 2-740
116 Printing Control
116-220
116-220 2-74 2-74
116-310 ESS Font DIMM \#2 RAP 2-741
116-311 ESS Font DIMM \#3 RAP 2-742
116-312 HDD Encrypt Key RAP 2-742
116-313 HDD Encrypt Setup RAP 2-743
116-314 Ethernet Address RAP 2-743
116-315 ESS DDR DIMM \#1 R/W Check RAP 2-744
116-316 ESS DDR DIMM \#2 R/W Check RAP $2-744$
116-317 ESS ROM DIMM \#1 Check RAP 2-745
116-318 ESS ROM DIMM \#2 Check RAP 2-745
116-319 Controller UI Configuration 2-746
116-321 System Software RAP 2-746
116-322 WebDAV S/W Fail RAP 2-747
116-323 ESS NVRAM R/W Check RAP 2-747
116-324 System Controller RAP 2-748
116-325 ESS Fan RAP $2-748$
116-328 Controller Cache RAP -749
116-329 Serial Software RAP 2-749
116-330 HDD File System RAP $2-750$
116-331 Invalid Log Information RAP 2-750
116-332 ESS ROM RAP 2-75
116-333 LocalTalk Software RAP 2-751
116-334 ESS NVRAM Data Compare Fail RAP -75
116-335 HDD RAP 2-752
116-336 HDD Access RAP 2-753
116-337 SNTP Software RAP 2-753
116-338 JBA RAP -754
116-340 Memory RAP 2-754
116-341 ROM Version RAP 2-755
116-342 Network Manager RAP -755
16-343 Main PWB IC RA $2-756$
116-346 Formatter RAP 2-756
116-348 Redirector RAP 2-757
116-349 SIF RAP -757
116-350 AppleTalk Software RAP
2 758
116-351 Ether Talk Software RAP 2-758
116-352 NetWare Software RAP $2-759$
116-353 HDD Mechanical RAP 2-759
116-354 HDD Product RAP 2-760
16-355 Agent Software RAP 2-760
116-356 HDD Format RAP
2-761
2-761
116-357 PostScript RAP 2-76
116-358 Salutation Software RAP 2-762
116-359 Software RAP -762
116-360 SMB Software RAP 2-763
116-361 Spool HDD RAP $2-763$
116-362 SSDP Software RAP 2-764
16-363 Print Service Software RAP 2-764

116-365 Spool RAP	2-765
116-366 Software Report RAP.	2-766
116-367 Parallel Software RAP	2-766
116-368 Dump Print RAP	2-767
116-370 XJCL RAP	2-767
116-371 PCL Decomposer Software RAP	2-768
116-372 Formatter RAP	2-768
116-373 Dynamic DNS Software RAP	2-769
116-374 Auto Switch RAP	2-769
116-375 Formatter RAP	2-770
116-376 Port 9100 Software RAP	2-770
116-377 Video DMA RAP	2-771
116-378 Controller Software RAP	2-771
116-379 Controller Software RAP	2-772
116-380 ESS Font ROM DIMM \#1 RAP	2-772
116-381 ABL Initialize RAP	2-773
116-382 ABL Initialize RAP	2-773
116-383 PIT Lib Failure RAP	2-774
116-385 IDC Software RAP	2-774
116-388 MCC RAP	2-775
116-389 RAM Install RAP	2-775
116-390 ROM NVM Mismatch RAP	2-776
116-391 Country Code RAP	2-776
116-395 USB Software RAP	2-777
116-399 Initialization RAP	2-777
116-701 Memory Duplex RAP	2-778
116-702 Substitute Font RAP	2-778
116-703 PostScript Language RAP	2-779
116-710 HP-GL/2 Memory Overflow RAP	2-779
116-711 Size/Orientation Mismatch RAP	2-780
116-712 Form Registration RAP	2-780
116-713 HDD Job Full RAP	2-781
116-714 HP-GL/2 Command RAP	2-781
116-715 Max Form to PLW Registered RAP	2-782
116-718 Selected PLW Form Not Registered RAP	2-782
116-720 PCL Memory RAP	2-783
116-725 The log image storage area full RAP	2-783
116-737 Registration RAP	2-784
116-738 Overlay Size Orientation RAP	2-784
116-739 Form/Logo Capacity RAP	2-785
116-740 Arithmetic RAP.	2-785
116-741 Maximum Forms Data Register RAP	2-786
116-742 Max Logo Registered RAP	2-786
116-743 Form/Logo Size Overflow RAP	2-787
116-745 ART Command RAP	2-787
116-746 Selected Form RAP	2-788
116-747 Invalid Page Margin RAP	2-788
116-748 Page Image Data RAP.	2-789
116-749 PostScript Font RAP	2-789
116-752 Print Job Ticket Description Warning RAP	2-790
116-771 Invalid JBIG Parameter DL Fixed RAP .	2-790
116-772 Invalid JBIG Parameter D Fixed RAP .	2-791

2-76516-366 Software Report RAP116-368 Dump Print RAP2-766
116-773 Invalid JBIG Parameter P Fixed RAP 2-791
-792116-774 Invaid JBIG Parameter YD Fixed RAP
116-775 Invalid JBIG Parameter L0 Fixed RAP -792
116-776 Invalid JBIG Parameter MX Fixed RAP 2-793
116-777 Invalid JBIG Parameter MY Fixed RAP -793
116-778 Invalid JBIG Par VLength Fixed RAP -79
116-780 Attached Document RAP 2-794
116-790 Stapling Canceled RAP -795
121 FID-EP
121-310 EPSV-Accessory Communication HDD RAP 2-797
121-333 EPSV-EP M/C Communication HDD RAP -79
3 EPSV Login HDD RAP2-79
121-335 EPSV Wake Up Answer HDD RAP 2-798
121-336 Unknown EP Accessory RAP 2-799
RAP -799
Answer Time Out RAP -800
Changed Price Table RAP-800
121-350 EPSV Logic HDD RAP -80
121-370 EP-DX RAP 2-802
123 Controller-UI
123-203 UI Controller RAP 2-803
123-207 Communication Manager Target RAP 2-803
-20310 Send Queu RAP -804
123-310 Send Queue RAP -804
2-805123-311 Receive Queue RAP
123-317 Receive Message Queue RAP -805
123-322 UI Target RAP -806
123-323 UI Address RAP -807
123-325 Object Creation RAP 2-807
123-326 Memory Overtow RAP -808

- 808123-328 Ul Internal Range RAP
123-329 Ul Coordinates RAP 2-809
123-332 Interface Parameter RAP 2-810
-810123-337 Frame Data RAP
2-81123-337 Frame Data RAP
23-341 Event Queue RAP 2-811
123-342 Event Queue RAP 2-812123-344 Invalid Type RAP-813
123-345 Timer Queue Full RAP - 813
123-346 Invalid Timer Number RAP 2-814
-814123-362 Object RAP2-815-815
123-370 Interface Length RAP -816
23-371 Interface Parameter RAP -817
23-372 Interface Sequence RAP 2-817
23-373 Channel RAP 2-818
ser Job ID RAP 2-818
23-375 Internal Resource RAP 2-819
23-376 Internal Memory RAP 2-819
123-377 UI Timer RAP 2-820
123-378 Interface Format RAP 2-820
23-379 Dispatch RAP 2-821
123-380 Copy Interface RAP 2-821123-381 Fax Interface RAP2-822
2-822
123-382 Scanner Interface RAP2-82323-383 Report Interface RAP-82123-384 Server Access RAP2-823
2-8242-8242-825$2-825$2-8252-8262-8262-8272-8272-8282-828
2-829
2-8292-830
2-8302-8312-831
23-400 Internal Interface RAP124 ROM-RAM
24-310 Product Designation RAP 2-833
24-311 Product Serial Number RAP 2-833
124-312 Machine Codes Mismatch RAP 2-834
124-313 Serial Number RAP 2-834
124-314 IOT Speed RAP 2-835
24-315 Serial Number Mismatch RAP 2-835
24-316 Product Mode RAP 2-836
24-317 All Product Mode RAP 2-836
124-318 Product Type Software Key RAP 2-837
24-319 All Product Types Software Key RAP 2-837
124-320 EPROM RAP2-838
24-321 Backup SRAM RAP 2-838
124-322 Software Key RAP 2-839
24-323 Software Key Registration RAP
24-324 All Billings Mismatch RAP 2-840124-333 ASIC RAP2-840
24-334 Standard Font ROM RAP124-335 Font ROM RAP2-8412-8412-8422-842124-337 ESS Standard RAM RAP-843
124-338 Duplicate Font ROMs RAP
124-339 ROM DIMM Mismatch RAP 2-843
124-340 CRUM Market RAP 2-844
24-341 GRUM Market MCU RAP 2-844
124-342 CRUM Market System 1 RAP 2-845
124-343 CRUM Market System 2 RAP 2-845
124-350 CRUM OEM RAP 2-846
124-351 CRUM OEM MCU RAP 2-846
124-352 CRUM OEM System 1 RAP -847
124-353 CRUM OEM System 2 RAP 2-847
124-360 CRUM Validation RAP 2-848
124-361 CRUM Validation MCU RAP 2-848
124-362 CRUM Validation System 1 RAP -849
124-363 CRUM validation System 2 RAP 2-849
124-372 IOT Controller Software RAP 2-850
124-373 IOT Manager Software RAP 2-850
24-374 IOT IM Device Driver Sottware RAP -85
124-380 CRUM Market (2) 2-851
124-381 CRUM Market MCU (2). 2-852
124-382 CRUM Market System 1 (2) 2-852
24-383 CRUM Market System 2 (2) -853
124-390 OEM Market (2) 2-853
124-391 CRU OEM MCU (2) 2-854
124-392 CRU OEM System 1 (2) 2-854
24-393 CRU OEM System 2 (2). 2-855
124-701 Side Tray to Center Tray RAP 2-855
124-702 Finisher Tray to Center Tray RAP 2-856
124-709 Side Tray to Center Tray RAP 2-856
125 PWS cont
125-311 PSW Unexpected Fail RAP 2-857
127 Software
127-310 ESR Task RAP 2-859
127-337 Job Template HDD Write RAP 2-859
127-342 Job Template Monitor RAP 2-860
127-353 LPD Software RAP -860
127-354 FTP Server Software RAP 2-861
127-396 Mail I/O Software RAP 2-86
127-398 IPP Software RAP 2-862
127-399 JME Software RAP -862
133 Fax Control
133-210 Fax Parameter RAP 2-863
133-211 Fax Parameter Value Invalid RAP 2-863
133-212 Fax Read Error- No Data RAP 2-864
33-213 Fax Read Error- Invalid Data RAP 2-864
133-214 Fax USB Initializing RAP 2-865
133-215 Fax USB Device RAP 2-865
133-216 Fax USB Host Fatal RAP 2-866
33-217 Fax Manager Short of Memory RAP 2-866
133-218 Fax Card Message Library Short of Memory RAP 2-867
133-219 Fax Work Memory RAP 2-867
133-220 Fax Control Task RAP 2-868
133-221 Fax Card Boot RAP 2-868
133-222 Fax Card does not respond intervalley RAP 2-869
133-223 Fax Card Reset RAP 2-869
133-224 Controller ROM Fax Card ROM RAP 2-870
133-226 Country Code RAP 2-870
133-280 Fax Option Slot 1 Board RAP 2-871
133-281 Received unknown message RAP. 2-871
133-282 Fax Card Download RAP 2-872
133-283 Fax Report Mailbox RAP 2-872
134 Fax Card
134-210 Fax Controller Parameter RAP 2-873
134-211 FCB PWB RAP 2-873
202 Timer
202-399 Internal Timer RAP 2-875
Other Faults
OF 1 Paper Size Mismatch In Width RAP 2-877
OF 2 Size Switch Assy RAP 2-878
OF 3 Main Drive Assy RAP 2-878
OF 4 Fuser Drive Assy RAP 2-880
OF 5 Developer Motor RAP 2-881
OF 6 Dark / Blank Display RAP 2-882

Power On RAP

BSD-ON:1.1

This procedure is used to determine the reason that the machine will not power up after the Main Power Switch is set to ON. Indications include a blank UI and no machine power up sounds (i.e. motors, relays, solenoids, beeps, etc...).

Initial Actions

- Ensure that the Customer's circuit breaker is not tripped and that AC power is available at the power outlet that the machine will be using.
- Ensure that the power cord is seated correctly and is not damaged.
- If the machine GFI Circuit Breaker is tripped, try to reset it. If it trips again, switch the power off and unplug the power cord. Refer to wirenet 7.3.1 Wire Net AC POWER (HOT) and check for a short circuit in the AC wiring.

Procedure

Switch the machine Main Power Switch to ON. There is ACH between J11/T11-1(+) and J12/T12-1(-) at the Power Unit.
$\mathrm{Y}^{\mathrm{J}} \mathrm{N}$
Switch the power off and unplug the power cord. Verify that the power cord it good. If not, replace the power cord.
Refer to BSD Chain 1 Standby Power and check for an open circuit in the wiring between the GFI Breaker and the Power Unit. If the wiring is OK, replace the GFI Breaker (PL 11.1).

There is ACH between J1-3(+) and T12-1(-) at the Power Unit.

$Y^{Y} \quad N$
Refer to BSD Chain 1 Standby Power and check for an open circuit in the wiring between J11/T11-1 and J1-3 of the Power Unit. If the wiring is OK, replace the Main Power Switch (PL 11.1).
$+24 V$ LED (CR3309) is lit on the ESS PWB.
Y N
There is +24 VDC between P/J387-5(+) and P/J387-6(-) of the ESS PWB.
Y N
Refer to BSD Chain 1 Standby Power and check for an open circuit in the wiring between the ESS PWB and the Power Unit. If the wiring is OK, replace the Power Unit (PL 11.1).

Replace the ESS PWB (PL 11.2).
+5V LED (CR3306) is lit on the ESS PWB.
Y N
There is +5 VDC between P/J387-1(+) and P/J387-3(-) of the ESS PWB.
Y N
Refer to BSD Chain 1 Standby Power and check for an open circuit in the wiring between the ESS PWB and the Power Unit. If the wiring is OK, replace the Power Unit (PL 11.1).

+5 V L'ED (CR3307) is lit on the ESS PWB.

Y N
There is +5 VDC between P/J387-2(+) and P/J387-4(-) of the ESS PWB.
$Y \quad N$
Refer to BSD Chain 1 Standby Power and check for an open circuit in the wiring between the ESS PWB and the Power Unit. If the wiring is OK, replace the Power Unit (PL 11.1).

Replace the ESS PWB (PL 11.2).

002-770 Job Template Processing - HDD Full RAP

The system aborted a job due to insufficient HDD capacity during Job Template processing.

Procedure

Ask customer to separate job into smaller parts. Helpful information may be found in User Guide sections Overwrite Hard Disk or Mailbox.

If the problem persist reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

003-318 IIT Software RAP

The IIT software is corrupt.

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

003-319 IIT Video Driver Detection RAP

One of the following errors is detected:

- Compression Threshold overflow
- DMA Transfer error
- Other system compression errors

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

003-320 IISS-ESS Communication 1 RAP

 BSD-ON:3.1/6.2An abnormal parameter is set as the argument for the send function.

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-321 IISS-ESS Communication 2 RAP

BSD-ON:3.1/6.2
The ACK (acknowledgement code) could not be received after 2 resend attempts. (The Sequencing No. of the sent Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-322 IISS-ESS Communication 3 RAP

 BSD-ON:3.1/6.2The ACK (acknowledgement code) could not be received after 2 resend attempts. (The Packet No. of the sent Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-323 IISS-ESS Communication 4 RAP

BSD-ON:3.1/6.2
The ACK (acknowledgement code) could not be received after 2 resend attempts. (The Message Length of the sent Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-324 IISS-ESS Communication 5 RAP

 BSD-ON:3.1/6.2The ACK (acknowledgement code) could not be received after 2 resend attempts. (The Message Length of the sent Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-325 IISS-ESS Communication 6 RAP

BSD-ON:3.1/6.2
The ACK (acknowledgement code) could not be received after 2 resend attempts. (A parity error was detected by hardware in the IIT/IPS PWB.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-326 IISS-ESS Communication 7 RAP

 BSD-ON:3.1/6.2The ACK (acknowledgement code) could not be received after 2 resend attempts. (Framing error was detected by hardware in the IIT/IPS PWB.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-327 IISS-ESS Communication 8 RAP

BSD-ON:3.1/6.2
The ACK (acknowledgement code) could not be received after 2 resend attempts. (An overrun error was detected by hardware in the IIT/IPS PWB.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-328 IISS-ESS Communication 9 RAP

BSD-ON:3.1/6.2

The ACK (acknowledgement code) could not be received after 2 resend attempts. (After header recognition, receive interruption was detected by the IIT/IPS PWB.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-329 IISS-ESS Communication 10 RAP

BSD-ON:3.1/6.2

The NAK that notifies of the occurrence of a transmission failure is received. (The Sequencing No. of the received Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-330 IISS-ESS Communication 11 RAP

 BSD-ON:3.1/6.2The NAK that notifies of the occurrence of a transmission failure is received. (The Packet No. of the received Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-331 IISS-ESS Communication 12 RAP

BSD-ON:3.1/6.2
The NAK that notifies of the occurrence of a transmission failure is received. (The Message Length of the received Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-332 IISS-ESS Communication 13 RAP

BSD-ON:3.1/6.2

The NAK that notifies of the occurrence of a transmission failure is received. (The Check Code of the received Message Packet is incorrect.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-333 IISS-ESS Communication 14 RAP

BSD-ON:3.1/6.2
The NAK that notifies of the occurrence of a transmission failure is received. (A parity error was detected by hardware of the UART.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-334 IISS-ESS Communication 15 RAP

BSD-ON:3.1/6.2

The NAK that notifies of the occurrence of a transmission failure is received. (A framing error was detected by hardware of the UART.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-335 IISS-ESS Communication 16 RAP

BSD-ON:3.1/6.2
The NAK that notifies of the occurrence of a transmission failure is received. (An overrun error was detected by hardware of the UART.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-336 IISS-ESS Communication 17 RAP

 BSD-ON:3.1/6.2The NAK that notifies of the occurrence of a transmission failure is received. (After the header was recognized, it was detected that receiving was aborted.)

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-337 IISS-ESS Communication 18 RAP

BSD-ON:3.1/6.2
After restoring from Power Saver mode, there was no response to the Power On command sent to the IIT/IPS PWB within the specified time.

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-338 IISS-ESS Communication 19 RAP BSD-ON:3.1/6.2

The driver detected an incorrect send parameter.

Procedure

Reload Software (ADJ 9.3.1).
Pull out and insert or replace the IIT Cable.

003-339 IISS-ESS Communication 20 RAP BSD-ON:3.1/6.2

The establishment of parameter transmission failed.

Procedure

Reload Software (ADJ 9.3.1).
Pull out and insert or replace the IIT Cable.

003-340 IISS-ESS Communication 21 RAP BSD-ON:3.1/6.2

A parameter synchronization error during sending occurred.

Procedure

Reload Software (ADJ 9.3.1).
Pull out and insert or replace the IIT Cable.

003-341 IISS-ESS Communication 22 RAP
BSD-ON:3.1/6.2
A parameter transmission error during sending occurred.

Procedure

Reload Software (ADJ 9.3.1).
Pull out and insert or replace the IIT Cable.

003-342 IISS-ESS Communication 23 RAP BSD-ON:3.1/6.2

The driver detected an incorrect receive parameter argument from the application.

Procedure

Reload Software (ADJ 9.3.1).
Pull out and insert or replace the IIT Cable.

003-343 IISS-ESS Communication 24 RAP BSD-ON:3.1/6.2

A parameter synchronization error during receiving occurred.

Procedure

Pull out and insert or replace the IIT Cable.
Reload Software (ADJ 9.3.1).

003-344 Hotline Power On

BSD-ON:3.1/6. 2
There is a communication failure at power on between the controller and the IIT.

Initial Actions

Power On/Off

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
If the problem persists replace the IIT/IPS PWB (PL 13.3).
If the problem persists replace the ESS PWB (PL 11.2).

003-345 PIO Unlatched 1 RAP

BSD-ON:3.1/6.2

When Job Fail signal was received from the IIT/IPS PWB, a hot line PIO (Programmed Input Output) error was detected.

Procedure

Disconnect and reconnect the ITT/IPS PWB Harness.
If the problem persists replace the IIT/IPS PWB (PL 13.3).
If the problem persists replace the ESS PWB (PL 11.2).

003-346 PIO Unlatched 2 RAP

BSD-ON:3.1/6.2
When IIT image was received from the IIT/IPS PWB, a PIO (Programmed Input/Output) error was detected.

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
If the problem persists replace the IIT/IPS PWB (PL 13.3).
If the problem persists replace the ESS PWB (PL 11.2).

003-750 Book Duplex Documents RAP

Book duplex is not set up with the correct number of documents.

Procedure

Ask customer to check the Book Duplex setup menu.

003-751 Panther Capacity RAP

The Panther (continuous data protection protocol or utility) processed data is too small (the specified range for the document is too small).

Procedure

Ask customer to use a backup page behind the document.

003-754 S2X Recovery RAP

There is a recoverable S2X error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job if the error did not clear after the power off/on.

003-755 S2X Command Error RAP

There is an S2X command error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job if the error did not clear after the power off/on.

003-756 Blank Originals RAP

BSD-ON:3.1/6.2
No image data was scanned from the documents.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness
Reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-760 Scan Settings RAP

BSD-ON:3.1/6.2
The job properties are incorrect.

Procedure

Ask customer to verify the setups.
If the problem persists disconnect and reconnect the IIT/IPS PWB Harness.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-761 Incorrect Paper Tray Size RAP

The Cover Tray or the Transparency Tray size is incorrect when the Cover Content Tray or Separator $+N$ set Tray is selected in APS.

Procedure

The paper size in the tray selected by auto tray switching differs from the paper size in the tray selected at the tray selection. Ask customer to either change the paper size for the tray, or change the paper type priority setting.

003-763 Adjustment Chart RAP

When Automatic Gradation Correction is performed the patch for position detection on the document is not available.

Procedure

Place the Automatic Gradation Correction Chart correctly.

003-764 Image Overlay RAP

There is an image overlay problem.
Initial Actions
Power Off/On

Procedure

Ask customer to verify the job setup and rerun the job.

003-780 Scanned Image Compression RAP

BSD-ON:3.1/6.2
The compressed data size is larger than 8 times the size of the uncompressed data.

Procedure

Ask customer to cancel and rerun the job.
If the problem persists disconnect and reconnect the IIT/IPS PWB Harness.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-795 AMS Limit RAP

BSD-ON:3.1/6.2

After auto document detection in Auto Reduce/Enlarge, the Reduce/Enlarge ratio did not fall within the specified range ($25 \% \sim 400 \%$).

Initial Actions

Ask customer to enter the correct R/E ratio or change the paper size.

Procedure

If the problem persists disconnect and reconnect the IIT/IPS PWB Harness.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-930 300 DPI Scan RAP

There is a problem scanning 300 DPI .

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-931 400 DPI Scan RAP

There is a problem scanning 400 DPI .

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-932 600 DPI Scan RAP
There is a problem scanning 600 DPI .

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-933 300 DPI Scan RAP

There is a problem scanning 300 DPI on successive documents.

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-934 400 DPI Scan RAP

There is a problem scanning 400 DPI on successive documents.

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-935 600 DPI Scan RAP

There is a problem scanning 600 DPI on successive documents.

Procedure

Verify scan settings are correctly set and menu selections are correctly set.

003-940 Memory RAP

A scanner memory limit is reached.

Procedure

Power Off/On.
If the problem persists replace the IIT/IPS PWB (PL 13.3).

003-942 Document Size Auto Detect RAP

The document size cannot be automatically detected.

Procedure

Ask customer to manually set the document size.

003-944 Image Repeat Count RAP

No complete images are output using Automatic Size.

Procedure

Ask customer to check the job setups and rerun the job.

003-946 Image Rotation (Copy APS) RAP

Paper size that does not support rotation was selected even though part of the image will be cut off if it is not rotated.

Initial Actions

Select a tray with paper that supports rotation and repeat the operation.

Procedure

Replace the IIT/IPS PWB (PL 13.3).

003-947 Return Documents Count RAP

The number of documents returned by the user was less than the number of specified documents.

Procedure

Check the number of documents and repeat the operation.

003-948 Return Documents Mismatch RAP

A document that is different (document size/orientation and Color mode in ACS) from the document before document return was loaded.

Procedure

Check the document setup and repeat the operation.

003-952 Document Color Mismatch RAP

There is a color mismatch among returned documents.

Procedure

Ask customer to cancel the job, check job settings and rerun the job.
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-955 Documents Size Exchange RAP

When loading a document with Mixed Size Originals prohibited, a document of different size/ orientation from the initial document was detected.

Initial Actions

Check the document size/orientation and repeat the operation.

Procedure

Replace the DADF PWB (PL 16.3)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

003-956 Coping from the Platen Failure RAP

When coping from the Platen a fault occurs. The DADF working OK.

Procedure

Check the APS Sensor for a bent, bond, or damaged actuator preventing the full range of travel of the APS Sensor Actuator.

If the problem continues, replace the APS Sensor (PL 13.4).
.

003-963 APS Object Tray RAP

The correct size is not loaded for APS operation.

Procedure

Select a tray that supplies the required size paper and repeat the operation.

003-965 ATS/APS Paper Detect RAP

The correct size is not loaded for APS operation.

Procedure

Select a tray that supplies the required size paper and repeat the operation.

003-966 ATS/APS Destination (IIT) RAP

The correct size is not loaded for APS operation.

Procedure

Select a tray that supplies the required size paper and repeat the operation.

003-970 Fax Line Memory RAP

BSD-ON:17.1
The number of lines in the Slow Scan Direction exceeds the upper limit during processes such as Fax parallel synthesis or enlargement of long documents.

Procedure

Perform the following:

- Check the electrical connections on the FCB PWB (PL 11.3)
- Check the memory PWB on the FCB PWB (PL 11.3) If no memory PWB is present the customer may need additional memory.
- If the problem persists replace the FCB PWB (PL 11.3).

003-972 Maximum Stored Page RAP

The number of pages stored exceeded the maximum number set in the system data.

Procedure

Set the number of pages of the document to be within the maximum number of pages that can be stored.

003-973 Image Rotation RAP

Image rotation can not prevent image loss with current paper sizes.

Procedure

Ask customer to verify the image loss and use a larger paper size if available.
Or use reduction to make a smaller document and repeat the operation.

003-974 Next Original Specification RAP

Scanning is complete for all loaded documents.

Procedure

Ask customer to verify that scanning is compete or other documents should be loaded.

003-976 FAX Line Memory Overflow RAP BSD-ON:17.1

The number of lines in the Slow Scan Direction exceeds the upper limit during processes such as Fax parallel synthesis or enlargement of long-sized documents.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
Check the mounting of the memory PWB(s) on the FCB PWB
If the problem persists replace the FCB PWB (PL 11.3).

003-977 Document Mismatch (Multiple Scan) RAP

During multiple scan a document was switched during Bound Originals/Booklet Creation/ Poster scanning.

Procedure

Ask customer to process a job recovery or to cancel the job and rerun the job.

003-978 Color Document Miss Match (Multi Scan) RAP

Document Color Mismatch (a change of document in Multi Scan:

1. A change of documents during scanning a Bound Document/As Book/Poster
2. When such an operation occurred during a Platen Multi Scan (Bound Document/As Book/

Poster) job caused the user to reload documents, a different sized document was reloaded, or in ACS the user reloaded different color documents

Procedure

Reload the appropriate documents and run the job.

003-980 Staple Position RAP

Stapling could not be done at the specified position.

Procedure

Ask customer to correct the job setups and rerun the job.

003-981 Staple Size RAP

Stapling could not be done for the selected paper size.

Procedure

Ask customer to correct the job setups and rerun the job.

003-982 IIT HDD Access Error RAP

BSD-ON:3.1/6.2

There is a problem with IIT accessing the Hard Drive.

Procedure

Disconnect and reconnect the IIT/IPS PWB Harness.
Check HDD electrical connections (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the IIT/IPS PWB (PL 13.3).

005-110 Belt DADF Regi Sensor On Dynamic Jam RAP BSD-ON:5.4

Registration Sensor does not turn On in specified time from start of original document feed.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Registration Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-111 Belt DADF Regi Sensor Off Dynamic Jam RAP BSD-ON:5.4

Registration Sensor does not turn Off in specified time from start of original document feed.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Registration Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-112 Belt DADF Regi Sensor On Dynamic Jam RAP (Document Reverse)
 BSD-ON:5.4

Registration Sensor does not turn On in specified time from start of original document reverse rotation.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Registration Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-113 Belt DADF Regi Sensor Off Dynamic Jam RAP (Document Reverse)
BSD-ON:5. 4
Registration Sensor does not turn Off in specified time from start of original document reverse rotation.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Registration Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-115 Belt DADF Exit Sensor On Dynamic Jam

 BSD-ON:5.4Exit Sensor does not turn On in specified time from start of original document output operation.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Exit Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-116 Belt DADF Exit Sensor Off Dynamic Jam

 BSD-ON:5.4Exit Sensor does not turn Off in specified time from start of original document output operation.

Procedure

When the problem occurs frequently, check if there is any area in document path that interferes with document feed. If OK, check connectors and wiring for damage. If the problem continues, replace Exit Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-121 CVT Feed Sensor On Jam RAP

BSD-ON:5.4/5.5

After the first-out feed operation started (Feed Motor On (CW)) in Duplex mode, the DADF Feed Out Sensor did not turn On within the specified time

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-205]. Actuate the DADF Feed Out Sensor with paper. The display changes.
Y
Check the connections of P/J769 and P/J758. P/J769 and P/J758 are connected correctly.

$$
Y \quad N
$$

Connect P/J769 and P/J758.
Check the wire between J769 and J758 for an open circuit or a short circuit (BSD 5.4 Flag 13/Flag 14). The wire between J769 and J758 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P758-3 (+) and GND (-) (BSD 5.4 Flag 14). The voltage is approx. +5VDC.
Y^{N}
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P758-2 (+) and GND (-) (BSD 5.4 Flag 13) Actuate the DADF Feed Out Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the DADF Feed Out Sensor (PL 16.9).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
Y N
Check the connections of P/J764 and P/J754. P/J764 and P/J754 are connected correctly.

$$
Y \quad N
$$

Connect P/J764 and P/J754.
Check the wire between J764 and J754 for an open circuit or a short circuit (BSD 5.5 Flag 1). The wire between J764 and J754 is conducting without an open circuit or a short circuit.
N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Replace the DADF PWB (PL 16.3).

005-122 CVT Simplex/Side1 Pre-Registration On Jam RAP BSD-ON:5.4/5.5

- After the Pre Feed operation started for the first sheet (DADF Feed Motor On (CW)) in Duplex or Simplex mode, the Pre-Registration Sensor did not turn On within the specified time.
- After the Pre Feed operation started for the second sheet onwards (DADF Feed Motor On (CW)) in Duplex mode, the Pre-Registration Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y $\quad \mathrm{N}$
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
\mathbf{N}
Connect P/J781 and P/J761.

Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J 781 and J 761 is conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3) Actuate the DADF Pre Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
N
Check the connections of P/J764 and P/J754. P/J764 and P/J754 are connected correctly.
Y \quad.
Connect P/J764 and P/J754

Check the wire between J764 and J754 for an open circuit or a short circuit (BSD 5.5 Flag 1). The wire between J 764 and J 754 is conducting without an open circuit or a short circuit.

Repair the open circuit or short circuit
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Replace the DADF PWB (PL 16.3).

005-123 CVT Simplex/Side1 Registration Jam RAP

 BSD-ON:5.4/5.5After pre-registration started (DADF Feed Motor On (CCW)), the Registration Sensor did not turn On within the specified time.

Initial Actions

- Power Off and then On

Procedure

Execute Component Control [005-110]. Actuate the DADF Registration Sensor with paper. The display changes.
$Y \quad \mathbf{N}$
Check the connections of P/J782 and P/J761. P/J782 and P/J761 are connected correctly.
$\mathrm{Y} \quad \mathrm{N}$

Connect P/J782 and P/J761.
Check the wire between /J782 and J761 for an open circuit or a short circuit (BSD 5.5 Flag 1/Flag 2). The wire between /J782 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-15 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-14 (+) and GND (-) (BSD 5.5 Flag 1). Actuate the DADF Registration Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the DADF Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
\mathbf{N}
Check the connections of P/J764 and P/J754. P/J764 and P/J754 are connected correctly.

$$
Y \quad N
$$

Connect P/J764 and P/J754.
Check the wire between J764 and J754 for an open circuit or a short circuit (BSD 5.5 Flag 1). The wire between J764 and J754 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-124 CVT Lead Reg Sensor On Jam

 BSD-ON:5.4Lead Reg Sensor does not turn On in specified time from Scan start (Reg. Motor start).

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached Roll surface.
3. Roll surface has worn abnormally.
4. Reg.Motor rotates normally.
5. Check the connectors and wires for damage.

If all above are OK, replace Lead Reg. Sensor,(PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-125 CVT Registration Sensor Off Jam RAP

BSD-ON:5.4/5.5

After the Pre Registration Sensor turned Off during the Read operation, the DADF Registration Sensor did not turn Off within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-110]. Actuate the DADF Registration Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J782 and P/J761. P/J782 and P/J761 are connected correctly.

Connect P/J782 and P/J761.
Check the wire between J782 and J761 for an open circuit or a short circuit (BSD 5.5 Flag 1/Flag 2). The wire between J782 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-15 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +5 VDC .
$Y \mathrm{~N}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-14 (+) and GND (-) (BSD 5.5 Flag 1). Actuate the DADF Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
Y N
Check the connections of P/J764 and P/J754. P/J764 and P/J754 are connected correctly.
Y N
Connect P/J764 and P/J754.
Check the wire between J764 and J754 for an open circuit or a short circuit (BSD 5.5 Flag
1). The wire between J 764 and J 754 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Execute Component Control [005-026]. The DADF Registration Motor (PL 16.9starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y N
Connect P/J765 and P/J755.
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J 765 and J 755 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Replace the DADF PWB (PL 16.3)

005-126 CVT Out Sensor On Jam

BSD-ON:5.4

Out Sensor does not turn On in specified time from Scan start (Reg. Motor start).

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed
2. Any foreign substance is attached Roll surface.
3. Roll surface has worn abnormally.
4. Reg.Motor rotates normally.
5. Platen Motor rotates normally.
6. Check the connectors and wires for damage.

If all above are OK, replace Out Sensor (PL 16.9). If the problem persists, replace the DADF PWB (PL 16.3).

005-127 CVT Out Sensor Off Jam

 BSD-ON:5. 4Out Sensor does not turn Off in specified time fro Reg.Sensor Off.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached Roll surface.
3. Roll surface has worn abnormally.
4. Reg.Motor rotates normally.
5. Platen Motor rotates normally.
6. Check the connectors and wires for damage.

If all above are OK, replace Out Sensor (PL 16.9). If the problem persists, replace the DADF PWB (PL 16.3).

005-128 CVT Simplex Exit 1 Sensor On Jam

 BSD-ON:5.4Exit 1 Sensor does not turn On in specified time from Out Sensor On in Simplex Mode.

Procedure

If the problem occurs frequently, check the following:
1.There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Simp/Dup Gate is in normal position (Simp/Dup Gate Solenoid operation included.)
5. Platen Motor rotates normally.
6. Exit Motor rotates normally.
7. Check the connectors and wires for damage.

If all above are OK, replace Simplex Exit 1 Sensor (PL 16.7). If the problem continues, replace the Exit 1 Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-129 CVT Simplex Exit 1 Sensor Off Jam BSD-ON:5. 4

Exit 1 Sensor does not turn Off in specified time from Out Sensor Off in Simplex Mode.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Simp/Dup Gate is in normal position (Simp/Dup Gate Solenoid operation included.)
5. Platen Motor rotates normally
6. Exit Motor rotates normally.
7. Check the connectors and wires for damage.

If all above are OK, replace Exit 1 Sensor (PL 16.7). If the problem continues, replace the Out Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-130 CVT Invert Sensor On Jam

 BSD-ON:5.4Invert Sensor does not turn On in specified time from Out Sensor On in Duplex Mode

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Simp/Dup Gate is in normal position (Simp/Dup Gate Solenoid operation included.)
5. Platen Motor rotates normally.
6. Check the connectors and wires for damage.

If all above are OK, replace Invert Sensor (PL 16.7). If the problem continues, replace the Out Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-131 CVT Invert On Jam RAP

BSD-ON:5.4/5.5

After the Registration Sensor turned On during Invert operation, the Invert Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-211]. Actuate the DADF Invert Sensor with paper. The display changes.
$\mathrm{Y} \quad \mathrm{N}$
Check the connections of P/J780 and P/J761. P/J780 and P/J761 are connected correctly.
$Y \quad \mathrm{~N}$
Connect P/J780 and P/J761.
Check the wire between J780 and J761 for an open circuit or a short circuit (BSD 5.4 Flag $5 /$ Flag 6). The wire between J 780 and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-9 (+) and GND (-) (BSD 5.4 Flag 6), The voltage is approx. +5 VDC .
$Y \quad N$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-8 (+) and GND (-) (BSD 5.4 Flag 5). Actuate the DADF Invert Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the DADF Invert Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.

$$
Y \quad N
$$

Connect P/J765 and P/J755.
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J 765 and J 755 is conducting without an open circuit or a short circuit.
N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-132 CVT Invert On Jam 2 RAP

BSD-ON:5.45.5

After the Read Speed Control operation started (Registration Motor On (CCW)), the Invert Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-211]. Actuate the DADF Invert Sensor with paper. The display changes.
Y N
Check the connections of P/J780 and P/J761. P/J780 and P/J761 are connected correctly.

$$
Y \quad N
$$

Connect P/J780 and P/J761.
Check the wire between J780 and J761 for an open circuit or a short circuit (BSD 5.4 Flag $5 /$ Flag 6). The wire between J 780 and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-9 (+) and GND (-) (BSD 5.4 Flag 6). The voltage is approx. +5 VDC .
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-8 (+) and GND (-) (BSD 5.4 Flag 5). Actuate the DADF Invert Sensor with paper. The voltage changes.
Y N
Replace the DADF Invert Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.

$$
Y \quad N
$$

Connect P/J765 and P/J755.
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J 765 and J 755 is conducting without an open circuit or a short circuit.
N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-133 CVT Invert Sensor Off Jam

 BSD-ON:5. 4Invert Sensor does not turn Off in specified time from Out Sensor Off in Duplex Mode.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Simp/Dup Gate is in normal position (Simp/Dup Gate Solenoid operation included.)
5. Platen Motor rotates normally.
6. Feed Motor rotates normally.
7. Invert Roll performs Nip operation normally (Nip Release Solenoid operation included)
8. Check the connectors and wires for damage.

If all above are OK, replace Invert Sensor (PL 16.7). If the problem continues, replace the Out Sensor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

005-134 CVT Invert Sensor Off Jam (Inverter) RAP

BSD-ON:5.4/5.5

After the Registration Sensor turned Off on inverting at Invert, the Invert Sensor did not turn Off within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-211]. Actuate the DADF Invert Sensor with paper. The display changes.
Y N
Check the connections of P/J780 and P/J761. P/J780 and P/J761 are connected correctly.
Y N
Connect P/J780 and P/J761.
Check the wire between J780 and J761 for an open circuit or a short circuit (BSD 5.4 Flag $5 /$ Flag 6). The wire between J780 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-9 (+) and GND (-) (BSD 5.4 Flag 6). The voltage is approx. +5 VDC .
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-8 (+) and GND (-) (BSD 5.4 Flag 5). Actuate the DADF Invert Sensor with paper. The voltage changes.
Y N
Replace the DADF Invert Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y N
Connect P/J765 and P/J755.
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J765 and J755 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-135 CVT Side2 Pre-Registration On Jam RAP

BSD-ON:5.4/5.5/5.6

After the Invert operation started (Registration Motor On (CW)) at Invert, the DADF Pre Registration Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Check the installation and operation of the Invert Gate. The Invert Gate is installed and it works.
Y N
Install the Invert Gate correctly.
Execute Component Control[005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y N
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
Y \mathbf{N}
Connect P/J781 and P/J761.
Check the wire between J781 andJ761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3). Actuate the DADF Pre Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control[005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.

Connect P/J765 and P/J755.

A B
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J765 and J755 is conducting without an open circuit or a short circuit.

$$
\begin{aligned}
& \mathbf{N} \\
& \text { Repair the open circuit or short circuit. }
\end{aligned}
$$

Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Execute Component Control [005-072]. The Exit Nip Release Solenoid can be heard.
Y N
Check the connections of P/J766 and P/J756. P/J766 and P/J756 are connected correctly.
Y N
Connect P/J766 and P/J756.
Check the wire between P756 and J766 for an open circuit or a short circuit (BSD 5.6 Flag 2). The wire between P756 and J766 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Exit Nip Release Solenoid (PL 16.4) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-136 CVT Side2 Registration On Jam RAP

BSD-ON:5.4/5.5/5.6
After the DADF Pre Registration Sensor turned On at Invert, the DADF Registration Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-110]. Actuate the DADF Registration Sensor with paper. The display changes.
Y N
Check the connections of P/J782 and P/J761 P/J782 and P/J761 are connected correctly.
Y $\quad \mathbf{N}$
Connect P/J782 and P/J761.
Check the wire between J782 and J761 for an open circuit or a short circuit (BSD 5.5 Flag 1/Flag 2). The wire between J782 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-15 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +5 VDC .
$Y \mathrm{~N}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-14 (+) and GND (-) (BSD 5.5 Flag 1). Actuate the DADF Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
$\boldsymbol{Y} \quad \mathbf{N}$
Check the connections of P/J764 and P/J754. P/J765 and P/J754 are connected correctly.
Y N
Connect P/J765 and P/J754.
Check the wire between J765 andJ754 for an open circuit or a short circuit (BSD 5.5 Flag
1). The wire between J 765 and J 754 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Execute Component Control [005-072]. The Exit Nip Release Solenoid can be heard.
Y N
Check the connections of P/J766 and P/J756. P/J766 and P/J756 are connected correctly.
Y $\quad \mathrm{N}$
Connect P/J766 and P/J756.
Check the wire between P756 and J766 for an open circuit or a short circuit (BSD 5.6 Flag 2). The wire between P756 and J766 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Replace the Exit Nip Release Solenoid (PL 16.7) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-137 CVT Exit 2 Sensor On Jam

BSD-ON:5.4

Exit 2 Sensor does not turn On in specified time from start of Feed Motor reverse rotation in Reverse Output operation.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Exit Gate is in normal position (Exit Gate Solenoid operation included.)
5. Feed Motor rotates normally.
6. Invert Roll performs normal Nip operation (Nip Release Solenoid operation included.)
7. Exit Motor rotates normally.
8. Exit Gate, closed, blocks path.
9. Check the connectors and wires for damage.

If all above are OK, replace Exit 2 Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-138 CVT Exit 1 Sensor On Jam (Side 2) BSD-ON:5.4

Exit 1 Sensor does not turn On in specified time from Exit 2 Sensor On in Reverse Output operation.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Exit Gate is in normal position (Exit Gate Solenoid operation included.)
5. Feed Motor rotates normally.
6. Invert Roll performs normal Nip operation (Nip Release Solenoid operation included.)
7. Exit Motor rotates normally.
8. Exit Gate, closed, blocks path.
9. Check the connectors and wires for damage.

If all above are OK, replace Exit 1 Sensor (PL 16.7). If the problem continues, replace the Exit 2 Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-139 CVT Invert Sensor Off Jam RAP

BSD-ON:5.4/5.5/5.6

After the Registration Sensor turned Off during the Read operation, the Invert Sensor did not turn Off within the specified time.

Initial Actions

- Power Off than On

Procedure

Check the installation and operation of the Invert Gate. The Invert Gate is installed and it works.
Y \mathbf{N}
Install the Invert Gate correctly.
Execute Component Control [005-211]. Actuate the DADF Invert Sensor with paper. The display changes.
Y N
Check the connections of P/J780 and P/J761. P/J780 and P/J761 are connected correctly.
Y N
Connect P/J780 and P/J761.
Check the wire between J 780 and J 761 for an open circuit or a short circuit (BSD 5.4 Flag $5 /$ Flag 6). The wire between J 780 and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-9 (+) and GND (-) (BSD 5.4 Flag 6). The voltage is approx. +5 VDC .
$\mathbf{Y} \quad \mathbf{N}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-8 (+) and GND (-) (BSD 5.4 Flag 5). Actuate the DADF Invert Sensor with paper. The voltage changes.
Y N
Replace the DADF Invert Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y $\quad \mathrm{N}$
Connect P/J765 and P/J755.

A B
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J765 and J755 is conducting without an open circuit or a short circuit.

Repair the open circuit or short circuit.

Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Execute Component Control [005-072]. The Exit Nip Release Solenoid can be heard
Y N
Check the connections of P/J766 and P/J756. P/J766 and P/J756 are connected correctly.
Y N
Connect P/J766 and P/J756.
Check the wire between P756 and J766 for an open circuit or a short circuit (BSD 5.6 Flag 2). The wire between P756 and J766 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Exit Nip Release Solenoid (PL 16.4) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3)

005-141 CVT Feed Sensor Off Jam

BSD-ON:5.4

Pre-regi Sensor turns Off before Feed Sensor turns Off.

Procedure

If the problem occurs frequently, check if Multi-feed or Shingling feed/Slip at feed occurs.

1. Check each Roll surface has contamination/foreign substance attached.
2. Check each Roll surface has foreign substance attached.
3. Check Torque Limiter works normally.
4. Check each Motor works normally.
5. Check each Roll feed force is within normal range
6. Check the connectors and wires for damage.

If all above are OK, replace Feed Sensor,(PL 16.9). If the problem continues, replace the Nudger Motor (PL 16.5). If the problem persists, replace the DADF PWB (PL 16.3).

005-142 CVT Exit 1 Sensor Off Jam (Side 2)

 BSD-ON:5.4Exit 1 Sensor does not turn Off in specified time from Exit 2 Sensor Off in Reverse Output operation.

Procedure

If the problem occurs frequently, check the following:

1. There is any area in document path that interferes with document feed.
2. Any foreign substance is attached to Roll surface.
3. Roll surface has worn abnormally.
4. Invert Gate operation is normal.
5. Regi Motor rotates normally.
6. Exit Roll performs normal Nip operation (Nip Release Solenoid operation included.)
7. Check the connectors and wires for damage.

If all above are OK, replace Exit 1 Sensor (PL 16.7). If the problem continues, replace the Exit 2 Sensor (PL 16.7). If the problem persists, replace the DADF PWB (PL 16.3).

005-143 CVT Exit 2 Sensor Off Jam

BSD-ON:5.4
Exit 2 Sensor does not turn Off in specified time from Exit 2 Sensor On

Procedure

If the problem occurs frequently, check the following:

1. Check if there is anything at Exit that prevents the document output.
2. Check if there is any area in the path, from Exit Rolls and output area, that interferes with document feed
3. Exit Motor rotates normally. If something is wrong with rotation such as step-out, check to see if some foreign substance in Exit Motor or any other thing prevents its rotation.

005-144 CVT Pre Reg Sensor Jam

 BSD-ON:5. 4Pre Regi Sensor turns ON earlier than the specified timing due to document Skew.

Procedure

Caused by Big Skew at start of feed. To perform investigation on cause of Skew. Ensure the following:

1. Document Guide is set correctly.
2. Nudger Roll is aligned correctly against Document Tray.
3. Feed Roll and Retard Roll does not contact at some point improperly.
4. Curl is not so big.
5. Size combination is within spec. (Mixed Sizes)

005-145 CVT Registration Sensor Off Jam (Invert) RAP

 BSD-ON:5.4/5.5After the DADF Pre Registration Sensor turned Off at Invert, the Registration Sensor did not turn Off within the specified time.

Initial Actions

- Open the DADF Top Cover and remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-110]. Actuate the DADF Registration Sensor with paper. The display changes.
Y N
Check the connections of P/J782 and P/J761. P/J782 and P/J761 are connected correctly.
Y N
Connect P/J782 and P/J761.
Check the wire between J782 and J761 for an open circuit or a short circuit (BSD 5.5 Flag 1/Flag 2). The wire between J782 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-15 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-14 (+) and GND (-) (BSD 5.5 Flag 1). Actuate the DADF Registration Sensor with paper. The voltage changes.

Y N
Replace the DADF Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-001]. The DADF Feed Motor starts up.
Y \mathbf{N}
Check the connections of P/J764 and P/J754. P/J764 and P/J754 are connected correctly.
Y N
Connect P/J764 and P/J754.
Check the wire between J764 and J754 for an open circuit or a short circuit (BSD 5.5 Flag 1). The wire between J764 and J754 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
A

A B
Measure the voltage between the DADF PWB P754-1 (+) and GND (-), and between P754-7 (+) and GND (-) (BSD 5.5 Flag 1). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Feed Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Execute Component Control [005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y N
Connect P/J765 and P/J755.
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J 765 and J 755 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3)

005-146 CVT Pre Registration Sensor Off Jam RAP

 BSD-ON:5.4/5.5/5. 61. After the DADF Feed Out Sensor turned Off in 1 Sided mode, the DADF Pre Registration Sensor did not turn Off within the specified time.
2. After the DADF Registration Motor turned On in 2 Sided mode, the DADF Pre Registration Sensor did not turn Off within the specified time.

Initial Actions

Power Off than On

Procedure

Check the installation and operation of the Invert Gate. The Invert Gate is installed and it works.
Y \mathbf{N}
Install the Invert Gate correctly.
Execute Component Control [005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
Y N
Connect P/J781 and P/J761.
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.

Y \mathbf{N}

Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3).Actuate the DADF Pre Registration Sensor with paper. The voltage changes.

Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y N
Connect P/J765 and P/J755.

A B
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between J765 and J755 is conducting without an open circuit or a short circuit.

$$
\begin{aligned}
& \mathbf{N} \\
& \text { Repair the open circuit or short circuit. }
\end{aligned}
$$

Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Execute Component Control [005-072]. The Exit Nip Release Solenoid can be heard.
Y N
Check the connections of P/J766 and P/J756. P/J766 and P/J756 are connected correctly. $Y \quad \mathrm{~N}$

Connect P/J766 and P/J756.
Check the wire between P756 and J766 for an open circuit or a short circuit (BSD 5.6 Flag 2). The wire between P756 and J766 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Exit Nip Release Solenoid (PL 16.4) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-147 CVT Pre Registration Sensor Off Jam (Invert) RAP BSD-ON:5.4/5.5/5.6

After the DADF Registration Motor turned On at Invert, the DADF Pre Registration Sensor did not turn Off within the specified time.

Initial Actions

Power Off than On

Procedure

Check the installation and operation of the Invert Gate. The Invert Gate is installed and it works.
Y \mathbf{N}
Install the Invert Gate correctly.
Execute Component Control [005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y N
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
Y N
Connect P/J781 and P/J761.
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3).Actuate the DADF Pre Registration Sensor with paper. The voltage changes.

Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-026]. The DADF Registration Motor starts up.
Y N
Check the connections of P/J765 and P/J755. P/J765 and P/J755 are connected correctly.
Y \mathbf{N}
Connect P/J765 and P/J755.

A B
Check the wire between J765 and J755 for an open circuit or a short circuit (BSD 5.5 Flag 2). The wire between $J 765$ and $J 755$ is conducting without an open circuit or a short circuit.
\mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P755-1 (+) and GND (-), and between P755-6 (+) and GND (-) (BSD 5.5 Flag 2). The voltage is approx. +24VDC.
Y $\quad \mathbf{N}$
Replace the DADF PWB (PL 16.3).
Replace the DADF Registration Motor (PL 16.9) If the problem persists, replace the DADF PWB (PL 15.3).

Execute Component Control [005-072]. The Exit Nip Release Solenoid can be heard
Y N
Check the connections of P/J766 and P/J756. P/J766 and P/J756 are connected correctly.

Connect P/J766 and P/J756.
Check the wire between P756 and J766 for an open circuit or a short circuit (BSD 5.6 Flag 2). The wire between P756 and J766 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Replace the Exit Nip Release Solenoid (PL 16.4) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3)

005-150 CVT Holed Paper Feed Sensor Off Jam

 BSD-ON:5.4Feed Sensor does not turn Off in specified time from Feed Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-151 CVT Holed Paper Pre Reg Sensor Off Jam BSD-ON:5.4

Pre Reg Sensor does not turn Off in specified time from Pre Reg Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-152 CVT Holed Paper Reg Sensor Off Jam BSD-ON:5.4

Reg Sensor does not turn Off in specified time from Reg Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-153 CVT Holed Paper Pre Reg Sensor Off Jam

 BSD-ON:5.4Pre Reg Sensor does not turn Off in specified time from Pre Reg Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-154 CVT Holed Paper Out Sensor Off Jam

 BSD-ON:5.4Feed Sensor does not turn Off in specified time from Out Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-155 CVT Holed Paper Simplex Exit 1 Sensor Off Jam BSD-ON:5.4

Exit 1 Sensor does not turn Off in specified time from Exit 1 Sensor On in holed document mode. (Simplex)

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-156 CVT Holed Paper Duplex Exit 1 Sensor Off Jam BSD-ON:5.4

Exit 1 Sensor does not turn Off in specified time from Exit 1 Sensor On in holed document mode. (Duplex)

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-157 CVT Holed Paper Invert Sensor Off Jam

 BSD-ON:5.4Invert Sensor does not turn Off in specified time from Invert Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-158 CVT Holed Paper Exit 2 Sensor Off Jam BSD-ON:5.4

Exit 2 Sensor does not turn Off in specified time from Exit 2 Sensor On in holed document mode.

Procedure

Ensure that a point on circumference (farthest from trail edge), not a center, of a hole on trail edge side is 19 mm or less from trail edge.

005-160 DADF Tray Lift Up Fail on running (Document Set) BSD-ON:5.4

The following is detected: Level Sensor does not turn On or Bottom Sensor does not turn On in specified time from start of Tray Lift Up when document is set. (Detected during Run, during Stop, or during Purge)

Procedure

When the document is removed, this fault is released. When this problem occurs frequently, check Level Sensor output/Tray Motor operation/Tray Drive system (Torque Limiter)/Sensor Actuator.

Check the connectors and wires for damage.
If all above are OK, replace the DADF PWB (PL 16.3).

005-190 Feed Motor Logic Error Jam

 BSD-ON:5.5Feed Motor, rotating CW, does not start CCW rotation (Invert start) in specified time from Invert Sensor Off (Invert operation)

Procedure

Follow the instructions displayed on UI

005-194 Mixed Size Mismatch RAP

BSD-ON:5.1

In Mixed Size Originals, it was detected that the Fast Scan Direction size was different from the width of the document guide.

Initial Actions

Power Off than On
Check the document guide and repeat the operation.
Check the operation of the Tray Side Guide (Front).
Check the operation of the Tray Side Guide (Rear).

Procedure

Execute Component Control [005-221]. Actuate the DADF Tray Size 1 Sensor with paper. The display changes.

$Y^{\mathbf{N}}$

Check the connections of P/J771 and P/J759. P/J771 and P/J759 are connected correctly.
Y N
Connect P/J771 and P/J759.
Check the wire between J771 and J759 for an open circuit or a short circuit (BSD 5.1Flag 1/Flag 2). The wire between J771 and J759 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P759-3 (+) and GND (-) (BSD 5.1 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P759-2 (+) and GND (-) (BSD 5.1 Flag 1).Actuate the DADF Tray Size 1 Sensor with paper. The voltage changes.

Y N
Replace the DADF Tray Size 1 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-222]. Actuate the DADF Tray Size 2 Sensor with paper. The display changes.
$Y^{\mathbf{N}}$
Check the connections of P/J772 and P/J759. P/J772 and P/J759 are connected correctly.
Y N
Connect P/J772 and P/J759.

A B
Check the wire between J772 and J759 for an open circuit or a short circuit (BSD 5.1 Flag 3/Flag 4). The wire between J772 and J759 is conducting without an open circuit or a short circuit.
$\mathrm{Y} \quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P759-6 (+) and GND (-) (BSD 5.1 Flag 4). The voltage is approx. +5 VDC .
$Y^{\mathbf{N}}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P759-5 (+) and GND (-) (BSD 5.1 Flag 3). Actuate the DADF Tray Size 2 Sensor with paper. The voltage changes.
$Y \quad N$
Replace the DADF Tray Size 2 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-195 Size Mismatch Jam

Different size document detected without Document Size Mix mode selected.

Procedure

Follow the instructions displayed on UI.

005-196 CVT Size Mismatch RAP

BSD-ON:5.1

The second and subsequent documents are different size to the first document.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-221]. Actuate the DADF Tray Size 1 Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J771 and P/J759. P/J771 and P/J759 are connected correctly.
Y N
Connect P/J771 and P/J759.
Check the wire between J771 and J759 for an open circuit or a short circuit (BSD 5.1 Flag 1/Flag 2). The wire between J771 and J759 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P759-3 (+) and GND (-) (BSD 5.1 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P759-2 (+) and GND (-) (BSD 5.1 Flag 1). Actuate the DADF Tray Size 1 Sensor with paper. The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Replace the DADF Tray Size 1 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-222]. Actuate the DADF Tray Size 2 Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J772 and P/J759. P/J772 and P/J759 are connected correctly.
Y N
Connect P/J772 and P/J759.
Check the wire between J772 and J759 for an open circuit or a short circuit (BSD 5.1 Flag 3/Flag 4). The wire between $\mathbf{J 7 7 2}$ and $\mathbf{J 7 5 9}$ is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.

Measure the voltage between the DADF PWB P759-6 (+) and GND (-) (BSD 5.1 Flag 4) The voltage is approx. +5 VDC .
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P759-5 (+) and GND (-) (BSD 5.1 Flag 3). Actuate the DADF Tray Size 2 Sensor with paper. The voltage changes.
Y N
Replace the DADF Tray Size 2 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-197 Prohibit Combine Size RAP

BSD-ON:5.1

A prohibited size combination was detected.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-221]. Actuate the DADF Tray Size 1 Sensor with paper. The display changes.
Y N
Check the connections of P/J771 and P/J759. P/J771 and P/J759 are connected correctly.
Y N
Connect P/J771 and P/J759.
Check the wire between J771 and J759 for an open circuit or a short circuit (BSD 5.1 Flag 1/Flag 2). The wire between $\mathbf{J 7 7 1}$ and $\mathbf{J} 759$ is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P759-3 (+) and GND (-) (BSD 5.1 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3)
Measure the voltage between the DADF PWB P759-2 (+) and GND (-) (BSD 5.1 Flag 1).Actuate the DADF Tray Size 1 Sensor with paper. The voltage changes.

Y N
Replace the DADF Tray Size 1 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).

Execute Component Control [005-222]. Actuate the DADF Tray Size 2 Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J772 and P/J759. P/J772 and P/J759 are connected correctly.
Y N
Connect P/J772 and P/J759.

Check the wire between J 772 and J 759 for an open circuit or a short circuit (BSD 5.1 Flag 3/Flag 4). The wire between J 772 and J 759 is conducting without an open circuit or a short circuit.

Y \mathbf{N}

Repair the open circuit or short circuit

Measure the voltage between the DADF PWB P759-6 (+) and GND (-) (BSD 5.1 Flag 4) The voltage is approx. +5 VDC .
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P759-5 (+) and GND (-) (BSD 5.1 Flag 3). Actuate the DADF Tray Size 2 Sensor with paper. The voltage changes.
Y N
Replace the DADF Tray Size 2 Sensor (PL 16.10).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3)

005-198 Document Length RAP

BSD-ON:5.4

The system detected a document with a length shorter than 115 mm in the Slow Scan Direction.

Initial Actions

- Power Off than On

Procedure

Check the document size. The size of the document is within the specification.
Y N
Use a paper size within the specification.
Execute Component Control [005-205]. Actuate the DADF Feed Out Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J769 and P/J758. P/J769 and P/J758 are connected correctly.
Y N
Connect P/J769 and P/J758.
Check the wire between J769 and J758 for an open circuit or a short circuit (BSD 5.4 Flag 13/Flag 14). The wire between J 769 and J 758 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P758-3 (+) and GND (-) (BSD 5.4 Flag 14). The voltage is approx. +5 VDC .

Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P758-2 (+) and GND (-) (BSD 5.4 Flag 13). Actuate the DADF Feed Out Sensor with paper. The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Replace the DADF Feed Out Sensor (PL 16.9).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
Y N
Connect P/J781 and P/J761.
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
A

Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Replace the DADF PWB (PL 16.3).

Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3). Actuate the DADF Pre Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-199 Document Length RAP

BSD-ON:5.4

The system detected a document with the following length in the Slow Scan Direction:

- Simplex mode: 672.4 mm or longer
- Duplex mode: 480.1 mm or longer

Initial Actions

- Power Off than On

Procedure

Check the document size. The size of the document is within the specification.
Y N
Use a paper size within the specification.
Check the Transport Roll for wear and paper powder. The Transport Roll is ok. Y N

Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path. Y N

Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [005-205]. Actuate the DADF Feed Out Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J769 and P/J758. P/J769 and P/J758 are connected correctly.
Y N
Connect P/J769 and P/J758.
Check the wire between J769 and J758 for an open circuit or a short circuit (BSD 5.4 Flag 13/Flag 14). The wire between J 769 and J 758 is conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P758-3 (+) and GND (-) (BSD 5.4 Flag
14). The voltage is approx. +5VDC.
$Y \quad N$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P758-2 (+) and GND (-) (BSD 5.4 Flag 13). Actuate the DADF Feed Out Sensor with paper. The voltage changes.
Y N
Replace the DADF Feed Out Sensor (PL 16.9).
Replace the DADF PWB (PL 16.3).

A

A
Execute Component Control[005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y N
Check the connections of $P / J 781$ and $P / J 761$. $P / J 781$ and $P / J 761$ are connected correctly.
Y N
Connect P/J781 and P/J761.
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5VDC.

N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3). Actuate the DADF Pre Registration Sensor with paper. The voltage changes.
N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3)

005-210 DADF Download Fail

DADF Download mode detected at IISS start (Power On, Energy Save recovery included).
DADF Download failed. ROM is broken.
Power ON after replacement of ROM by half-burnt ROM in field.

Procedure

Replace the DADF PWB (PL 16.3).

005-274 Original Size Sensor Fail

DADF Document Size Detect Sensor failure detected. (At Power ON or when document setting detected.)

Procedure

To check Original Size Sensor for paper strip being stuck. Check the connections between the sensor and the DADF PWB. If OK, replace the Original Size Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-275 DADF RAM Failure RAP
BSD-ON:3.5
DADF RAM Fail. An error was detected in the DADF PWB RAM. (Checked when power is switched on.).

Procedure

If switching the Machine OFF then ON does not resolve the problem, replace DADF PWB (PL 16.3).

005-280 DADF EEPROM RAP

BSD-ON:3.5
The DADF-EEPROM failed during the Read/Write operation.

Initial Actions

- Power Off than On

005-281 DADF Tray Lift Down Failure

Bottom Sensor does not turn ON in specified time from start of DADF Tray Down.

Procedure

To check Bottom Sensor output/Tray Motor operation/Tray Drive system (Torque Limiter)/Sensor Actuator. Check the connections between the sensor and the DADF PWB. If OK, replace the Bottom Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

Procedure

Check the connection of each DADF PWB connector. The connectors are securely connected.
Y \mathbf{N}
Connect the connectors.
Turn on the power again. [005-280] reoccurs.
N
End
Replace the DADF PWB (PL 16.3).

005-282 DADF Tray Lift Up Failure

Bottom Sensor does not turn Off in specified time from start of DADF Tray Up in Initialize operation with no document being set.

Procedure

To check Bottom Sensor output/Tray Motor operation/Tray Drive system (Torque Limiter)/Sensor Actuator. Check the connections between the sensor and the DADF PWB. If OK, replace the Bottom Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-283 DADF Nudger Sensor RAP

BSD-ON:5.2
After the DADF Nudger Motor turns On, the DADF Nudger Sensor does not turn On.

Initial Actions

- Power Off than On

Procedure

Manually operate the Feed Head mechanism. The Feed Head mechanism moves smoothly. Y \mathbf{N}

Replace the parts that are interfering with operation.
Execute Component Control [005-225]. Cover the DADF Nudger Sensor receiver with paper. The display changes.
Y N
Check the connections of P/J788 and P/J786. P/J788 and P/J786 are connected correctly.
Y N
Connect P/J788 and P/J786.
Check the wire between J788 and J786 for an open circuit or a short circuit (BSD 5.2 Flag 3/Flag 4). The wire between J 788 and J 786 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-9 (+) and GND (-) (BSD 5.2 Flag 4). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P786-8 (+) and GND (-) (BSD 5.2 Flag 3). Cover the DADF Nudger Sensor receiver with paper. The voltage changes.
Y N
Replace the DADF Nudger Sensor (PL 16.5).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-090]. The DADF Nudger Motor can be heard.
Y N
Check the connections of P/J787 and P/J786. P/J787 and P/J786 are connected correctly.
Y N
Connect P/J787 and P/J786.
Check the wire between J787 and J786 for an open circuit or a short circuit (BSD 5.2 Flag 5). The wire between J 787 and J 786 is conducting without an open circuit or a short circuit.

Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB (PL 15.3P786-1 (+) and GND (-) (BSD 5.2 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Nudger Motor (PL 16.6) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-284 DADF APS Sensor Logic RAP

BSD-ON:5. 4
The combinations of outputs from the DADF APS 1 Sensor, DADF APS 2 Sensor and DADF APS 3 Sensor are abnormal.

Initial Actions

- Power Off than On

Procedure

Execute Component Control [005-218]. Actuate the DADF APS 1 Sensor with paper. The display changes.
Y N
Check the connections of P/J777 and P/J761. P/J777 and P/J761 are connected correctly.
Y N
Connect P/J777 and P/J761.
Check the wire between J777 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 7/Flag 8). The wire between J 777 and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-6 (+) and GND (-) (BSD 5.4 Flag 8). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-5 (+) and GND (-) (BSD 5.4 Flag 7). Actuate the DADF APS 1 Sensor with paper. The voltage changes.
Y N
Replace the DADF APS 1 Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-219]. Actuate the DADF APS 2 Sensor with paper. The display changes.
Y N
Check the connections of P/J778 and P/J761. P/J778 and P/J761 are connected cor-
rectly.
Connect P/J778 and P/J761.
Check the wire between J 778 and J 761 for an open circuit or a short circuit (BSD 5.4 Flag 9/Flag 10). The wire between J 778 and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

A B
Measure the voltage between the DADF PWB P761-3 (+) and GND (-) (BSD 5.4 Flag 10). The voltage is approx. +5VDC.

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-2 (+) and GND (-) (BSD 5.4 Flag 9). Actuate the DADF APS 2 Sensor with paper. The voltage changes.

```
Y N
    Replace the DADF APS 2 Sensor (PL 16.7).
```

Replace the DADF PWB (PL 16.3).

Execute Component Control [005-220]. Actuate the DADF APS 3 Sensor with paper. The display changes.
Y N
Check the connections of P/J779 and P/J785. P/J779 and P/J785 are connected correctly.
Y N
Connect P/J779 and P/J785
Check the wire between J 779 and J785 for an open circuit or a short circuit (BSD 5.4 Flag 11/Flag 12). The wire between J779 and J785 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P785-3 (+) and GND (-) (BSD 5.4 Flag 12). The voltage is approx. +5VDC.

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P785-2 (+) and GND (-) (BSD 5.4 Flag 11) Actuate the DADF APS 3 Sensor with paper. The voltage changes.
Y N
Replace the DADF APS 3 Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-285 DADF Nudger Lift Up RAP

BSD-ON:5.2

After the DADF Nudger Motor started reverse rotation, the DADF Nudger Sensor did not turn On within the specified time.

Initial Actions

- Power Off than On

Procedure

Manually operate the Feed Head mechanism. The Feed Head mechanism moves smoothly. Y N

Replace the parts that are interfering with operation
Execute Component Control [005-225]. Actuate the DADF Nudger Sensor with paper. The display changes.
Y N
Check the connections of P/J788 and P/J786. P/J788 and P/J786 are connected correctly.

Connect P/J788 and P/J786.
Check the wire between J 788 and J786 for an open circuit or a short circuit (BSD 5.2 Flag 3/Flag 4). The wire between J788 and J786 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-9 (+) and GND (-) (BSD 5.2 Flag 4).
The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P786-8 (+) and GND (-) (BSD 5.2 Flag 3) Actuate the DADF Nudger Sensor with paper. The voltage changes.
Y N
Replace the DADF Nudger Sensor (PL 16.5).
Replace the DADF PWB (PL 16.3).
Execute Component Control[005-090]. The DADF Nudger Motor can be heard.
Y N
Check the connections of P/J787 and P/J786. P/J787 and P/J786 are connected correctly.
Y N
Connect P/J787 and P/J786.
Check the wire between J 787 and J 786 for an open circuit or a short circuit (BSD 5.2 Flag
5). The wire between J787 and J786 is conducting without an open circuit or a short circuit.

Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-1 (+) and GND (-) (BSD 5.2 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Nudger Motor (PL 16.6) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3).

005-286 DADF Feed Out Sensor RAP

BSD-ON:5.4

During document transport, before the DADF Feed Out Sensor turned Off, the DADF Pre Registration Sensor turned Off.

Initial Actions

Power Off than On

Procedure

Execute Component Control [005-205]. Actuate the DADF Feed Out Sensor with paper. The display changes.
Y N
Check the connections of P/J769 and P/J758. P/J769 and P/J758 are connected correctly.

Connect P/J769 and P/J758.
Check the wire between J769 and J758 for an open circuit or a short circuit (BSD 5.4 Flag $13 /$ Flag 14). The wire between $J 769$ and $J 758$ is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P758-3 (+) and GND (-) (BSD 5.4 Flag 14). The voltage is approx. +5 VDC.
$Y \mathrm{~N}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P758-2 (+) and GND (-) (BSD 5.4 Flag 13).Actuate the DADF Feed Out Sensor with paper. The voltage changes.

Y N
Replace the DADF Feed Out Sensor (PL 16.9).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-206]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
$\mathrm{Y} \quad \mathrm{N}$
Connect P/J781 and P/J761.
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.

Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3).Actuate the DADF Pre Registration Sensor with paper. The voltage changes.

Y \mathbf{N}
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-301 DADF Top Cover Open

Detected the DADF Top Cover Opened.

Procedure

To check the Top Cover is Latched. Check the connections between the Top Cover Interlock Switch and the DADF PWB. If OK, replace the Top Cover Interlock Switch. If the problem persists, replace the DADF PWB (PL 16.3).

005-302 CVT Feeder Cover Interlock Open RAP

 BSD-ON:1.3The DADF Interlock is open.

Initial Actions

- Power Off than On

Procedure

Check opening/closing of the Feeder Cover. The Feeder Cover can be opened/closed.
Y N
Reinstall the Feeder Cover correctly.
Check installation of the DADF Interlock Switch. The DADF Interlock Switch is installed correctly.
Y N
Install the DADF Interlock Switch correctly.
Execute Component Control [005-212 DADF Interlock Switch]. Open and close the Feeder Cover. The display changes.
Y N
Check the connections of P/J753, F1 and F2. P/J753, F1 and F2 are connected correctly.
Y N
Connect P/J753, F1 and F2.
Check the wire between J753 and F1, and between J753 and F2 for an open circuit or a short circuit (BSD 1.3 Flag 7/Flag 8). The wires between J753 and F1, and between J753 and F2 are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the DADF Interlock Switch between J753-2 and J753-1 (BSD 1.3 Flag 7/Flag 8). The wire between $\mathrm{J} 753-2$ and $\mathrm{J} 753-1$ is connecting successfully when the DADF Interlock Switch contact is closed, and is insulated when the contact is opened.
Y N
Replace the DADF Interlock Switch (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-304 CVT Platen Interlock Open RAP

 BSD-ON:6. 1The Platen Interlock is open.

Initial Actions

- Power Off than On

Procedure

Check opening/closing of the Platen Cover. The Platen Cover can be opened/closed.
$\mathbf{Y} \quad \mathbf{N}$
Reinstall the Platen Cover correctly.
Check the installation of the Platen Open Switch. The Platen Open Switch is installed correctly.
Y N
Install the Platen Open Switch correctly.
Execute Component Control [062-300 Platen Open Switch]. Open and close the Platen Cover. The display changes.
Y $\quad \mathrm{N}$
Check the connections of P/J727 and P/J722. P/J727 and P/J722 are connected correctly.
Y N
Check the wire between J727 and J722 for an open circuit or a short circuit (BSD 6.1 Flag 3/Flag 4). The wire between J727 and J722 is conducting without an open circuit or a short circuit.

Connect P/J727 and P/J722.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the Platen Open Switch between J722A-10 and J722A-11 (BSD 6.1 Flag 3/Flag 4). The wire between J722A-10 and J722A-11 is connecting successfully when the Platen Open Switch contact is closed, and is insulated when the contact is opened.
Y N
Replace the Platen Open Switch (PL 13.4).
Replace the IIT/IPS PWB (PL 13.3).
Replace the IIT/IPS PWB (PL 13.3).

005-305 CVT Feeder Cover Interlock Open (running) RAP

 BSD-ON:1.3The system detected that the DADF Interlock was opened while the DADF was running (RUN/ SUSPEND).

Initial Actions

- Power Off than On

Procedure

Check opening/closing of the Feeder Cover. The Feeder Cover can be opened/closed.
Y N
Reinstall the Feeder Cover correctly.
Check installation of the DADF Interlock Switch. The DADF Interlock Switch is installed correctly.
Y N
Install the DADF Interlock Switch correctly.
Execute Component Control [005-212 DADF Interlock Switch]. Open and close the Feeder Cover. The display changes.
Y $\quad \mathrm{N}$
Check the connections of P/J753, F1 and F2. P/J753, F1 and F2 are connected correctly.

Connect P/J753, F1 and F2.
Check the wire between J753 and F1, and between J753 and F2 for an open circuit or a short circuit (BSD 1.3 Flag 7/Flag 8). The wires between J753 and F1, and between J753 and F2 are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the DADF Interlock Switch between J753-2 and J753-1 (BSD 1.3 Flag 7/Flag 8). The wire between $\mathrm{J} 753-2$ and $\mathrm{J} 753-1$ is connecting successfully when the DADF Interlock Switch contact is closed, and is insulated when the contact is opened.
Y \mathbf{N}
Replace the DADF Interlock Switch (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-306 Tray Interlock Open while Running

Tray Interlock Open during DADF operation detected.

Procedure

To ensure that the Tray is Closed. Check the connections between the Tray Interlock Sensor and the DADF PWB. If OK, replace the Tray Interlock Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-307 CVT Platen Interlock Open on Running RAP BSD-ON:6. 1

The Platen Interlock is open while the DADF is running (RUN/SUSPEND).

Initial Actions

- Power Off than On

Procedure

Check opening/closing of the Platen Cover. The Platen Cover can be opened/closed.
Y \mathbf{N}
Reinstall the Platen Cover correctly.
Check the installation of the Platen Open Switch. The Platen Open Switch is installed correctly.
Y N
Install the Platen Open Switch correctly.
Execute Component Control [062-300 Platen Open Switch]. Open and close the Platen Cover. The display changes.
Y N
Check the connections of P/J727 and P/J722. P/J727 and P/J722 are connected correctly.
Y N
Connect P/J727 and P/J722.
Check the wire between J727 and J722 for an open circuit or a short circuit (BSD 6.1 Flag 3/Flag 4). The wire between J 727 and J 722 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the Platen Open Switch between J722-A10 and J722-A11 (BSD 6.1 Flag 3/Flag 4). The wire between J722-A10 and J722-A11 is connecting successfully when the Platen Open Switch contact is closed, and is insulated when the contact is opened.
Y N
Replace the Platen Open Switch (PL 13.4)
Replace the IIT/IPS PWB (PL 13.3).
Replace the IIT/IPS PWB (PL 13.3).

005-906 CVT Feed Sensor RAP

BsD-ON:5. 4

Paper remains on the DADF Feed Out Sensor.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-205 DADF Feed Out Sensor]. Actuate the DADF Feed Out Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of P/J769 and P/J758. P/J769 and P/J758 are connected correctly.

Connect P/J769 and P/J758.
Check the wire between J769 and J758 for an open circuit or a short circuit (BSD 5.4 Flag 13/Flag 14). The wire between $\mathbf{J 7 6 9}$ and $\mathbf{J 7 5 8}$ is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P758-3 (+) and GND (-) (BSD 5.4 Flag 14). The voltage is approx. +5VDC.

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P758-2 (+) and GND (-) (BSD 5.4 Flag 13). Actuate the DADF Feed Out Sensor with paper. The voltage changes.
Y N
Replace the DADF Feed Out Sensor (PL 16.9).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-907 CVT Pre-Registration Sensor RAP

 BSD-ON:5. 4Paper remains on the DADF Pre Registration Sensor.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-206 DADF Pre Registration Sensor]. Actuate the DADF Pre Registration Sensor with paper. The display changes.
$Y \quad N$
Check the connections of P/J781 and P/J761. P/J781 and P/J761 are connected correctly.
Y N
Connect P/J781 and P/J761
Check the wire between J781 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 3/Flag 4). The wire between J781 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-12 (+) and GND (-) (BSD 5.4 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-11 (+) and GND (-) (BSD 5.4 Flag 3). Actuate the DADF Pre Registration Sensor with paper. The voltage changes.
Y N
Replace the DADF Pre Registration Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-908 CVT Registration Sensor RAP

 BSD-ON:5.4Paper remains on the DADF Registration Sensor.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-110 DADF Registration Sensor]. Actuate the DADF Registration Sensor with paper. The display changes.
Y N
Check the connections of P/J782 and P/J761. P/J782 and P/J761 are connected correctly.
rectly.
Connect P/J782 and P/J761.
Check the wire between J782 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 1/Flag 2). The wire between $\mathbf{J 7 8 2}$ and J 761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-15 (+) and GND (-) (BSD 5.4 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-14 (+) and GND (-) (BSD 5.4 Flag 1). Actuate the DADF Registration Sensor with paper. The voltage changes.
Y N Replace the DADF Registration Sensor (PL 16.7).

Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-309 Left Hand Interlock Open while Running

Left Hand Interlock Open during DADF operation detected.

Procedure

To check the Dynamic Jam occurrence frequency and clear the problem Jam. Check the connections between the L/H Interlock Switch and the DADF PWB. If OK, replace the L/H Interlock Switch. If the problem persists, replace the DADF PWB (PL 16.3).

005-900 No Belt DADF Applicable Sensor Static Jam

Interlock Open during DADF operation.

Procedure

If the problem occurs frequently, to check Top Cover Latch. Check the connections between the Top Cover Interlock Switch and the DADF PWB. If OK, replace the Top Cover Interlock Switch. If the problem persists, replace the DADF PWB (PL 16.3).

005-901 Belt DADF Doc Sensor Static Jam

Document at Doc In Sensor at Power ON detected.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Doc In Sensor. Check the connections between the Doc In Sensor and the DADF PWB. If OK, replace the Doc In Sensor. If the problem persists, replace the DADF PWB (PL 16.3),

005-902 Belt DADF Regi Sensor Static Jam

Document at Regi Sensor at Power ON detected.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Regi Sensor. Check the connections between the Regi Sensor and the DADF PWB. If OK, replace the Regi Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-903 Belt DADF Exit Sensor Static Jam

Document at Exit Sensor at Power ON detected.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Exit Sensor. Check the connections between the Exit Sensor and the DADF PWB. If OK, replace the Exit Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-904 Belt Dup Sensor Static Jam

Document at Dup Sensor at Power ON detected.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Dup Sensor. Check the connections between the Dup Sensor and the DADF PWB. If OK, replace the Dup Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-909 DADF Lead Sensor Static Jam

Lead Reg Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Lead Reg Sensor. Check the connections between the Lead Reg Sensor and the DADF PWB. If OK, replace the Lead Reg Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-910 DADF Out Sensor Static Jam

Out Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Out Sensor. Check the connections between the Out Sensor and the DADF PWB. If OK, replace the Out Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-911 DADF Exit 1 Sensor Static Jam

Exit1 Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Exit1 Sensor. Check the connections between the Exit1 Sensor and the DADF PWB. If OK, replace the Exit1 Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-912 DADF Exit 2 Sensor Static Jam

Exit2 Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on Exit2 Sensor. Check the connections between the Exit2 Sensor and the DADF PWB. If OK, replace the Exit2 Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-913 CVT Invert Sensor RAP

BSD-ON:5.4

Paper remains on the DADF Invert Sensor.

Initial Actions

- Remove the paper
- Power Off than On

Procedure

Execute Component Control [005-211 DADF Invert Sensor]. Actuate the DADF Invert Sensor with paper. The display changes.
Y $\quad \mathrm{N}$
Check the connections of P/J780 and P/J761. P/J780 and P/J761 are connected correctly.

Connect P/J780 and P/J761

Check the wire between J780 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 5/Flag 6). The wire between $\mathbf{J 7 8 0}$ and $\mathbf{J 7 6 1}$ is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-9 (+) and GND (-) (BSD 5.4 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-8 (+) and GND (-) (BSD 5.4 Flag 5). Actuate the DADF Invert Sensor with paper. The voltage changes.
Y N
Replace the DADF Invert Sensor (PL 16.7)

Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3)

005-914 DADF APS1, 2, 3, Sensor Static Jam

APS1, 2, 3, Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on APS1, 2, 3, Sensor. Check the connections between the APS1, 2, 3, Sensor and the DADF PWB. If OK, replace the APS1, 2,3 , Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-915 CVT APS No1 Sensor RAP

BSD-ON:5. 4

Paper remains on the APS Sensor 1.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-218 DADF APS 1 Sensor]. Actuate the DADF APS 1 Sensor with paper. The display changes.
$Y \quad N$
Check the connections of P/J777 and P/J761. P/J777 and P/J761 are connected correctly.
\mathbf{N}
Connect P/J777 and P/J761
Check the wire between J777 and J761 for an open circuit or a short circuit (BSD 5.4 Flag 7/Flag 8). The wire between J777 and J761 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-6 (+) and GND (-) (BSD 5.4 Flag 8). The voltage is approx. +5 VDC .
Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-5 (+) and GND (-) (BSD 5.4 Flag 7). Actuate the DADF APS 1 Sensor with paper. The voltage changes.
Y N
Replace the DADF APS 1 Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-916 CVT APS No2 Sensor RAP

BSD-ON:5.4

Paper remains on the APS Sensor 2.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-219 DADF APS 2 Sensor]]. Actuate the DADF APS 2 Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J778 and P/J761. P/J778 and P/J761 are connected correctly.
y N
Connect P/J778 and P/J761.
Check the wire between J778 and J761 for an open circuit or a short circuit (BSD 5.4 Flag $9 /$ Flag 10). The wire between J778 and J761 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P761-3 (+) and GND (-) (BSD 5.4 Flag $10)$. The voltage is approx. +5 VDC .
Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P761-2 (+) and GND (-) (BSD 5.4 Flag 9). Actuate the DADF APS 2 Sensor with paper. The voltage changes.
Y N
Replace the DADF APS 2 Sensor (PL 16.7)
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3).

005-917 CVT APS No3 Sensor RAP

BSD-ON:5.4

Paper remains on the APS Sensor 3.

Initial Actions

- Remove the paper.
- Power Off than On

Procedure

Execute Component Control [005-220 DADF APS 3 Sensor]. Actuate the DADF APS 3 Sensor with paper. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J779 and P/J785. P/J779 and P/J785 are connected correctly.
\mathbf{N}
Connect P/J779 and P/J785.
Check the wire between J779 and J785 for an open circuit or a short circuit (BSD 5.4 Flag 11/Flag 12). The wire between J779 and J785 is conducting without an open circuit or a short circuit
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P785-3 (+) and GND (-) (BSD 5.4 Flag 12). The voltage is approx. +5 VDC .

Y
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P785-2 (+) and GND (-) (BSD 5.4 Flag 11). Actuate the DADF APS 3 Sensor with paper. The voltage changes.
Y N
Replace the DADF APS 3 Sensor (PL 16.7).
Replace the DADF PWB (PL 16.3).
Replace the DADF PWB (PL 16.3),

005-918 CVT Invert Sensor Static Jam

CVT Invert Sensor On detected at the timing below:

1. Power On
2. Feeder Cover Interlock Close
3. Platen Interlock Close.

Procedure

If the problem occurs frequently, make sure that there is no obstacle blocking the light path on CVT Invert Sensor. Check the connections between the CVT Invert Sensor and the DADF PWB. If OK, replace the CVT Invert Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-919 DADF Tray Lift Up Failure not during Job

The following detected:
With the document being set, Level Sensor does not turn On or Bottom Snr does not turn Off in a specified time from start of Tray Lift Up.

Detected except for During Run, during Stop, or during Purge.

Procedure

Removal of set document cancels the fault. If it occurs frequently, check the Level Sensor, Tray Motor, Tray Drive Assembly, area for binding, damage, and/or debris. Check the connections between the Level Sensor and the DADF PWB. If OK, replace the Level Sensor. If the problem persists, replace the DADF PWB (PL 16.3).

005-940 DADF No Original Failure

Removal of Documents detected.

Procedure

Follow instructions on the UI Screen

005-941 DADF Not Enough Documents Failure

After all originals returned, shortage of documents detected

Procedure

Follow instructions on the UI Screen

005-942 Document Loading RAP

BSD-ON:5.2
Due to too many document sheets, no documents could not be fed.

Initial Actions

Reduce the no. of sheets and repeat the operation.
Power Off than On

Procedure

Manually operate the Feed Head mechanism. The Feed Head mechanism moves smoothly. Y N

Replace the parts that are interfering with operation.
Execute Component Control [005-225 DADF Nudger Sensor]. Actuate the DADF Nudger Sensor with paper. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J788 and P/J786. P/J788 and P/J786 are connected correctly.
Y N
Connect P/J788 and P/J786.
Check the wire between J 788 and J 786 for an open circuit or a short circuit (BSD 5.2 Flag 3/Flag 4). The wire between J 788 and J 786 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-9 (+) and GND (-) (BSD 5.2 Flag 4). The voltage is approx. +5 VDC .
$\mathbf{Y} \quad \mathbf{N}$
Replace the DADF PWB (PL 16.3).
Measure the voltage between the DADF PWB P786-8 (+) and GND (-) (BSD 5.2 Flag 3).Actuate the DADF Nudger Sensor with paper. The voltage changes.

Y N
Replace the DADF Nudger Sensor (PL 16.5).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-090]. The DADF Nudger Motor can be heard.
Y N
Check the connections of P/J787 and P/J786. P/J787 and P/J786 are connected correctly.

Connect P/J787 and P/J786.

Check the wire between J787 and J786 for an open circuit or a short circuit (BSD 5.2 Flag 5). The wire between J787 and J786 is conducting without an open circuit or a short circuit.

\mathbf{N} Repair the open circuit or short circuit.

Measure the voltage between the DADF PWB P786-1 (+) and GND (-) (BSD 5.2 Flag 5), The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the DADF PWB (PL 16.3).
Replace the DADF Nudger Motor (PL 16.6) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3),

005-943 DADF Tray Lift Up RAP

BSD-ON:5.2

During document feed, the DADF Nudger Solenoid did not turn On.

Initial Actions

Reduce the no. of sheets and repeat the operation.
Power Off than On

Procedure

Manually operate the Feed Head mechanism. The Feed Head mechanism moves smoothly. Y N

Replace the parts that are interfering with operation.
Execute Component Control [005-225 DADF Nudger Sensor]. Actuate the DADF Nudger Sensor with paper. The display changes.
Y N
Check the connections of P/J788 and P/J786. P/J788 and P/J786 are connected correctly.
Y N
Connect P/J788 and P/J786.
Check the wire between J788 and J786 for an open circuit or a short circuit (BSD 5.2 Flag 3/Flag 4). The wire between J788 and J786 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-9 (+) and GND (-) (BSD 5.2 Flag 4). The voltage is approx. +5 VDC .
Y N
Replace the DADF PWB (PL 15.3).
Measure the voltage between the DADF PWB P786-8 (+) and GND (-) (BSD 5.2 Flag 3).Actuate the DADF Nudger Sensor with paper. The voltage changes.

Y N
Replace the DADF Nudger Sensor (PL 16.5).
Replace the DADF PWB (PL 16.3).
Execute Component Control [005-090 DADF Nudger Motor]. The DADF Nudger Motor can be heard.
Y N
Check the connections of P/J787 and P/J786. P/J787 and P/J786 are connected correctly.
Y N
Connect P/J787 and P/J786.

A B
Check the wire between J 787 and J 786 for an open circuit or a short circuit (BSD 5.2 Flag
5). The wire between J 787 and J 786 is conducting without an open circuit or a short circuit.
\mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the DADF PWB P786-1 (+) and GND (-) (BSD 5.2 Flag 5) The voltage is approx. +24VDC.
Y N
Replace the DADF PWB (PL 16.3).
Replace the DADF Nudger Motor (PL 16.6) If the problem persists, replace the DADF PWB (PL 16.3).

Replace the DADF PWB (PL 16.3)

010-311 Fuser Rear Thermistor Disconnected RAP

BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a spe cific temperature within the specified time.

Initial Actions

- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)

Check for paper in the Fuser. The Heat roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1)

010-313 Control (Center) Thermistor RAP

 BSD-ON:10.2The Control (Center) Thermistor has an open circuit.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Check the resistance of the Center Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and P615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and P615 conducts as expected.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-314 Rear Thermistor RAP

BSD-ON:10.1
The Rear Thermistor has an open circuit.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is 3 k ohms or higher.
Y N
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J410 and J615 conducts as expected.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-318 Hot-Sagging Recovery RAP

BSD-ON:4.1/10.2

The Rear Thermistor detected that the machine does not recover from Hot-Sagging in time.

Initial Actions

- Power Off/On

Procedure

Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Close the LH Cover and the Front Cover.
Execute Component Control [042-001 Main Motor ON]. The Main Motor can be heard.
Y N
Go to the OF 3 (MAIN DRIVE ASSY RAP).
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
Y N
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-319 Fuser Center Thermistor Differential Amp RAP BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y $\quad \mathrm{N}$
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is 100 ohms or lower.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y $\quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1)
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
Y N

```
Replace the Fuser Unit (PL 7.1)
```

Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3 Flag 2). The wire between $\mathbf{J} 422$ and $\mathbf{J} 615$ conducts with less than a few ohms.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4) The wire between J422 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-320 Heat Roll Over Temperature RAP
 BSD-ON:10.2

- The Control (Center) Thermistor detected a temperature higher than the specified value.
- The Rear Thermistor detected a temperature higher than the specified value.

Initial Actions

Power Off/On

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)

Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 3/Flag 2). The resistance is 3k Ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Rear Thermistor between P615-11 and P615-12 (BSD 10.2 Flag 3/ Flag 2). The resistance is 3 k ohms or higher.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for a short circuit (BSD 10.2 Flag 3/Flag 2). The wire between J422 and J615 conducts with less than a few ohms.

Y N

Repair the open circuit or short circuit.
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3Flag 2). The wire between J 409 and J 513 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-327 Fuser On Time RAP

BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- \quad Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)

Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y N
Replace the Fuser Unit (PL 7.1)
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.

$\boldsymbol{Y} \quad \mathbf{N}$

Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.

Y N

Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J 409 and J 513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-328 Fuser Warm-up Time RAP

BSD-ON:10.2 and 1.1

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a spe cific temperature within the specified time.

Initial Actions

- Check Fuse F002 on the Power Unit (PL 11.1) for an open circuit
- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)

Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower. Y $\quad \mathrm{N}$

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y $\quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).

010-330 Fuser Motor Failure RAP

BSD-ON:4.1B

The Fuser Motor is not rotating at the specified speed.

Initial Actions

- Power OFF/ON
- Reload the Xero/Developer Cartridge (PL 4.1) and the Fuser Unit (PL 7.1).

Procedure

Close the LH Cover and the Front Cover.
Execute Component Control [010-001 Fuser Motor ON]. The Fuser Motor can be heard.
$Y \mathrm{~N}$
Go to the OF 4 (Fuser Drive Assy RAP).
Check the installation of the Fuser Unit (PL 1.1). The Fuser Drive Assembly is installed correctly.
Y N
Install the Main Drive Assembly correctly.
Check the wire between P/J412 and P/J226 for an open circuit or a short circuit (BSD 4.1A) The wires are conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Manually rotate the Fuser Motor rotor. It rotates smoothly.
Y N
Check for foreign substances that are interfering with operation or installation failure. Foreign substances or installation failure are found.
$Y \quad \mathrm{~N}$
Replace the Fuser Unit (PL 7.1).
Remove the foreign substances that are interfering with operation and correct the installation failure.

Replace the Fuser Unit (PL 7.1) If the problem persists, replace the MCU PWB (PL 11.1).

010-331 Fuser Rear Thermistor Over Temp RAP

BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower. Y \mathbf{N}

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.

N
Replace the Fuser Unit (PL 7.1)
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
Y N

```
Replace the Fuser Unit (PL 7.1).
```

Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J 422 and J 615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-332 Fuser Center Thermistor Disconnected RAP BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y $\quad \mathbf{N}$
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is 100 ohms or lower. $\mathbf{Y} \quad \mathbf{N}$

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y $\quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.

```
N
Replace the Fuser Unit (PL 7.1).
```

Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
$Y \quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-333 Fuser Center Thermistor Overtemp RAP BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower. Y \mathbf{N}

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is 100 ohms or lower.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.

```
N
Replace the Fuser Unit (PL 7.1).
```

Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
$Y \quad \mathbf{N}$

```
Replace the Fuser Unit (PL 7.1).
```

Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J 5 and J 615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-334 Fuser Center Thermistor Broken RAP

BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y $\quad \mathbf{N}$
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is 100 ohms or lower. Y \mathbf{N}

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is 100 ohms or lower.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.
\boldsymbol{Y}
Replace the Fuser Unit (PL 7.1)
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
Y $\quad N$

```
Replace the Fuser Unit (PL 7.1).
```

Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J 422 and J 615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-335 Fuser Center Thermistor Out of Range RAP

 BSD-ON:10.2- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y \mathbf{N}
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y $\quad \mathbf{N}$
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower. $\mathbf{Y} \quad \mathbf{N}$

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is $\mathbf{1 0 0}$ ohms or lower.
Y $\quad \mathbf{N}$
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.

```
N
Replace the Fuser Unit (PL 7.1).
```

Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
$Y \quad \mathbf{N}$

```
Replace the Fuser Unit (PL 7.1).
```

Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3/ Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J 5 and J 615 for an open circuit or a short circuit (BSD 10.2 Flag 1). The wire between J5 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J 409 and J 513 for an open circuit or a short circuit (BSD 10.2 Flag 4). The wire between J422 and J615 conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-336 Sub Lamp Disconnection Failure RAP BSD-ON:10.2

- After the Main Lamp turned On during warm up, the Control Thermistor did not detect READY temperature within the specified time.
- After the Main Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during standby, the Control Thermistor did not detect a specific temperature within the specified time.
- After the empty rotation started, the Control Thermistor did not detect the empty rotation finishing temperature within the specified time.
- After the Main Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.
- After the Sub Lamp turned On during printing, the Control Thermistor did not detect a specific temperature within the specified time.

Initial Actions

- Check the voltage supplies to the machine and to and from the LVPS
- Check the Indoor Temperature

Procedure

NOTE: Ensure that NVM location 744-004 is set to zero (0). If the problem continues, replace the Fuser Unit (PL 7.1)
Check for paper in the Fuser. The Heat Roll has no paper wrapped round it.
Y N
Remove the paper.
Check the installation of the Fuser Unit. The Fuser Unit is securely installed.
Y N
Install the Fuser Unit securely.
Remove the Fuser Unit. Check the conductivity of the contact points of the Thermostat. The contact points are connected.
Y N
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Sub Lamp between P615-6 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Sub Lamp is 100 ohms or lower.
Y \mathbf{N}
Replace the Fuser Unit (PL 7.1).
Check the resistance of the Main Lamp between P615-3 and P615-2 for an open circuit or a short circuit (BSD 10.2 Flag 1). The resistance of the Main Lamp is $\mathbf{1 0 0}$ ohms or lower. $\mathbf{Y} \quad \mathbf{N}$

Replace the Fuser Unit (PL 7.1).
Check the resistance of the Control (Center) Thermistor between P615-5 and P615-9 (BSD 10.2 Flag 2). The resistance is 3 k ohms or higher.

Y N
Replace the Fuser Unit (PL 7.1)
Check the resistance of the Rear Thermistor between P615-12 and P615-11 (BSD 10.2 Flag 3/ Flag 2). The resistance is $\mathbf{3 k}$ ohms or higher.
$Y \quad N$
Replace the Fuser Unit (PL 7.1).
Check the wire between J422 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 3 Flag 2). The wire between J422 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J5 and J615 for an open circuit or a short circuit (BSD 10.2 Flag 1) The wire between J5 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Check the wire between J409 and J513 for an open circuit or a short circuit (BSD 10.2 Flag 4) The wire between J422 and J615 conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Unit (PL 7.1). If the problem persists, replace the Power Unit (PL 11.1). If the problem persists, replace the MCU PWB (PL 11.1).

010-398 Fuser Lock RAP

BSD-ON:10.3

The Fuser Fan failed.

Initial Actions

- Power Off/On

Procedure

Turn on the power.
Visually check the rotation of the Fuser Fan. The Fuser Fan is rotating.
Y N
Measure the voltage between the MCU PWB J423-1 (+) and J423-4 (-) (BSD 10.3 Flag 1). The voltage is approx. +24VDC.
$\mathbf{Y} \quad \mathbf{N}$
Replace the MCU PWB (PL 11.1).
Check the wires between MCU PWB and the Fuser Fan for an open or a short circuit (BSD 10.3 Flag 1/Flag 3). The wires between MCU PWB and the Fuser Fan conducts with less than a few ohms.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Fuser Fan (PL 11.1).
Measure the voltage between the MCU PWB J423-3 (+) and GND (-) (BSD 10.3 Flag 4). The voltage is approx. OVDC.
Y N
Check the wire between J423-3 and the Fuser Fan for an open circuit or a short circuit (BSD 10.3 Flag 4). The wire conducts with less than a few ohms.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Replace the Fuser Fan (PL 11.1).
Replace the MCU PWB (PL 11.1).

010-420 Fuser Near end of life RAP BSD-ON:10.3

The Fuser is near end of life.

Initial Actions

- Power Off/On

Procedure

Turn on the power.
Visually check the rotation of the Fuser Fan. The Fuser Fan is rotating.
Y N
Measure the voltage between the MCU PWB J423-1 (+) and J423-4 (-) (BSD 10.3 Flag 1). The voltage is approx. +24VDC.
$Y \mathrm{~N}$
Replace the MCU PWB (PL 11.1).
Check the wires between MCU PWB and the Fuser Fan for an open or a short circuit (BSD 10.3 Flag 1/Flag 3). The wires between MCU PWB and the Fuser Fan conducts with less than a few ohms.

```
N
Repair the open circuit or short circuit.
Replace the Fuser Fan (PL 11.1).
```

Measure the voltage between the MCU PWB J423-3 (+) and GND (-) (BSD 10.3 Flag 4). The voltage is approx. OVDC.
Y N
Check the wire between J423-3 and the Fuser Fan for an open circuit or a short circuit (BSD 10.3 Flag 4). The wire conducts with less than a few ohms. $\mathbf{Y} \quad \mathbf{N}$

Repair the open circuit or short circuit.
Replace the Fuser Fan (PL 11.1).

Replace the MCU PWB (PL 11.1).

010-421 Fuser end of life RAP

BSD-ON:10.3
The Fuser is near end of life.

Initial Actions

- Power Off/On
- Clear away foreign substances and dust accumulated at the exhaust.

Procedure

Turn on the power.
Visually check the rotation of the Fuser Fan. The Fuser Fan is rotating.
$\mathbf{Y} \quad \mathbf{N}$
Measure the voltage between the MCU PWB J423-1 (+) and J423-4 (-) (BSD 10.3 Flag
1). The voltage is approx. +24VDC.

Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
Check the wires between MCU PWB and the Fuser Fan for an open or a short circuit (BSD 10.3 Flag 1/Flag 3). The wires between MCU PWB and the Fuser Fan conducts with less than a few ohms.
Y N
Repair the open circuit or short circuit.
Replace the Fuser Fan (PL 11.1).
Measure the voltage between the MCU PWB J423-3 (+) and GND (-) (BSD 10.3 Flag 4). The voltage is approx. OVDC.
Y \mathbf{N}
Check the wire between J423-3 and the Fuser Fan for an open circuit or a short circuit (BSD 10.3 Flag 4). The wire conducts with less than a few ohms.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.

Replace the Fuser Fan (PL 11.1).
Replace the MCU PWB (PL 11.1).

012-111 Finisher H-Transport Entrance Sensor Off Jam

RAP

BSD-ON:12.2

After the H -Transport Entrance Sensor turned On, the H-Transport Entrance Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-190 H-Transport Entrance Sensor]. Actuate the H-Transport Entrance Sensor with paper. The display changes.
V
Check the connections of P/J8380 and P/J8390. P/J8380 and P/J8390 are connected correctly.

Connect P/J8380 and P/J8390

Check the wire between J8380 and J390 for an open circuit or a short circuit (BSD 12.2 Flag 5/Flag 6). The wire between J8380 and J390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-12 (+) and GND (-) (BSD 12.2 Flag 6). The voltage is approx. +5 VDC .
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-13 (+) and GND (-) (BSD 12.2 Flag 5).Actuate the H -Transport Entrance Sensor with paper. The voltage changes. $Y \quad N$

Replace the H -Transport Entrance Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).
Power OFF.
Open the H-Transport Top Cover.
Cheat the H -Transport Interlock Sensor.
Power ON. The H-Transport Belt rotates.

Y N
Check the connections of P/J8379 and P/J8390. P/J8379 and P/J8390 are connected correctly.
Y N
Connect P/J8379 and P/J8390.
Check the wire between J8379 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 7). The wire between J8379 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the H -Transport Motor between J8379-2/5 (COM) and each point of J8379-1/3/4/6 (BSD 12.2 Flag 7). The resistance is approx. 200hm.
Y N
Replace the H -Transport Motor (PL 17.3).
Measure the voltage between the Finisher PWB P8390-9 (+) and GND (-), and between P8390-10 (+) and GND (-) (BSD 12.2 Flag 7). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the H -Transport Motor (PL 17.3). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-112 Finisher H-Transport Entrance Sensor On Jam

RAP

BSD-ON:12.2

After the Engine Fuser Exit Sensor turned On, the H-Transport Entrance Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-190 H-Transport Entrance Sensor]. Actuate the H-Transport Entrance Sensor with paper. The display changes.
Y N
Check the connections of P/J8380 and P/J8390. P/J8380 and P/J8390 are connected correctly.
Y N
Connect P/J8380 and P/J8390.
Check the wire between J8380 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 5/Flag 6). The wire between J 8380 and J 390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-12 (+) and GND (-) (BSD 12.2 Flag 6). The voltage is approx. +5 VDC .
Y^{N}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-13 (+) and GND (-) (BSD 12.2 Flag 5).
Actuate the H -Transport Entrance Sensor with paper. The voltage changes.
Y N
Replace the H -Transport Entrance Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).

Power ON. The H-Transport Belt rotates.

Y N
Check the connections of P/J8379 and P/J8390. P/J8379 and P/J8390 are connected correctly.
Y N
Connect P/J8379 and P/J8390.
Check the wire between J8379 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 7). The wire between J 8379 and J 8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the H -Transport Motor between J8379-2/5 (COM) and each point of J8379-1/3/4/6 (BSD 12.2 Flag 7). The resistance is approx. 200hm.
Y \mathbf{N}
Replace the H -Transport Motor (PL 17.3).
Measure the voltage between the Finisher PWB P8390-9 (+) and GND (-), and between P8390-10 (+) and GND (-) (BSD 12.2 Flag 7). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the H -Transport Motor (PL 17.3). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

Power OFF.
Open the H-Transport Top Cover.
Cheat the H-Transport Interlock Sensor.

012-121 H-Transport Exit Sensor Off Jam RAP

BSD-ON:12.2

After the H-Transport Exit Sensor turned On, the H-Transport Exit Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y N
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-191 H-Transport Exit Sensor]. Actuate the H-Transport Exit Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of $P / J 8381$ and $P / J 8390$. $P / J 8381$ and $P / J 8390$ are connected correctly.
Y N
Connect P/J8381 and P/J8390.
Check the wire between J8381 and J390 for an open circuit or a short circuit (BSD 12.2 Flag 3/Flag 4). The wire between J8381 and J390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-6 (+) and GND (-) (BSD 12.2 Flag 4). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-14 (+) and GND (-) (BSD 12.2 Flag 3).
Actuate the H-Transport Exit Sensor with paper. The voltage changes.
$\mathbf{Y} \quad \mathrm{N}$
Replace the H-Transport Exit Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).
Power OFF.
Open the H-Transport Top Cover.
Cheat the H-Transport Interlock Sensor.
Power ON. The H-Transport Belt rotates.

Y N
Check the connections of $P / J 8379$ and $P / J 8390$. $P / J 8379$ and $P / J 8390$ are connected correctly.
Y \mathbf{N}
Connect P/J8379 and P/J8390
Check the wire between J8379 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 7). The wire between J8379 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the H-Transport Motor between J8379-2/5 (COM) and each point of J8379-1/3/4/6 (BSD 12.2 Flag 7). The resistance is approx. 200hm.
$\mathbf{Y} \quad \mathbf{N}$
Replace the H-Transport Motor (PL 17.3).
Measure the voltage between the Finisher PWB P8390-9 (+) and GND (-), and between P8390-10 (+) and GND (-) (BSD 12.2 Flag 7). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the H -Transport Motor (PL 17.3). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-126 H-Transport Entrance Sensor OFF Jam B RAP BSD-ON:12.2

After the H -Transport Entrance Sensor turned On, the H-Transport Entrance Sensor did no turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y N
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No foreign substances, distortion or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-190 H-Transport Entrance Sensor]. Actuate the H-Transport Entrance Sensor with paper. The display changes.
Y N
Check the connections of $P / J 8380$ and $P / J 8390$. $P / J 8380$ and $P / J 8390$ are con nected correctly.
Y N
Connect P/J8380 and P/J8390.

Check the wire between J8380 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 5/Flag 6). The wire between J8380 and J8390 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-12 (+) and GND (-) (BSD 12.2 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12)
Measure the voltage between the Finisher PWB P8390-13 (+) and GND (-) (BSD 12.2 Flag 5).Actuate the H -Transport Entrance Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the H -Transport Entrance Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).

Y N
Check the connections of P/J8379 and P/J8390. P/J8379 and P/J8390 are connected correctly.
Y N
Connect P/J8379 and P/J8390
Check the wire between J8379 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 7). The wire between J8379 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the H -Transport Motor between J8379-2/5 (COM) and each point of J8379-1/3/4/6 (BSD 12.2 Flag 7). The resistance is approx. 200hm.
Y N
Replace the H -Transport Motor (PL 17.3).
Measure the voltage between the Finisher PWB P8390-9 (+) and GND (-), and between P8390-10 (+) and GND (-) (BSD 12.2 Flag 7). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the H -Transport Motor (PL 17.3). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

Power OFF,
Open the H-Transport Top Cover.
Cheat the H-Transport Interlock Sensor.
Power ON. The H-Transport Belt rotates.

012-151 Compile Entrance Sensor Off Jam RAP BSD-ON:12.3

After the Compile Entrance Sensor turned On, the Compile Entrance Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y N
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-150 Compile Entrance Sensor]. Actuate the Compile Entrance Sensor with paper. The display changes.
Y N
Check the connections of P/J8814, P/J8825 and P/J8850. P/J8814, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8814, P/J8825 and P/J8850.
Check the wire between J8814 and J8850 for an open circuit or a short circuit (BSD 12.3 Flag 1/Flag 2). The wire between J8814 and J8850 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-B9 (+) and GND (-) (BSD 12.3 Flag 2). The voltage is approx. +5VDC.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-B8 (+) and GND (-) (BSD 12.3 Flag 1).Actuate the Compile Entrance Sensor with paper. The voltage changes.
Y N
Replace the Compile Entrance Sensor (PL 17.11).
Replace the Finisher PWB (PL 17.12).
Execute Component Control [012-080 Finisher Drive Motor ON]. The Finisher Drive Motor
(PL 16.6can be heard
Y $\quad \mathrm{N}$
Check the connections of P/J8846 and P/J8800. P/J8846 and P/J8800 are connected correctly.

```
Connect P/J8846 and P/J8800.
```

Check the wire between J8846 and J8800 for an open circuit or a short circuit (BSD 12.3 Flag 3). The wire between J8846 and J8800 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Finisher Drive Motor between J8800-1/6 (COM) and each point of J8800-2/3/4/5 (BSD 12.3 Flag 3). The resistance is approx. 200hm.
Y N
Replace the Finisher Drive Motor (PL 17.6).
Measure the voltage between each point of the Finisher PWB P8846-5/7/9/11 (+) and GND (-) (BSD 12.3 Flag 3). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Replace the Finisher Drive Motor (PL 17.6). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12)

012-152 Compile Entrance Sensor On Jam RAP

 BSD-ON:12.3After the H-Transport Exit Sensor turned On, the Compile Entrance Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y N
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-150 Compile Entrance Sensor]. Actuate the Compile Entrance Sensor with paper. The display changes.
Y N
Check the connections of P/J8814, P/J8825 and P/J8850. P/J8814, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8814, P/J8825 and P/J8850.
Check the wire between J8814 and J8850 for an open circuit or a short circuit (BSD 12.3 Flag 1/Flag 2). The wire between J8814 and J8850 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-B9 (+) and GND (-) (BSD 12.3 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-B8 (+) and GND (-) (BSD 12.3 Flag 1).
Actuate the Compile Entrance Sensor with paper. The voltage changes.
Y N
Replace the Compile Entrance Sensor (PL 17.11).
Replace the Finisher PWB (PL 17.12).
Execute Component Control [012-080 Finisher Drive Motor ON]. The Finisher Drive Motor can be heard.

Y N
Check the connections of P/J8846 and P/J8800. P/J8846 and P/J8800 are connected correctly.
Y N
Connect P/J8846 and P/J8800.
Check the wire between J8846 and J8800 for an open circuit or a short circuit (BSD 12.3 Flag 3). The wire between J8846 and J8800 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Finisher Drive Motor between J8800-1/6 (COM) and each point of J8800-2/3/4/5 (BSD 12.3 Flag 3). The resistance is approx. 200hm.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Finisher Drive Motor (PL 17.6).
Measure the voltage between each point of the Finisher PWB P8846-5/7/9/11 (+) and GND (-) (BSD 12.3 Flag 3). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Finisher Drive Motor (PL 17.6). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-161 Finisher Set Eject Jam RAP

BSD-ON:12.4/12.7

After the Eject Motor turned On, the Compile Paper Sensor (PL 16.9did not turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Execute Component Control [012-151 Compile Paper Sensor]. Actuate the Compile Paper Sensor with paper. The display changes.

N

Check the connections of P/J8806 and P/J8848. P/J8806 and P/J8848 are connected correctly.
Y N

Connect P/J8806 and P/J8848.
Check the wire between J8806 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 3/Flag 4). The wire between J8806 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A6 (+) and GND (-) (BSD 12.4 Flag 4). The voltage is approx. +5VDC.
$Y \mathrm{~N}$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A5 (+) and GND (-) (BSD 12.4 Flag 3). Actuate the Compile Paper Sensor with paper. The voltage changes.
Y N
Replace the Compile Paper Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y^{N}
Check the connections of P/J8801 and P/J8846. P/J8801 and P/J8846 are connected correctly.
Y N
Connect P/J8801 and P/J8846.
Check the wire between J8801 and J8846 for an open circuit or a short circuit (BSD 12.7 Flag 5). The wire between J8801 and J8846 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

A B
Measure the resistance of the Eject Motor between J8801-2/5 (COM) and each point of J8801-1/3/4/6 (BSD 12.7 Flag 5). The resistance is approx. 2Ohm.
Y N
Replace the Eject Motor (PL 17.7).
Measure the voltage between the Finisher PWB P8846-6 (+) and GND (-), and between P8846-12 (+) and GND (-) (BSD 12.7 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-162 H-Tra EXIT Sensor On Jam RAP

BSD-ON:12.2

After the H-Transport Entrance Sensor turned On, the H-Transport Exit Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the Transport Roll for wear and paper powder. The Transport Roll is ok.
Y N
Replace the Transport Roll.
Check for foreign substances, distortion and paper powder in the paper transport path. No foreign substances, distortion or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Execute Component Control [012-191 H-Transport Exit Sensor]. Actuate the H-Transport Exit Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of $P / J 8381$ and $P / J 8390$. $P / J 8381$ and $P / J 8390$ are connected correctly.
Y N
Connect P/J8381 and P/J8390.
Check the wire between J8381 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 3/Flag 4). The wire between J8381 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-6 (+) and GND (-) (BSD 12.2 Flag 4). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-14 (+) and GND (-) (BSD 12.2 Flag 3).Actuate the H -Transport Exit Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the H-Transport Exit Sensor (PL 17.3)
Replace the Finisher PWB (PL 17.12).

Y N
Check the connections of $\mathrm{P} / \mathrm{J} 8379$ and $\mathrm{P} / \mathrm{J} 8390$. $\mathrm{P} / \mathrm{J} 8379$ and $\mathrm{P} / \mathrm{J} 8390$ are connected correctly.
Y \mathbf{N}
Connect P/J8379 and P/J8390
Check the wire between J8379 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 7). The wire between J8379 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the H-Transport Motor between J8379-2/5 (COM) and each point of J8379-1/3/4/6 (BSD 12.2 Flag 7). The resistance is approx. 200hm.
$\mathbf{Y} \quad \mathbf{N}$
Replace the H-Transport Motor (PL 17.3).
Measure the voltage between the Finisher PWB P8390-9 (+) and GND (-), and between P8390-10 (+) and GND (-) (BSD 12.2 Flag 7). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the H-Transport Motor (PL 17.3). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

Power OFF.
Open the H-Transport Top Cover.
Cheat the H-Transport Interlock Sensor.
Power ON. The H-Transport Belt rotates.

012-211 Stacker Tray RAP

BSD-ON:12.8

After Stacker Tray started descending, the Stack Height Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove obstructions under the tray.
- Check the operation of the Stack Height Sensor actuator.

Procedure

Execute Component Control [012-267 Stack Height Sensor]. Actuate Stack Height Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of P/J8850, P/J8825 and P/J8815. P/J8850, P/J8825 and P/ J8815 are connected correctly.
Y N
Connect P/J8850, P/J8825 and P/J8815.
Check the wire between J 8850 and J 8815 for an open circuit or a short circuit (BSD 12.8 Flag 1/Flag 2). The wire between J8850 and J8815 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-B6 (+) and GND (-) (BSD 12.8 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-B5 (+) and GND (-) (BSD 12.8 Flag 1).
Actuate the Stack Height Sensor with paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 17.5).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor starts up.
Y $\quad N$
Check the connections of $P / J 8847$ and $P / J 8827$. $P / J 8847$ and $P / J 8827$ are connected correctly.

N
Connect P/J8847 and P/J8827.
Check the wire between J8847 and P8827 for an open circuit or a short circuit (BSD 12.8 Flag 5). The wire between J8847 and P8827 is conducting without an open circuit or a short circuit.

012-212 Stacker Tray Upper Limit RAP

BSD-ON:12.8/12.9

After the Stacker Tray started descending, the Stacker Upper Limit Sensor remained ON.

Initial Actions

- Power Off/On
- Remove obstructions under the tray.

Procedure

Execute Component Control [012-260 Stacker Upper Limit Sensor]. Actuate the Stacker Upper Limit Sensor with paper. The display changes.
$Y^{\mathbf{N}}$
Check the connections of P/J8850 and P/J8810. P/J8850 and P/J8810 are connected correctly.
Y $\quad \mathbf{N}$
Connect P/J8850 and P/J8810.
Check the wire between J8850 and J8810 for an open circuit or a short circuit (BSD 12.9 Flag 2/Flag 2). The wire between J8850 and J8810 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-A12 (+) and GND (-) (BSD 12.9 Flag 2). The voltage is approx. +5 VDC .
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-A11 (+) and GND (-) (BSD 12.9 Flag 2).
Actuate the Stacker Upper Limit Sensor with paper. The voltage changes.
\mathbf{N}
Replace the Stacker Upper Limit Sensor (PL 17.10).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor starts up.
Y N
Check the connections of P/J8847 and P/J8827. P/J8847 and P/J8827 are connected correctly.
Y N
Connect P/J8847 and P/J8827.
Check the wire between J8847 and J8827 for an open circuit or a short circuit (BSD 12.8 Flag 5). The wire between J8847 and J8827 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
A B-

012-221 Front Tamper Home Sensor On RAP BSD-ON:12.4

After the Front Tamper started moving to the home position, the Front Tamper Home Sensor did not turn On within 800 ms .

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-220 Front Tamper Home Sensor]. Actuate the Front Tamper Home Sensor with paper. The display changes. The display changes.
Y N
Check the connections of P/J8807 and P/J8848. P/J8807 and P/J8848 are connected correctly.
Y N
Connect P/J8807 and P/J8848.
Check the wire between J8807 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 5/Flag 6). The wire between J8807 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A3 (+) and GND (-) (BSD 12.4 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A2 (+) and GND (-) (BSD 12.4 Flag 5).
Actuate the Front Tamper Home Sensor with paper. The voltage changes.
Y N
Replace the Front Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-020 Front Tamper Motor FRONT ON] and Component Control [012-023 Front Tamper Motor REAR ON]. The Front Tamper Motor starts up. Y N

Check the connections of $P / J 8823$ and $P / J 8848$. $P / J 8823$ and $P / J 8848$ are connected correctly.

Connect P/J8823 and P/J8848.

012-223 Front Tamper Home Sensor Off RAP BSD-ON:12.4

After the Front Tamper started moving away from the home position, the Front Tamper Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-220 Front Tamper Home Sensor]. Actuate the Front Tamper Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8807 and P/J8848. P/J8807 and P/J8848 are connected correctly.
Y N
Connect P/J8807 and P/J8848.
Check the wire between J8807 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 5/Flag 6). The wire between J8807 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A3 (+) and GND (-) (BSD 12.4 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A2 (+) and GND (-) (BSD 12.4 Flag 5).
Actuate the Front Tamper Home Sensor with paper. The voltage changes.
Y N
Replace the Front Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-020 Front Tamper Motor FRONT ON] and Component Control [012-023 Front Tamper Motor REAR ON]. The Front Tamper Motor starts up. Y N

Check the connections of P/J8823 and P/J8848. P/J8823 and P/J8848 are connected correctly.
Y N
Connect P/J8823 and P/J8848.

012-224 Rear Tamper Home Sensor Off RAP BSD-ON:12.4

After the Rear Tamper started moving away from the home position, the Rear Tamper Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-221 Rear Tamper Home Sensor]. Actuate the Rear Tamper Home Sensor with paper. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J8805 and P/J8848. P/J8805 and P/J8848 are connected correctly.
Y N
Connect P/J8805 and P/J8848.
Check the wire between J8805 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 1/Flag 2). The wire between J8805 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A9 (+) and GND (-) (BSD 12.4 Flag 1). The voltage is approx. +5 VDC .
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A8 (+) and GND (-) (BSD 12.4 Flag 1).
Actuate the Rear Tamper Home Sensor with paper. The voltage changes.
Y N
Replace the Rear Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-026 Rear Tamper Motor FRONT ON] and Component Control [012-029 Rear Tamper Motor REAR ON]. The Rear Tamper Motor starts up. Y N

Check the connections of $P / J 8824$ and $P / J 8848$. $P / J 8824$ and $P / J 8848$ are connected correctly.

Connect P/J8824 and P/J8848.

012-260 Eject Clamp Home Sensor ON RAP

BSD-ON:12.7

After the Eject Clamp started ascending, the Eject Clamp Home Sensor did not turn On within 500 ms .

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-250 Eject Clamp Home Sensor]. Actuate the Eject Clamp Home Sensor with paper. The display changes.
Y N
Check the connections of $P / J 8803$ and $P / J 8849$. $P / J 8803$ and $P / J 8849$ are connected correctly.

Y N

Connect P/J8803 and P/J8849.
Check the wire between J8803 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 3/Flag 4). The wire between J8803 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-6 (+) and GND (-) (BSD 12.7 Flag 4). The voltage is approx. +5VDC.

Y $\quad \mathrm{N}$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-5 (+) and GND (-) (BSD 12.7 Flag 3).Actuate the Eject Clamp Home Sensor with paper. The voltage changes.

Y $\quad \mathrm{N}$
Replace the Eject Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
\mathbf{N}
Check the connections of $P / J 8801$ and $P / J 8846$. $P / J 8801$ and $P / J 8846$ are connected correctly.
Y \mathbf{N}
Connect P/J8801 and P/J8846.

012-263 Rear Tamper Home Sensor ON RAP BSD-ON:12.4

After the Rear Tamper started moving to the home position, the Rear Tamper Home Sensor did not turn On within 800 ms

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-221 Rear Tamper Home Sensor]. Actuate the Rear Tamper Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8805 and P/J8848. P/J8805 and P/J8848 are connected correctly.
Y N
Connect P/J8805 and P/J8848.
Check the wire between J8805 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 1/Flag 2). The wire between J8805 and J8848 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A9 (+) and GND (-) (BSD 12.4 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12)
Measure the voltage between the Finisher PWB P8848-A8 (+) and GND (-) (BSD 12.4 Flag 1).Actuate the Rear Tamper Home Sensor with paper. The voltage changes.

```
\[
Y \quad N
\]
Replace the Rear Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
```

Alternately execute Component Control [012-026 Rear Tamper Motor FRONT ON] and Component Control [012-029 Rear Tamper Motor REAR ON]. The Rear Tamper Motor starts up. Y N Check the connections of P/J8824 and P/J8848. P/J8824 and P/J8848 are connected correctly.

Y N

Connect P/J8824 and P/J8848.

A B
Check the wire between J8824 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 8). The wire between J8824 and J8848 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit
Measure the resistance of the Rear Tamper Motor between J8824-2/5 (COM) and each point of J8824-1/3/4/6 (BSD 12.4). The resistance is approx. 7500hm.
Y $\quad \mathbf{N}$
Replace the Rear Tamper Motor (PL 17.9).
Measure the voltage between the Finisher PWB P8848-2 (+) and GND (-), and between P8848-5 (+) and GND (-) (BSD 12.4). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Rear Tamper Motor (PL 17.9). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12)

012-282 Eject Clamp Home Sensor Off RAP

BSD-ON:12.7

After the Eject Clamp started descending, the Eject Clamp Home Sensor did not turn Off within 200 ms .

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-250 Eject Clamp Home Sensor]. Actuate the Eject Clamp Home Sensor with paper. The display changes.
Y N
Check the connections of $P / J 8803$ and $P / J 8849$. $P / J 8803$ and $P / J 8849$ are connected correctly.
Y N

Connect P/J8803 and P/J8849.

Check the wire between J8803 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 3/Flag 4). The wire between J8803 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-6 (+) and GND (-) (BSD 12.7 Flag 4). The voltage is approx. +5VDC.

Y $\quad \mathbf{N}$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-5 (+) and GND (-) (BSD 12.7 Flag 3).

Actuate the Eject Clamp Home Sensor with paper. The voltage changes.
Y N
Replace the Eject Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y $\quad \mathbf{N}$
Check the connections of P/J8801 and P/J8846. P/J8801 and P/J8846 are con nected correctly.
Y N
| \mathbf{N} Connect P/J8801 and P/J8846.
A B

012-283 Set Clamp Home Sensor On RAP BSD-ON:12.7

After the Set Clamp started operation, the Set Clamp Home Sensor did not turn On within 200ms

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-251 Set Clamp Home Sensor]. Actuate the Set Clamp Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8802 and P/J8849. P/J8802 and P/J8849 are connected correctly.
Y N
Connect P/J8802 and P/J8849.
Check the wire between J8802 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 1/Flag 2). The wire between J8802 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-9 (+) and GND (-) (BSD 12.7 Flag 2). The voltage is approx. +5VDC.
\boldsymbol{V}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-8 (+) and GND (-) (BSD 12.7 Flag 1).

Actuate the Set Clamp Home Sensor with paper. The voltage changes.
\mathbf{N}
Replace the Set Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up
 nected correctly.
Y N
Connect P/J8801 and P/J8846.

012-284 Set Clamp Home Sensor Off RAP

BSD-ON:12.7

After the Set Clamp completed operation, the Set Clamp Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-251 Set Clamp Home Sensor]. Actuate the Set Clamp Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8802 and P/J8849. P/J8802 and P/J8849 are connected correctly.
Y N
Connect P/J8802 and P/J8849.
Check the wire between J8802 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 1/Flag 2). The wire between J8802 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-9 (+) and GND (-) (BSD 12.7 Flag 2). The voltage is approx. +5VDC.
$Y \quad N$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-8 (+) and GND (-) (BSD 12.7 Flag 1).

Actuate the Set Clamp Home Sensor with paper. The voltage changes.
Y N
Replace the Set Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y $\quad \mathbf{N}$
Check the connections of $P / J 8801$ and $P / J 8846$. $P / J 8801$ and $P / J 8846$ are connected correctly.
Y N

- Connect P/J8801 and P/J8846.

A B-

012-285 Finisher Error

There is a processing error in the Finisher PWB.

Procedure

Switch off the power. Disconnect and reconnect the P/Js on the Finisher PWB. Switch on the power.

If the problem persists, replace the Finisher PWB (PL 17.12).

012-291 Stapler RAP

BSD-ON:12.6

- After the Stapler Motor turned On (Forward rotation), the system did not detect that the Staple Head Home Sensor switched from Off to On within the specified time.
- After the Stapler Motor turned On (Reverse rotation), the Staple Head Home Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The Stapler Motor can be heard.
Y N
Check the connections of P/J8819 and P/J8847. P/J8819 and P/J8847 are connected correctly.
Y N
Connect P/J8819 and P/J8847.
Check the wire between J8819 and J8847 for an open circuit or a short circuit (BSD 12.6 Flag 1). The wire between J8819 and J8847 is conducting without an open circuit or a short circuit.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-244 Staple Head Home Sensor].
Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The display changes.
Y N
Check the connections of P/J8818 and P/J8852. P/J8818 and P/J8852 are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 2/Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and P8852-5 (-) (BSD 12.6 Flag 2). The voltage is approx. +5 VDC .
$Y \quad N$
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

012-293 Staple Front Corner Sensor On RAP BSD-ON:12.5

- After the Stapler started moving to the front corner, the Staple Front Corner Sensor did not turn On within 2sec.
- After the Stapler started moving away from the front corner, the Staple Front Corner Sensor remained On.

Initial Actions

- Power Off/On
- Check the Stapler movement mechanism.

Procedure

Execute Component Control [012-240 Staple Front Corner Sensor]. Actuate the Staple Front Corner Sensor with paper. The display changes.
Y N
Check the connections of P/J8813 and P/J8850. P/J8813 and P/J8850 are connected correctly.
Y \mathbf{N}
Connect P/J8813 and P/J8850.
Check the wire between J8813 and J8850 for an open circuit or a short circuit (BSD 12.5 Flag 3/Flag 4). The wire between J8813 and J8850 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-A3 (+) and GND (-) (BSD 12.5 Flag 4). The voltage is approx. +5 VDC
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-A2 (+) and GND (-) (BSD 12.5 Flag 3).
Actuate the Staple Front Corner Sensor with paper. The voltage changes.
Y N
Replace the Staple Front Corner Sensor (PL 17.8).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-040 Staple Move Motor FRONT ON] and Component Control [012-043 Staple Move Motor REAR ON]. The Stapler Move Motor starts up.
Y N
Check the connections of P/J8820 and P/J8847. P/J8820 and P/J8847 are connected correctly.

N
Connect P/J8820 and P/J8847.

A B
Check the wire between J8820 and J8847 for an open circuit or a short circuit (BSD 12.5 Flag 5). The wire between J8820 and J8847 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Staple Move Motor between J8820-2 (COM) and each point of J8820-1/3, and between J8820-5 (COM) and J8820-4/6 (BSD 12.5 Flag 5). The resistance is approx. 100 hm .

Y N

Replace the Staple Move Motor (PL 17.8).
Measure the voltage between the Finisher PWB P8847-3 (+) and GND (-), and between P8847-4 (+) and GND (-) (BSD 12.5 Flag 5). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Replace the Staple Move Motor (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-294 Staple Front Corner Sensor Off RAP

BSD-ON:12.5

- After the Stapler completed moving away from the front corner, the Staple Front Corner Sensor did not turn Off.
- After the Stapler started moving away from the front corner, the Staple Front Corner Sensor did not turn Off within 200ms.

Initial Actions

- Power Off/On

- Check the Stapler movement mechanism.

Procedure

Execute Component Control [012-240 Staple Front Corner Sensor]. Actuate the Staple Front Corner Sensor with paper. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of $\mathrm{P} / \mathrm{J} 8813$ and $\mathrm{P} / \mathrm{J} 8850$. $\mathrm{P} / \mathrm{J} 8813$ and $\mathrm{P} / \mathrm{J} 8850$ are connected correctly.
Y \mathbf{N}
Connect P/J8813 and P/J8850.
Check the wire between J8813 and J8850 for an open circuit or a short circuit (BSD 12.5 Flag 3/Flag 4). The wire between J8813 and J8850 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-A3 (+) and GND (-) (BSD 12.5 Flag 4). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-A2 (+) and GND (-) (BSD 12.5 Flag 3).
Actuate the Staple Front Corner Sensor with paper. The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Staple Front Corner Sensor (PL 17.8).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-040 Staple Move Motor FRONT ON] and Component Control [012-043 Staple Move Motor REAR ON]. The Stapler Move Motor starts up.
Y N
Check the connections of P/J8820 and P/J8847. P/J8820 and P/J8847 are connected correctly.
Y N
Connect P/J8820 and P/J8847.

A B
Check the wire between J8820 and J8847 for an open circuit or a short circuit (BSD 12.5 Flag 5). The wire between J8820 and J8847 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Staple Move Motor between J8820-2 (COM) and each point of J8820-1/3, and between J8820-5 (COM) and J8820-4/6 (BSD 12.5 Flag 5). The resistance is approx. 100 hm .

Y N

Replace the Staple Move Motor (PL 17.8).
Measure the voltage between the Finisher PWB P8847-3 (+) and GND (-), and between P8847-4 (+) and GND (-) (BSD 12.5 Flag 5). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the Staple Move Motor (PL 17.8).
Replace the Staple Move Motor (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-295 Staple Move Sensor On RAP

BSD-ON:12.5

- After the Stapler started moving to the Staple Position and the Staple Move Sensor turned Off, the Staple Move Sensor did not turn On within 2sec.
- After the Stapler completed moving to the Staple Position, the Staple Move Sensor did not turn On.

Initial Actions

- Power Off/On
- Check the Stapler movement mechanism.

Procedure

Execute Component Control [012-241 Staple Move Sensor]. Actuate the Staple Move Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8817 and P/J8852. P/J8817 and P/J8852 are connected correctly.
Y N
Connect P/J8817 and P/J8852.
Check the wire between J8817 and J8852 for an open circuit or a short circuit (BSD 12.5 Flag 1/Flag 2). The wire between J8817 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-8 (+) and GND (-) (BSD 12.5 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8852-7 (+) and GND (-) (BSD 12.5 Flag 1).

Actuate the Staple Move Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the Staple Move Sensor (PL 17.8).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-040 Staple Move Motor FRONT ON] and Component Control [012-043 Staple Move Motor REAR ON]. The Stapler Move Motor starts up.
Y \mathbf{N}
Check the connections of P/J8820 and P/J8847. P/J8820 and P/J8847 are connected correctly.
Y N
Connect P/J8820 and P/J8847.

A B
Check the wire between J8820 and J8847 for an open circuit or a short circuit (BSD 12.5 Flag 5). The wire between J8820 and J8847 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Staple Move Motor between J8820-2 (COM) and each point of J8820-1/3, and between J8820-5 (COM) and J8820-4/6 (BSD 12.5 Flag 5). The resistance is approx. 100 hm .

Y N

Replace the Staple Move Motor (PL 17.8).
Measure the voltage between the Finisher PWB P8847-3 (+) and GND (-), and between P8847-4 (+) and GND (-) (BSD 12.5 Flag 5). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Replace the Staple Move Motor (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-296 Staple Move Sensor Off RAP

BSD-ON:12.5

- After the Stapler started moving to the Staple Position and the Staple Move Sensor turned Off, the Staple Move Sensor did not turn Off within 500 ms .
- After the Staple Position had been fixed, the Staple Move Sensor turned Off.
- After the Staple Move Sensor turned On when paper passed through the Dual Staple 1 Position while moving to the Rear Staple Position, the Staple Move Sensor did not turn Off within 500 ms .

Initial Actions

- Power Off/On
- Check the Stapler movement mechanism.

Procedure

Execute Component Control [012-240 Staple Move Sensor]. Actuate the Staple Move Sensor with paper. The display changes.
Y N
Check the connections of $\mathrm{P} / \mathrm{J} 8817$ and $\mathrm{P} / \mathrm{J} 8852$. $\mathrm{P} / \mathrm{J} 8817$ and $\mathrm{P} / \mathrm{J} 8852$ are connected correctly.
Y N
Connect P/J8817 and P/J8852.
Check the wire between J8817 and J8852 for an open circuit or a short circuit (BSD 12.5 Flag 1/Flag 2). The wire between J8817 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-8 (+) and GND (-) (BSD 12.5 Flag 2). The voltage is approx. +5 VDC .
$Y \mathrm{~N}$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8852-7 (+) and GND (-) (BSD 12.5 Flag 1).Actuate the Staple Move Sensor with paper. The voltage changes.

Y N
Replace the Staple Move Sensor (PL 17.8).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-040 Staple Move Motor FRONT ON] and Component Control [012-043 Staple Move Motor REAR ON]. The Stapler Move Motor (PL 16.8starts up.

Y N
Check the connections of P/J8820 and P/J8847. P/J8820 and P/J8847 are connected correctly.
Y N
Connect P/J8820 and P/J8847.

A B
Check the wire between J8820 and J8847 for an open circuit or a short circuit (BSD 12.5 Flag 5). The wire between J8820 and J8847 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Staple Move Motor between J8820-2 (COM) and each point of J8820-1/3, and between J8820-5 (COM) and J8820-4/6 (BSD 12.5 Flag 5). The resistance is approx. 100 hm .

Y N

Replace the Staple Move Motor (PL 17.8).
Measure the voltage between the Finisher PWB P8847-3 (+) and GND (-), and between P8847-4 (+) and GND (-) (BSD 12.5Flag 5). The voltage is approx. +24VDC.

Y $\quad \mathbf{N}$

Replace the Finisher PWB (PL 17.12).
Replace the Staple Move Motor (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-301 Finisher Top Cover Open RAP

BSD-ON:12.1
The Finisher Top Cover is open.

Initial Actions

- Power Off/On
- Opening/closing of the Finisher Top Cover.

Procedure

Check opening/closing of the Finisher Top Cover. The Finisher Top Cover can be opened/ closed.

Y $\quad \mathrm{N}$

Reinstall the Finisher Top Cover correctly.
Check the installation of the Top Cover Interlock Switch. The Top Cover Interlock Switch is installed correctly.
Y $\quad \mathbf{N}$
Install the Top Cover Interlock Switch correctly.
Execute Component Control [012-301 Top Cover Interlock Switch]. Open/close the Finisher Top Cover. The display changes.
Y N
Check the connections of $P / J 8808$ and $P / J 8851$. $P / J 8808$ and $P / J 8851$ are connected correctly.
Y N
Connect P/J8808 and P/J8851.
Check the wire between J8808 and J8851 for an open circuit or a short circuit (BSD 12.1 Flag 3/Flag 4). The wire between J8808 and J8851 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the conductivity of the Top Cover Interlock Switch between J8808-3 and J8808-4 (BSD 12.1 Flag 3/Flag 4). The wire between J8808-3 and J8808-4 is connecting successfully when the Top Cover Interlock Switch contact is closed, and is insulated when the contact is opened.
Y N
Replace the Top Cover Interlock Switch (PL 17.12).
Replace the Finisher PWB (PL 17.12)
Replace the Finisher PWB (PL 17.12). If the problem persists, replace the MCU PWB (PL 11.1).

012-302 Finisher Front Cover Open RAP BSD-ON:12.1

The Finisher Front Cover is open.

Initial Actions

- Power Off/On
- Opening/closing of the Finisher Front Cover.

Procedure

Check opening/closing of the Finisher Front Cover. The Finisher Front Cover can be opened/closed.
Y N
Reinstall the Finisher Front Cover correctly.
Check the installation of the Front Door Interlock Switch. The Front Door Interlock Switch is installed correctly.
Y N
Install the Front Door Interlock Switch correctly.
Execute Component Control [012-302 Front Door Interlock Switch]. Open/close the Finisher Front Cover. The display changes.
Y N
Check the connections of P/J8809 and P/J8851. P/J8809 and P/J8851 are connected correctly.
Y N
Connect P/J8809 and P/J8851.
Check the wire between J8809 and J8851 for an open circuit or a short circuit (BSD 12.1 Flag 1/Flag 2). The wire between J8809 and J8851 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the Front Door Interlock Switch between J8809-3 and J8809-4 (BSD 12.1 Flag 1/Flag 2). The wire between J8809-3 and J8809-4 is connecting successfully when the Front Door Interlock Switch contact is closed, and is insulated when the contact is opened.
Y N
Replace the Front Door Interlock Switch (PL 17.12).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12). If the problem persists, replace the MCU PWB (PL 11.1).

012-303 Finisher H-Transport Cover Open RAP BSD-ON:12.2

The Finisher H-Transport Cover is open.

Initial Actions

- Power Off/On
- Opening/closing of the Finisher H-Transport Cover.

Procedure

Check opening/closing of the Finisher H-Transport Cover. The Finisher H-Transport Cover can be opened/closed.
Y $\quad \mathrm{N}$
Reinstall the Finisher H-Transport Cover correctly.
Check the installation of the H-Transport Interlock Sensor. The H-Transport Interlock Sensor is installed correctly.

Y N

Install the H-Transport Interlock Sensor correctly.
Execute Component Control [012-303 H-Transport Interlock Sensor]. Open and close the Finisher H -Transport Cover. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J8382 and P/J8390. P/J8382 and P/J8390 are connected correctly.
Y N
Connect P/J8382 and P/J8390.
Check the wire between J8382 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 1/Flag 2). The wire between J8382 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-7 (+) and GND (-) (BSD 12.2 Flag 2). The voltage is approx. +5VDC.

Y \mathbf{N}
Replace the H-Transport Interlock Sensor (PL 17.12).
Measure the voltage between the Finisher PWB P8390-8 (+) and GND (-) (BSD 12.2 Flag
1). Open and close the Finisher H -Transport Cover. The voltage changes.

Y $\quad \mathbf{N}$
Replace the H-Transport Interlock Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12). If the problem persists, replace the MCU PWB (PL 11.1).

012-310 Front Tamper Home Sensor On Fail RAP BSD-ON:12.4

After the Front Tamper started moving to the home position, the Front Tamper Home Sensor did not turn On within 800 ms .

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-220 Front Tamper Home Sensor]. Actuate the Front Tamper Home Sensor with paper. The display changes. The display changes.
Y N
Check the connections of P/J8807 and P/J8848. P/J8807 and P/J8848 are connected correctly.
Y N
Connect P/J8807 and P/J8848.
Check the wire between J8807 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 5/Flag 6). The wire between J8807 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A3 (+) and GND (-) (BSD 12.4 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12)
Measure the voltage between the Finisher PWB P8848-A2 (+) and GND (-) (BSD 12.4 Flag 5).
Actuate the Front Tamper Home Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the Front Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-020 Front Tamper Motor FRONT ON] and Component Control [012-023 Front Tamper Motor REAR ON]. The Front Tamper Motor starts up. Y N

Check the connections of $P / J 8823$ and $P / J 8848$. $P / J 8823$ and $P / J 8848$ are connected correctly.

Connect P/J8823 and P/J8848.

012-311 Front Tamper Home Sensor Off Fail RAP BSD-ON:12.4

After the Front Tamper started moving away from the home position, the Front Tamper Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-220 Front Tamper Home Sensor]. Actuate the Front Tamper Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8807 and P/J8848. P/J8807 and P/J8848 are connected correctly.
Y N
Connect P/J8807 and P/J8848.
Check the wire between J8807 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 5/Flag 6). The wire between J8807 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A3 (+) and GND (-) (BSD 12.4 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A2 (+) and GND (-) (BSD 12.4 Flag 5).
Actuate the Front Tamper Home Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the Front Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-020 Front Tamper Motor FRONT ON] and Component Control [012-023 Front Tamper Motor REAR ON]. The Front Tamper Motor starts up. Y N

Check the connections of P/J8823 and P/J8848. P/J8823 and P/J8848 are connected correctly.
Y N
Connect P/J8823 and P/J8848.

012-312 Rear Tamper Home Sensor ON Fail RAP BsD-ON:12.4

After the Rear Tamper started moving away from the home position, the Rear Tamper Home Sensor did not turn ON within 800 ms

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-221 Rear Tamper Home Sensor]. Actuate the Rear Tamper Home Sensor with paper. The display changes.
Y N
Check the connections of P/J8805 and P/J8848. P/J8805 and P/J8848 are connected correctly.
Y N
Connect P/J8805 and P/J8848.
Check the wire between J8805 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 1/Flag 2). The wire between J8805 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A9 (+) and GND (-) (BSD 12.4 Flag 1). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A8 (+) and GND (-) (BSD 12.4 Flag 1).
Actuate the Rear Tamper Home Sensor with paper. The voltage changes.
Y N
Replace the Rear Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-026 Rear Tamper Motor FRONT ON] and Component Control [012-029 Rear Tamper Motor REAR ON]. The Rear Tamper Motor starts up. Y N

Check the connections of $P / J 8824$ and $P / J 8848$. $P / J 8824$ and $P / J 8848$ are connected correctly.
Y N
Connect P/J8824 and P/J8848.

012-313 Rear Tamper Home Sensor Off Fail RAP BSD-ON:12.4

After the Rear Tamper started moving away from the home position, the Rear Tamper Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Compiler Tray.

Procedure

Manually operate the Tamper mechanism. The Tamper mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-221 Rear Tamper Home Sensor]. Actuate the Rear Tamper Home Sensor with paper. The display changes.
Y $\quad N$
Check the connections of $P / J 8805$ and $P / J 8848$. $P / J 8805$ and $P / J 8848$ are connected correctly.
Y N
Connect P/J8805 and P/J8848.
Check the wire between J8805 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 1/Flag 2). The wire between J8805 and J8848 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A9 (+) and GND (-) (BSD 12.4 Flag 1). The voltage is approx. +5 VDC .
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A8 (+) and GND (-) (BSD 12.4 Flag 1).
Actuate the Rear Tamper Home Sensor with paper. The voltage changes.
Y N
Replace the Rear Tamper Home Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-026 Rear Tamper Motor FRONT ON] and Component Control [012-029 Rear Tamper Motor REAR ON]. The Rear Tamper Motor starts up. Y N

Check the connections of $P / J 8824$ and $P / J 8848$. $P / J 8824$ and $P / J 8848$ are connected correctly.

Connect P/J8824 and P/J8848.

012-314 Eject Clamp Home Sensor On Failure RAP BSD-ON:12.7

The Eject Clamp Home Sensor did not turn On within a specific time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-250 Eject Clamp Home Sensor]. Actuate the Eject Clamp Home Sensor. The display changes.

Y N

Check the connections of J8803 and P/J8849. J8803 and P/J8849 are connected correctly.
Y N
Connect P/J8802 and P/J8849
Check the wire between J8803 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 3/Flag 4). The wire between J8803 and J8849 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-6 (+) and GND (-) (BSD 12.7 Flag 4). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12)
Measure the voltage between the Finisher PWB P8849-5 (+) and GND (-) (BSD 12.7 Flag 3).

Actuate the Eject Clamp Home Sensor with paper. The voltage changes.
N
Replace the Eject Clamp Home Sensor (PL 17.7)
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y N
Check the connections of $P / J 8801$ and $P / J 8846$. $P / J 8801$ and $P / J 8846$ are connected correctly.

Connect P/J8801 and P/J8846.

A B
Check the wire between J8801 and J8846 for an open circuit or a short circuit (BSD 12.7 Flag 5). The wire between J8801 and J8846 is conducting without an open circuit or a short circuit.
$Y \quad \mathrm{~N}$
Repair the open circuit or short circuit.
Measure the resistance of the Eject Motor between J8801-2/5 (COM) and each point of J8801-1/3/4/6 (BSD 12.7 Flag 5). The resistance is approx. 2Ohm.
Y N
Replace the Eject Motor (PL 17.7).
Measure the voltage between the Finisher PWB P8846-6 (+) and GND (-), and between P8846-12 (+) and GND (-) (BSD 12.7 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-086 Set Clamp Clutch ON]. The Set Clamp Clutch starts operating
Y N
Check the connections of P/J8822 and P/J8848. P/J8822 and P/J8848 are connected correctly.
Y N
Connect P/J8822 and P/J8848
Check the wire between J8822 and J8848 for an open circuit or a short circuit (BSD 12.7 Flag 6). The wire between J8822 and J8848 is conducting without an open circuit or a short circuit
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A10 (+) and GND (-). The voltage is approx. +24VDC.
$Y \mathrm{~N}$
Replace the Set Clamp Clutch (PL 17.5). If the problem persists, replace the Finisher PWB (PL 17.12),

Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-315 Eject Clamp Home Sensor Off Failure RAP BSD-ON:12.7

The Eject Clamp Home Sensor did not turn Off within a specific time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y N
Replace the parts that are interfering with operation.
Execute Component Control [012-250 Eject Clamp Home Sensor]. Actuate the Eject Clamp Home Sensor. The display changes.

Y N

Check the connections of J8803 and P/J8849. J8803 and P/J8849 are connected correctly.
Y N
Connect P/J8802 and P/J8849
Check the wire between J8803 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 3/Flag 4). The wire between J8803 and J8849 is conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-6 (+) and GND (-) (BSD 12.7 Flag 4). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-5 (+) and GND (-) (BSD 12.7 Flag 3).

Actuate the Eject Clamp Home Sensor with paper. The voltage changes.
N
Replace the Eject Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y N
Check the connections of $P / J 8801$ and $P / J 8846$. $P / J 8801$ and $P / J 8846$ are connected correctly.

Connect P/J8801 and P/J8846.

A B
Check the wire between J8801 and J8846 for an open circuit or a short circuit (BSD 12.7 Flag 5). The wire between J8801 and J8846 is conducting without an open circuit or a short circuit.
$Y \quad \mathrm{~N}$
Repair the open circuit or short circuit.
Measure the resistance of the Eject Motor between J8801-2/5 (COM) and each point of J8801-1/3/4/6 (BSD 12.7 Flag 5). The resistance is approx. 2Ohm.
Y N
Replace the Eject Motor (PL 17.7).
Measure the voltage between the Finisher PWB P8846-6 (+) and GND (-), and between P8846-12 (+) and GND (-) (BSD 12.7 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-086 Set Clamp Clutch ON]. The Set Clamp Clutch starts operating
Y \mathbf{N}
Check the connections of P/J8822 and P/J8848. P/J8822 and P/J8848 are connected correctly.
Y N
Connect P/J8822 and P/J8848.
Check the wire between J8822 and J8848 for an open circuit or a short circuit (BSD 12.7 Flag 6). The wire between J8822 and J8848 is conducting without an open circuit or a short circuit
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A10 (+) and GND (-). The voltage is approx. +24VDC.
$Y \mathrm{~N}$
Replace the Set Clamp Clutch (PL 17.5). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-316 Stapler Failure RAP

BSD-ON:12.6

- After the Stapler Motor turned On (Forward rotation), the system did not detect that the Staple Head Home Sensor switched from Off to On within the specified time.
- After the Stapler Motor turned On (Reverse rotation), the Staple Head Home Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The Stapler Motor can be heard.
Y $\quad \mathbf{N}$
Check the connections of $P / J 8819$ and $P / J 8847$. $P / J 8819$ and $P / J 8847$ are connected correctly.
Y $\quad \mathrm{N}$
Connect P/J8819 and P/J8847.
Check the wire between J8819 and J8847 for an open circuit or a short circuit (BSD 12.6 Flag 1). The wire between J8819 and J8847 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-244 Staple Head Home Sensor].
Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The display changes.
Y N
Check the connections of $P / J 8818$ and $P / J 8852$. $P / J 8818$ and $P / J 8852$ are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 2/Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and P8852-5 (-) (BSD 12.6 Flag 2). The voltage is approx. +5VDC.
Y $\quad \mathbf{N}$
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

012-317 Stapler Feed Ready Failure RAP BSD-ON:12.6

The Staple Head did not feed the staple wire to the Staple Ready Sensor in a specific time.

Initial Actions

- Power Off/On

Procedure

Execute Component Control [012-043 Staple Ready Sensor]. Select [012-046 Staple Motor] The Stapler Motor can be heard.
Y N
Check the connections of $P / J 8819$ and $P / J 8847$. $P / J 8819$ and $P / J 8847$ are connected correctly.

Y N

Connect P/J8819 and P/J8847.
Check the wire between J8819 and J8847 for an open circuit or a short circuit (BSD 12.6 Flag 1). The wire between J8819 and J8847 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-243 Staple Ready Sensor].
Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The display changes.
Y N
Check the connections of P/J8818 and P/J8852. P/J8818 and P/J8852 are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 2/Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and P8852-5 (-) (BSD 12.6 Flag 2). The voltage is approx. +5 VDC .
$Y \quad \mathbf{N}$
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-318 Set Clamp Home Sensor On Failure RAP BSD-ON:12.7

After the Set Clamp started operation, the Set Clamp Home Sensor did not turn On within 200 ms .

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y \mathbf{N}
Replace the parts that are interfering with operation.
Execute Component Control [012-251 Set Clamp Home Sensor]. Actuate the Set Clamp Home Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8802 and P/J8849. P/J8802 and P/J8849 are connected correctly.
Y $\quad \mathrm{N}$
Connect P/J8802 and P/J8849.
Check the wire between J8802 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 1/Flag 2). The wire between J8802 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

Measure the voltage between the Finisher PWB P8849-9 (+) and GND (-) (BSD 12.7 Flag 2). The voltage is approx. +5VDC.

Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-8 (+) and GND (-) (BSD 12.7 Flag 1).

Actuate the Set Clamp Home Sensor with paper. The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Set Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12)
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
Y N
Check the connections of P/J8801 and P/J8846. P/J8801 and P/J8846 are connected correctly.
Y \mathbf{N}
Connect P/J8801 and P/J8846

A B
Check the wire between J8801 and J8846 for an open circuit or a short circuit (BSD 12.7 Flag 5). The wire between J8801 and J8846 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Eject Motor between J8801-2/5 (COM) and each point of J8801-1/3/4/6 (BSD 12.7 Flag 5). The resistance is approx. 2Ohm.
Y N
Replace the Eject Motor (PL 17.7).
Measure the voltage between the Finisher PWB P8846-6 (+) and GND (-), and between P8846-12 (+) and GND (-) (BSD 12.7 Flag 5). The voltage is approx. +24VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control[012-086 Set Clamp Clutch ON]. The Set Clamp Clutch starts operating.
\mathbf{N}
Check the connections of P/J8822 and P/J8848. P/J8822 and P/J8848 are connected correctly.
Y N
Connect P/J8822 and P/J8848.
Check the wire between J8822 and J8848 for an open circuit or a short circuit (BSD 12.7 Flag 6). The wire between J8822 and J8848 is conducting without an open circuit or a short circuit.
Y^{N}
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A10 (+) and GND (-). The voltage is approx. +24 VDC .
$Y \quad \mathbf{N}$
Replace the Set Clamp Clutch (PL 17.5). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-319 Set Clamp Home Sensor Off Failure RAP

BSD-ON:12.7

After the Set Clamp completed operation, the Set Clamp Home Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On
- Remove foreign substances in the Eject Clamp mechanism.

Procedure

Manually operate the Eject Clamp mechanism. The Eject Clamp mechanism moves smoothly.
Y \mathbf{N}
Replace the parts that are interfering with operation.
Execute Component Control [012-251 Set Clamp Home Sensor]. Actuate the Set Clamp Home Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8802 and P/J8849. P/J8802 and P/J8849 are connected correctly.
Y N
Connect P/J8802 and P/J8849.
Check the wire between J8802 and J8849 for an open circuit or a short circuit (BSD 12.7 Flag 1/Flag 2). The wire between J8802 and J8849 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8849-9 (+) and GND (-) (BSD 12.7 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8849-8 (+) and GND (-) (BSD 12.7 Flag 1).

Actuate the Set Clamp Home Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the Set Clamp Home Sensor (PL 17.7).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-081 Eject Motor FORWARD ON] and Component Control [012-082 Eject Motor REVERSE ON]. The Eject Motor starts up.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J8801 and P/J8846. P/J8801 and P/J8846 are connected correctly.
Y \mathbf{N}
| Connect P/J8801 and P/J8846.

Check the wire between J8801 and J8846 for an open circuit or a short circuit (BSD 12.7 Flag 5). The wire between J8801 and J8846 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Eject Motor between J8801-2/5 (COM) and each point of J8801-1/3/4/6 (BSD 12.7 Flag 5). The resistance is approx. 2Ohm.

Y N

Replace the Eject Motor (PL 17.7).
Measure the voltage between the Finisher PWB P8846-6 (+) and GND (-), and between P8846-12 (+) and GND (-) (BSD 12.7 Flag 5). The voltage is approx. +24VDC. Y N

Replace the Finisher PWB (PL 17.12).
Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-086 Set Clamp Clutch ON]. The Set Clamp Clutch starts operating.
${ }^{\mathrm{Y}} \mathrm{N}$
Check the connections of P/J8822 and P/J8848. P/J8822 and P/J8848 are connected correctly.
Y N
Connect P/J8822 and P/J8848.
Check the wire between J8822 and J8848 for an open circuit or a short circuit (BSD 12.7 Flag 6). The wire between J8822 and J8848 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A10 (+) and GND (-). The voltage is approx. +24 VDC .
$Y \quad \mathbf{N}$
Replace the Set Clamp Clutch (PL 17.5). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Eject Motor (PL 17.7). If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12).

012-350 Finisher Communications Failure RAP

There is a communications error in the Finisher PWB.

Procedure

Switch off the power. Disconnect and reconnect the P/Js on the Finisher PWB. Switch on the power.

If the problem persists, replace the Finisher PWB (PL 17.12).

012-500
BSD-ON:
A description is not available at time of publication.

Procedure

A procedure is not available at time of publication.

012-600 Staple Mode Logic

Stapling cannot be selected for the size of paper in the tray.

Procedure

Job can be reprogrammed with different staple setting or paper size.
N
Redesign Job.
Reprogram job.

012-901 Finisher H-Transport Entrance Sensor RAP

 BSD-ON:12.2Paper remains on the H -Transport Entrance Sensor.

Initial Actions

- Remove foreign substances on the sensor.
- Power Off/On

Procedure

Execute Component Control [012-190 H-Transport Entrance Sensor]. Actuate the H-Transport Entrance Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of $P / J 8380$ and $P / J 8390$. $P / J 8380$ and $P / J 8390$ are connected correctly.
Y N
Connect P/J8380 and P/J8390.
Check the wire between J8380 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 5/Flag 6). The wire between J8380 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-12 (+) and GND (-) (BSD 12.2 Flag 6). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-13 (+) and GND (-) (BSD 12.2 Flag 5).
Actuate the H-Transport Entrance Sensor with paper. The voltage changes.
$Y \quad N$
Replace the H-Transport Entrance Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12).

012-902 H-Transport Exit Sensor RAP

 BSD-ON:12.2Paper remains on the H -Transport Exit Sensor.

Initial Actions

- Remove foreign substances on the sensor.
- Power Off/On

Procedure

Execute Component Control[012-191 H-Transport Exit Sensor]. Actuate the H-Transport Exit Sensor (PL 16.3with paper. The display changes.
$Y \mathrm{~N}$
Check the connections of P/J8381 and P/J8390. P/J8381 and P/J8390 are connected correctly.
Y N
Connect P/J8381 and P/J8390.
Check the wire between J8381 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 3/Flag 4). The wire between J8381 and J8390 is conducting without an open circuit or a short circuit. $Y \quad N$

Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-6 (+) and GND (-) (BSD 12.2 Flag 4). The voltage is approx. +5 VDC .

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-14 (+) and GND (-) (BSD 12.2 Flag 3).
Actuate the H -Transport Exit Sensor with paper. The voltage changes.
\mathbf{N}
Replace the H-Transport Exit Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12).

012-903 Paper Remains at Compiler Entrance Sensor RAP BSD-ON:12.3

Paper remains on the Compiler Entrance Sensor.

Initial Actions

- Remove foreign substances on the sensor.
- Power Off/On

Procedure

Execute Component Control [012-150 Compile Entrance Sensor]. Actuate the Compiler Entrance Sensor with paper. The display changes.
Y N
Check the connections of P/J8814, P/J8825 and P/J8850. P/J8814, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8814, P/J8825 and P/J8850.
Check the wire between J8814 and J8850 for an open circuit or a short circuit (BSD 12.3 Flag 1/Flag 2). The wire between J8814 and J8850 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850-B9 (+) and GND (-) (BSD 12.3 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850-B8 (+) and GND (-) (BSD 12.3 Flag 1).Actuate the Compiler Entrance Sensor with paper. The voltage changes.
Y N
Replace the Compiler Entrance Sensor (PL 17.11).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12).

012-905 Compile Paper Sensor RAP BSD-ON:12.4

Paper remains on the Compile Paper Sensor.

Initial Actions

- Remove foreign substances on the sensor.
- Power Off/On

Procedure

Execute Component Control [012-151 Compile Paper Sensor]. Actuate the Compile Paper Sensor with paper. The display changes.
Y N
Check the connections of $P / J 8806$ and $P / J 8848$. $P / J 8806$ and $P / J 8848$ are connected correctly.
Y N
Connect P/J8806 and P/J8848.
Check the wire between J8806 and J8848 for an open circuit or a short circuit (BSD 12.4 Flag 3/Flag 4). The wire between J8806 and J8848 is conducting without an open circuit or a short circuit. Y N

Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8848-A6 (+) and GND (-) (BSD 12.4 Flag 4). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8848-A5 (+) and GND (-) (BSD 12.4 Flag 3).
Actuate the Compile Paper Sensor with paper. The voltage changes.
N
Replace the Compile Paper Sensor (PL 17.9).
Replace the Finisher PWB (PL 17.12).
Replace the Finisher PWB (PL 17.12).

012-923 H-Transport Entrance Sensor B RAP BSD-ON:12.2

During standby, paper was detected by the H -Transport Entrance Sensor.

Initial Actions

- Remove foreign substances on the sensor
- Power Off/On

Procedure

Execute Component Control [012-190 H-Transport Entrance Sensor]. Actuate the H-Transport Entrance Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of $P / J 8380$ and $P / J 8390$. $P / J 8380$ and $P / J 8390$ are connected correctly.
Y N
Connect P/J8380 and P/J8390.

Check the wire between J8380 and J8390 for an open circuit or a short circuit (BSD 12.2 Flag 5/Flag 6). The wire between J8380 and J8390 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8390-12 (+) and GND (-) (BSD 12.2 Flag 6). The voltage is approx. +5VDC
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8390-13 (+) and GND (-) (BSD 12.2 Flag 5).Actuate the H -Transport Entrance Sensor with paper. The voltage changes.
Y N
Replace the H -Transport Entrance Sensor (PL 17.3).
Replace the Finisher PWB (PL 17.12)
Replace the Finisher PWB (PL 17.12).

012-132 (A-Finisher) Ent Sensor ON Jam

BSD-ON:CH15.3

Finisher Entrance Sensor does not turn On within a specified time after receiving the Sheet Exit command (the sheet to be ejected has turned ON the IOT Exit Sensor 1).

Initial Actions

- Check that the Finisher Entrance Sensor is properly installed and free from foreign objects and that the actuator is not broken.
- Power Off/On

Procedure

Check the specifications of paper. Paper is in spec.
Y N
Replace the paper with new paper that is in spec.
Check the condition of the paper. The paper is in normal condition without any problem that causes the paper to be bent or caught.
Y N
Resolve any problem that causes the paper to be bent or caught.
Check the transport path for a foreign object, deformed part, and paper dust. The transport path is in normal condition.
Y $\quad \mathrm{N}$
Repair the deformed part(s) and remove the foreign object(s) and paper dust.
Check that the Finisher is installed properly. The Finisher is properly installed and properly connected to the IOT.
Y $\quad \mathrm{N}$
Reinstall the Finisher properly.
Enter Component Control [012-140]. Actuate the Finisher Entrance Sensor. The display changes.
Y N
Check the connections of P/J8709 and P/J8729. P/J8709 and P/J8729 are securely connected.
N
Connect P/J8709 and P/J8729 securely.
Check for an open or short circuit between J 8709 and J8729. The wires between J8709 and J8729 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8709-6 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.

A B
Measure the voltage between Finisher PWB J8709-5 (+) and GND (-). Actuate the Finisher Entrance Sensor. The voltage changes.
Y \mathbf{N}
Replace the Finisher Entrance Sensor (PL 22.5).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-151 (A-Finisher) Compiler Exit Sensor OFF Jam

 BSD-ON:CH15.3The Compile Exit Sensor does not turn Off within a specified time after it has turned On.

Initial Actions

- Check the Compile Exit Sensor is properly installed and free from foreign objects and that the actuator is not binding.
- Power Off/On.

Procedure

Check the specifications of paper. Paper is in spec.
Y N
Replace the paper with new paper that is in spec.
Check the condition of the paper. The paper is in normal condition without any problem that causes the paper to be bent or caught.
Y N
Resolve any problem that causes the paper to be bent or caught.
Check the transport path for a foreign object, deformed part, and paper dust. The transport path is in normal condition with no foreign object, deformed part and paper dust.
Y N
Repair the deformed part(s) and remove the foreign object(s) and paper dust.
Check the Transport Roll for wear, deterioration and paper dust. The Transport Roll is in normal condition, not worn and deteriorated and with no paper dust.
Y N
Remove the paper dust and replace the worn or deteriorated Transport Roll.

Check the drive mechanism to the Transport Roll for a deformed, broken part, and/or belt damage. The drive mechanism is free of defects.
Y N
Repair defects or damage to the drive mechanism
Enter Component Control [012-150]. Actuate the Compile Exit Sensor. The display changes. Y \mathbf{N}

Check the connections of $P / J 8709$ and $P / J 8728$. $P / J 8709$ and $P / J 8728$ are securely connected.
Y $\quad \mathrm{N}$
Connect P/J8709 and P/J8728 securely.
Check for an open or short circuit between J8709 and J8728. The wire J8709 and J8728 are OK.
Y N
Repair the open or short circuit
Measure the voltage between Finisher PWB J8709-3 (+) and GND (-). The voltage is approx. +5VDC.

Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8709-2 (+) and GND (-). Actuate the Compile Exit Sensor. The voltage changes.
Y N
Replace the Compile Exit Sensor (PL 22.5).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter Component Control [012-095]. The Finisher Transport Motor rotates.
Y N
Check the connections of P/J8706 and P/J8739. P/J8706 and P/J8739 are securely connected.
Y \mathbf{N}
Connect P/J8706 and P/J8739 securely.
Check for an open or short circuit between J8706 and J8736. The wire between J8706 and J8736 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8706-5 (+) and GND (-), and between Finisher PWB J8706-7 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit.
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher Transport Motor (PL 22.4). If the problem persists, replace the Finisher PWB (PL 22.7).

Enter [012-013]. When the Sub Paddle Solenoid is turned On/Off, the Sub Paddle Shaft Assembly goes down/up.
Y N
Check the Sub Paddle mechanism for a deformed or broken part and not-seated gears. The Sub Paddle mechanism is free from defects and gears are seating properly.
Y N
Repair defeats to the Sub Paddle mechanism.
Check the connections of P/J8705 and P/J8734. P/J8705 and P/J8734 are securely connected.
Y N
Connect P/J8705 and P/J8734 securely.
Check for an open or short circuit between J8705 and J8734. The wires between J8705 and J8734 are OK
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8705-1 (+) and GND (-). The voltage is approx. +24VDC.

Y $\quad \mathbf{N}$
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24 VDC circuit. If the circuit is OK, replace the Finisher PWB (PL 22.7).

Enter [012-013], measure the voltage between Finisher PWB J8705-2 (+) and GND (-). The voltage changes.
Y N
Replace the Finisher PWB (PL 22.7).
Replace the Sub Paddle Solenoid (PL 22.3).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-152 (A-Finisher) Compiler Exit Sensor ON Jam

 BSD-ON:CH15.3The Compile Exit Sensor does not turn On within a specified time after receiving the Sheet Exit command (the paper to be ejected has turned On the IOT Exit Sensor 1).

Initial Actions

- Check the Compile Exit Sensor is properly installed and free from foreign objects and that the actuator is not broken.
- Power Off/On.

Procedure

Check the specifications of paper. Paper is in spec.
Y \mathbf{N}
Replace the paper with new paper that is ins spec.
Check the condition of the paper. The paper is in normal condition without any problem that causes the paper to be bent or caught.
Y N
Resolve any problem that causes the paper to be bent or caught.
Check the transport path for a foreign object, deformed part, and paper dust. The transport path is in normal condition with no foreign object, deformed part and paper dust. $\mathbf{Y} \quad \mathbf{N}$

Repair the deformed part(s) and remove the foreign object(s) and paper dust.
Check the Transport Roll for wear, deterioration and paper dust. The Transport Roll is in normal condition.
Y \mathbf{N}
Remove the paper dust and replace the worn or deteriorated Transport Roll.
Check the drive mechanism to the Transport Roll for a deformed parts, broken parts, and/or belt damage. The drive mechanism free from defects.
Y N
Repair defects or damage to the drive mechanism.
Check that the Finisher is installed properly. The Finisher is properly installed and properly connected to the IOT.
Y $\quad \mathrm{N}$
Reinstall the Finisher properly.
Enter Component Control [012-150]. Actuate the Compile Exit Sensor. The display changes. Y $\quad \mathbf{N}$

Check the connections of P/J8709 and P/J8728. P/J8709 and P/J8728 are securely connected.
Y $\quad \mathbf{N}$
Connect P/J8709 and P/J8728 securely.
Check for an open or short circuit between J8709 and J8728. The wires between 8709 and J8728 are OK.

Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8709-3 (+) and GND (-). The voltage is approx. +5VDC.
Y^{N}
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8709-2 (+) and GND (-). Actuate the Compile Exit Sensor. The voltage normally changes.
Y N
Replace the Compile Exit Sensor (PL 22.5).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-095]. The Finisher Transport Motor rotates.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J8706 and P/J8739. P/J8706 and P/J8739 are securely connected.
Y N
Connect P/J8706 and P/J8739 securely.
Check for an open or short circuit between J8706 and J8739. The wire between J8706 and J8739 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8706-5 (+) and GND (-), and J8706-7 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit.
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher Transport Motor (PL 22.4). If the problem persists, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-161 (A-Finisher) Set Eject Jam

BSD-ON:CH15.6

In the Eject Motor's ejecting operation, Eject Home Sensor ON was detected within a specified time after the start of the reverse operation of the Eject Motor.
(The Eject Motor should have ejected paper, but returned Home earlier than specified.)

Initial Actions

- Check the Eject Home Sensor is properly installed, not broken, and has no foreign object.
- Power Off/On.

Procedure

Check the specifications of paper. Paper is in spec.
Y N
Replace the paper with new paper that is in spec.
Check the condition of the paper. The paper is in normal condition without any problem that causes the paper to be bent or caught.
Y \mathbf{N}
Resolve any problem that causes the paper to be bent or caught.
Check the Eject mechanism for deformed parts, broken parts, and/or belt damage. The Eject mechanism free from defects.
Y N
Repair the Eject mechanism.
Enter Component Control [012-252]. Block and unblock the Eject Home Sensor with a piece of paper. The display changes.
Y N
Check the connections of P/J8700 and P/J8725. P/J8700 and P/J8725 are securely connected.
Y N
Connect P/J8700 and P/J8725 securely.
Check for an open or short circuit between J8700 and J8725. The wires between J8700 and J8725 are OK
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8700-9 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8700-8 (+) and GND (-). Block and unblock the Eject Home Sensor with a piece of paper. The voltage changes.
Y N
Replace the Eject Home Sensor (PL 22.10)

A B
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-054] and [012-056] alternately. The Eject Motor rotates.
\mathbf{N}
Check the connections of P/J8706 and P/J8741. P/J8706 and P/J8741 are securely connected.
Y N
Connect P/J8706 and P/J8741 securely.
Check for an open or short circuit between J8706 and J8741. The wires
between J8706 and J8741 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8706-13 (+) and GND (-), and between J8706-15 (+) and GND (-). The voltage is approx. +24VDC.
Y $\quad \mathrm{N}$
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit.
Check the Eject Motor drive mechanism for deformed parts, broken parts, and/or belt damage The drive mechanism free from defects.
Y $\quad \mathbf{N}$
Repair defects or damage to the drive mechanism.
Replace the Eject Motor (PL 22.9). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-211 (A-Finisher) Stacker Tray Fail

BSD-ON:CH15.8

- Within a specified time after the Stacker Tray started lifting up, the Stack Height Sensor did not detect the lifting up of the Stacker Tray.
- Within a specified time after the Stacker Tray started going down at initialization and during a job, the lower position of the tray (Full) could not be detected based on the changes in the Stacker Stack Sensor 1 and the Stacker Stack Sensor 2.

Initial Actions

- Check the Stack Height Sensor is properly installed, not broken, and has no foreign object.
- Check the Stacker Stack Sensors 1 and 2 are properly installed and have no foreign objects and that their actuators are not broken.
- Power Off/On.

Procedure

Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The mechanism is free from defects and the gears seat properly.

N

Repair the mechanism.
Run DC330[012-267].
Enter Component Control [012-267]. Block and unblock the Stack Height Sensor with a piece of paper. The display changes.
Y \mathbf{N}
Check the connections of $P / J 8708$ and $P / J 8727$. $P / J 8708$ and $P / J 8727$ are securely connected.
Y $\quad \mathrm{N}$
Connect P/J8708 and P/J8727 securely.
Check for an open or short circuit between J8708 and J8727. The wire between J8708 and J8727 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8708-3 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8708-2 (+) and GND (-). Block and unblock the Stack Height Sensor with a piece of paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-278]. Block and unblock the Stacker Stack Sensor 1 by rotating the actuator. The display changes.
Y N
Check the connections of $P / J 8707$ and $P / J 8722$. $P / J 8707$ and $P / J 8722$ are securely connected
Y $\quad N$
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J 8707 and J8722. The wires between J8707 and J8722 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8707-6 (+) and GND (-). The voltage is approx. +5VDC.
Y \mathbf{N}
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8707-5 (+) and (-). Block and unblock the Stacker Stack Sensor 1 by rotating the actuator. The voltage changes.
Y N
Replace the Stacker Stack Sensor 1 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-279]. Block and unblock the Stacker Stack Sensor 2 by rotating the actuator. The display changes.
Y N
Check the connections of $P / J 8707$ and $P / J 8721$. P/J8707 and $P / J 8721$ are securely connected.
Y N
Connect P/J8707 and P/J8721 securely.
Check for an open or short circuit between J 8707 and J8721. The wires between J8707 and J8721 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8707-3 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8707-2 (+) and GND (-). Block and unblock the Stacker Stack Sensor 2 by rotating the actuator. The voltage changes.
Y N
Replace the Stacker Stack Sensor 2 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

B
Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y \mathbf{N}
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.
Y N
Connect P/J8711 and P/J8736 securely.
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK
Y N
Repair the open or short circuit.
Enter [012-060], measure the voltage between Finisher PWB J8711-1 (+) and GND (-). The voltage changes.

N

Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-061], measure the voltage between Finisher PWB J8711-2 (+) and GND (-). The voltage changes.
Y \mathbf{N}
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open and short circuit. If the problem continues, replace the Stacker Motor (PL 22.8).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-221 (A-Finisher) Front Tamper Home Sensor ON Fail

 BSD-ON:CH15.4During the moving of the Front Tamper, when the Front Tamper Home Sensor was Off, to the home position, the Front Tamper Home Sensor did not detected turning On within a specified time after the Front Tamper started moving.

Initial Actions

- Check the Front Tamper Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Front Tamper for any foreign object, deformation and binding that prevents it from moving. The Front Tamper is defects and binding.
Y \mathbf{N}
Repair the deformation and remove the foreign object(s) and the binding.
Check the drive mechanism to the Front Tamper for a deformed or broken part and not-seated gears. The drive mechanism is free from defects and the gears seat properly.
gears.
$\mathbf{Y} \quad \mathbf{N}$
Repair the Front Tamper mechanism.
Run DC330[012-220].
Enter Component Control [012-220]. Move the Front Tamper by hand to block and unblock the Front Tamper Home Sensor. The display changes.
Y N
Check the connections of $P / J 8700$ and $P / J 8724$. P/J8700 and $P / J 8724$ are securely connected.
Y N
Connect P/J8700 and P/J8724 securely.
Check for an open or short circuit between J8700 and J8724. The wires between J8700 and J8724 are OK.
Y N
Repair the open wire or short circuit.
Measure the voltage between Finisher PWB J8700-6 (+) and GND (-). The voltage is approx. +5VDC.
Y \mathbf{N}
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8700-5 (+) and GND (-). Move the Front Tamper by hand to block and unblock the Front Tamper Home Sensor. The voltage changes.
Y N
Replace the Front Tamper Home Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

A
Enter [012-020] and [012-023] alternately. The Front Tamper Motor rotates.
$\mathbf{Y}^{\mathbf{N}}$
Check the connections of P/J8710, P/J8738A and P/J8738B. P/J8710 P/J8738A and P/J8738B are securely connected.
Y N
Connect P/J8710, P/J8738A and P/J8738B securely.
Check for an open or short circuit between J8710, P/J8738A and J8738B. The wires between are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8710-5 (+) and GND (-), and between J8710-7 (+) and GND (-). The voltage is approx. +24VDC.
Y $\quad \mathrm{N}$
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Front Tamper Motor (PL 22.10). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-223 (A-Finisher) Front Tamper Home Sensor OFF Fail

 BSD-ON:CH15.4- At the end of the operation to turn Off the Front Tamper Home Sensor that was On, the Front Tamper Home Sensor was not detected being Off.
- The Front Tamper Home Sensor should have turned Off and then the Front Tamper Motor stopped, but the Front Tamper Home Sensor was On.

Initial Actions

- Check the Front Tamper Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Front Tamper for any foreign object, deformation and binding that prevents it from moving. The Front Tamper free from defects and binding.
Y N
Repair the deformation and remove the foreign object(s) and the binding.
Check the drive mechanism to the Front Tamper for a deformed or broken part and not-seated gears. The drive mechanism is free from defects and the gears seat properly.
$\mathbf{Y} \quad \mathbf{N}$
Repair the Front Tamper drive mechanism.
Run DC330[012-220].
Enter Component Control [012-220]. Move the Front Tamper by hand to block and unblock the Front Tamper Home Sensor. The display changes.
Y N
Check the connections of $P / J 8700$ and $P / J 8724$. $P / J 8700$ and $P / J 8724$ are securely connected.
Y N
Connect P/J8700 and P/J8724 securely.
Check for an open or short circuit between J8700 and J8724. The wires between J8700 and J8724 are OK.
Y $\quad \mathrm{N}$
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8700-6 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8700-5 (+) and GND (-). Move the Front Tamper by hand to block and unblock the Front Tamper Home Sensor. The voltage changes.

Replace the Front Tamper Home Sensor (PL 22.10).

A B
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-020] and [012-023] alternately. The Front Tamper Motor rotates.
Y N
Check the connections of P/J8710, P/J8738A and P/J8738B. P/J8710, P/J8738A and P/J8738B are securely connected.
Y N
Connect P/J8710, P/J8738A and P/J8738B securely.
Check for an open wire or short circuit between J8710, P/J8738A and J8738B. The wire between J8710, P/J8738A and J8738B are OK.
Y \mathbf{N}
Repair the open wire or short circuit.
Measure the voltage between Finisher PWB J8710-5 (+) and GND (-), and between J8710-7 (+) and GND (-). Each voltage is approx. +24VDC.
Y $\quad \mathrm{N}$
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Front Tamper Motor (PL 22.10). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-224 (A-Finisher) Rear Tamper Home Sensor OFF Fail

 BSD-ON:CH15.4- At the end of the operation of trying to turn Off the Rear Tamper Home Sensor that was On, the Rear Tamper Home Sensor was not detected being Off.
- The Rear Tamper Home Sensor should have turned Off and then the Rear Tamper Motor stopped, but the Rear Tamper Home Sensor was On

Initial Actions

- Check the Rear Tamper Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Rear Tamper for any foreign object, deformation and binding that prevents it from moving. The Rear Tamper is free from defects and binding.
Y N
Repair the deformation and remove the foreign object(s) and the binding.
Check the drive mechanism to the Rear Tamper for a deformed or broken part and not-seated gears. The drive mechanism is in normal condition, not deformed or broken and with no not-seated gears.
Y N
Repair the Rear Tamper drive mechanism.
Enter Component Control [012-221]. Move the Rear Tamper by hand to block and unblock the Rear Tamper Home Sensor. The display of changes.
Y $\quad \mathbf{N}$
Check the connections of $P / J 8700$ and $P / J 8726$. $P / J 8700$ and $P / J 8726$ are securely connected.

$$
\mathbf{Y} \quad \mathbf{N}
$$

Connect P/J8700 and P/J8726 securely.
Check for an open or short circuit between J8700 and J8726. The wires between J8700 and J8726 are OK.
Y \mathbf{N}
Repair the open wire or short circuit.
Measure the voltage between Finisher PWB J8700-12 (+) and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8700-11 (+) and GND (-). Move the Rear Tamper by hand to block and unblock the Rear Tamper Home Sensor. The voltage changes.

Replace the Rear Tamper Home Sensor (PL 22.9).

A
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-026] and [012-029] alternately. The Rear Tamper Motor rotates.
Y N
Check the connections of P/J8710, P/J8737A and P/J8737B. P/J8710, P/J8737A and P/J8737B are securely connected.
Y N
Connect P/J8710, P/J8737A and P/J8737B securely
Check for an open wire or short circuit between J8710, P/J8737A and J8737B. The wire between J8710, P/J8737A and J8737B are OK.
Y \mathbf{N}
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8710-1 (+) and GND (-), and between J8710-3 (+) and GND (-). The voltage is approx. +24VDC.
Y $\quad \mathbf{N}$
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Repair the Rear Tamper Motor (PL 22.10). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-259 (A-Finisher) Eject Home Sensor ON Fail

BSD-ON:CH15.6

In the Eject Motor's initializing operation and ejecting operation, one of the following is met.

- With the Eject Home Sensor Off, the Eject Motor started rotating in reverse direction. Within a specified time after that, the Eject Home Sensor was not detected turning On.
- With the Eject Home Sensor Off, the Eject Motor started rotating in reverse direction. The Eject Home Sensor should have been detected turning On and then the Eject Motor stopped, but then the Eject Home Sensor was not On.

Initial Actions

- Check the Eject Home Sensor is properly installed, not broken and has no foreign object.
- Power Off/ON.

Procedure

Check the Eject mechanism for a deformed or broken part and not-seated belts. The mechanism is free from defects and belt damage.
Y \mathbf{N}
Repair the mechanism.
Run DC330[012-252].
Enter Component Control [012-252]. Block and unblock the Eject Home Sensor. The display
changes.
Y N
Check the connections of P/J8700 and P/J8725. P/J8700 and P/J8725 are securely connected.
Y N
Connect P/J8700 and P/J8725 securely.
Check for an open wire or short circuit between J 8700 and J 8725 . The wire between J8700 and J8725 is normally conductive with no open wire or short circuit.
Y N
Repair the open wire or short circuit.
Measure the voltage between Finisher PWB J8700-9 (+) and GND (-). The voltage is approx. +5 VDC .
$\mathrm{Y} \quad \mathrm{N}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5 VDC circuit.
Measure the voltage between Finisher PWB J8700-8 (+) and GND (-). Block and unblock the Eject Home Sensor. The voltage changes
Y N
Replace the Eject Home Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-054] and [012-056] alternately. The Eject Motor rotates.

Y N
Check the connections of P/J8706 and P/J8741. P/J8706 and P/J8741 are securely connected.
Y N
Connect P/J8706 and P/J8741 securely.
Check for an open or short circuit between J8706 and J8741. The wires between J8706 and J8741 are OK.

Y N

Repair the open wire or short circuit.
Measure the voltage between Finisher PWB J8706-13 (+) and GND (-), and between J8706-15 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Eject Motor (PL 22.9). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-263 (A-Finisher) Rear Tamper Home Sensor ON Fail BSD-ON:CH15.4

During the moving of the Rear Tamper from when the Rear Tamper Home Sensor was Off to the home position, the Rear Tamper Home Sensor was not detected turning On within a specified time after the Rear Tamper started moving.

Initial Actions

- Check the Rear Tamper Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Rear Tamper for any foreign object, deformation and binding that prevents it from moving. The Rear Tamper is free from defects and binding.
Y \mathbf{N}
Repair the deformation and remove the foreign object(s) and the binding.
Check the drive mechanism to the Rear Tamper for a deformed or broken part and not-seated gears. The drive mechanism is free from defects and gears seat properly.
$\mathbf{Y} \quad \mathbf{N}$
Repair the Rear Tamper drive mechanism.
Enter Component Control [012-221]. Move the Rear Tamper by hand to block and unblock the Rear Tamper Home Sensor. The display changes.
$\mathbf{Y}^{\mathbf{N}}$
Check the connections of P/J8700 and P/J8726. P/J8700 and P/J8726 are securely connected.
Y N
Connect P/J8700 and P/J8726 securely.
Check for an open wire or short circuit between J8700 and J8726. The wire between J8700 and J8726 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8700-12 (+) and GND (-). The voltage is approx. +5 VDC .
Y^{N}
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between Finisher PWB J8700-11 (+) and GND (-). Move the Rear Tamper by hand to block and unblock the Rear Tamper Home Sensor. The voltage changes.
Y N
Replace the Rear Tamper Home Sensor (PL 22.9).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-026] and [012-029] alternately. The Rear Tamper Motor rotates. Y N

Check the connections of P/J8710, P/J8737A and P/J8737B. P/J8710, P/J8737A and P/J8737B are securely connected.
Y N
Connect P/J8710, P/J8737A and P/J8737B securely.
Check for an open or short circuit between J8710, P/J8737A and J8737B. The wires between J8710, P/J8737A and J8737B are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8710-1 (+) and GND (-), and between J8710-3 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Rear Tamper Motor (PL 22.10). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-280 (A-Finisher) Eject Home Sensor OFF Fail

BSD-ON:CH15.6

In the Eject Motor's initializing operation and ejecting operation, the Eject Motor had rotated forward for a time corresponding to a specified qty of pulses since the Eject Home Sensor was On, and then the motor stopped, but then the Eject Home Sensor was not detected turning Off.

Initial Actions

- Check the Eject Home Sensor is properly installed, not broken and has no foreign object.
- Power Off/ON.

Procedure

Check the Eject mechanism for a deformed or broken part and not-seated belts. The mechanism is free from defects and belt damage.
$\mathbf{Y} \quad \mathbf{N}$
Repair the mechanism.
Enter Component Control [012-252]. Block and unblock the Eject Home Sensor with a piece of paper. The display changes.
$\mathrm{Y} \quad \mathrm{N}$
Check the connections of P/J8700 and P/J8725. P/J8700 and P/J8725 are securely connected.

Connect P/J8700 and P/J8725 securely.
Check for an open or short circuit between J8700 and J8725. The wires between J8700 and J8725 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8700-9 (+) and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5 VDC circuit.
Measure the voltage between Finisher PWB J8700-8 (+) and GND (-). Block and unblock the Eject Home Sensor with a piece of paper. The voltage changes. Y N

Replace the Eject Home Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-054] and [012-056] alternately. The Eject Motor rotates.
Y
Check the connections of P/J8706 and P/J8741. P/J8706 and P/J8741 are securely connected.

Connect P/J8706 and P/J8741 securely.

A B

012-283 (A-Finisher) Set Clamp Home Sensor ON Fail BSD-on:CH15.7

In the initialize operations each at Power On, when Interlock closed and at the start of a job and in the Set Clamp Motor's ejecting operation, the Set Clamp Home Sensor was not detected turning On within a specified time after the start of the Set Clamp Motor operation.

Initial Actions

- Check the Set Clamp Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Set Clamp mechanism for a deformed or broken part and not-seated belts. The mechanism is free from defects and belt damage.

```
Y N
    Repair the Set Clamp mechanism.
```

Enter Component Control [012-251]. Rotate the Set Clamp Shaft by hand to block and unblock
the Set Clamp Home Sensor. The display changes.
Y N
Check the connections of P/J8707, P/J8742B, P/J8742A and P/J8723. P/J8707, P/
J8742B, P/J8742A and P/J8723 are securely connected.
Y N
Connect P/J8707, P/J8742B, P/J8742A and P/J8723 securely.
Check for an open or short circuit between J8707 and J8742B, and between J8742A and
J8723. The wires between J8707 and J8742B and between J8742A and J8723 are
OK.
$Y^{\mathbf{Y}} \mathrm{N}$
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8707-9 (+) and GND (-). The voltage is
approx. +5 VDC .
$\mathrm{Y} \quad \mathrm{N}$
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between Finisher PWB J8707-8 (+) and GND (-). Rotate the Set
Clamp Shaft by hand to block and unblock the Set Clamp Home Sensor. The voltage
changes.
$\mathrm{Y} \quad \mathrm{N}$
Replace the Set Clamp Home Sensor (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem
continues, replace the Finisher PWB (PL 22.7).
Enter [012-017]. The Set Clamp Motor rotates.
Y \mathbf{N}
Check the connections of P/J8706 and P/J8740. P/J8706 and P/J8740 are securely
connected.

Y N
Connect P/J8706 and P/J8740 securely.
Check for an open or short circuit between J8706 and J8740. The wires between J8706 and J8740 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8706-9 (+) and GND (-), and between J8706-11 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Set Clamp Motor (PL 22.9). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-284 (A-Finisher) Set Clamp Home Sensor OFF Fail

 BSD-ON:CH15.7In the initialize operations each at Power On, when Interlock closed and at the start of a job, and in the Set Clamp Motor's ejecting operation, the Set Clamp Home Sensor was not detected turning Off within a specified time after the start of the Set Clamp Motor operation.

Initial Actions

- Check the Set Clamp Home Sensor is properly installed and has no foreign object and that the actuator is not broken.
- Power Off/ON.

Procedure

Check the Set Clamp mechanism for a deformed or broken part and not-seated belts. The mechanism is free from defects and belt damage.

```
Y N
    Repair the Set CLamp mechanism.
```

Enter Component Control [012-251]. Rotate the Set Clamp Shaft by hand to block and unblock the Set Clamp Home Sensor. The display changes.
Y N
Check the connections of P/J8707, P/J8742B, P/J8742A and P/J8723. P/J8707, P/ J8742B, P/J8742A and P/J8723 are securely connected.
Y N
Connect P/J8707, P/J8742B, P/J8742A and P/J8723 securely.
Check for an open or short circuit between J8707 and J8742B, and between J8742A and J8723. The wires between J8707 andJ8742B and between J8742A and J8723 are OK.
$Y^{\mathbf{Y}}$
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8707-9 (+) and GND (-). The voltage is approx. +5 VDC .
$\mathrm{Y} \quad \mathrm{N}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8707-8 (+) and GND (-). Rotate the Set Clamp Shaft by hand to block and unblock the acceptance surface of the Set Clamp Home Sensor. The voltage changes normally.
Y N
Replace the Set Clamp Home Sensor (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-017]. The Set Clamp Motor rotates.
Y \mathbf{N}
Check the connections of P/J8706 and P/J8740. P/J8706 and P/J8740 are securely connected.

Y N
Connect P/J8706 and P/J8740 securely.
Check for an open or short circuit between J8706 and J8740. The wires
between J8706 andJ8740 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8706-9 (+) and GND (-), and between J8706-11 (+) and GND (-). Each voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Set Clamp Motor (PL 22.9). If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-291 (A-Finisher) Stapler Fail

BSD-ON:CH15.5

Within a specified time after the Staple Motor started rotating in reverse direction, the Staple Head Home Sensor was never detected turning On.

Initial Actions

- Check that the Staple Assembly and the Cartridge are properly installed, not broken and include no foreign objects.
- Power Off/ON

Procedure

Enter Component Control [012-046] and [012-047] alternately. The Staple Motor rotates.
Y \mathbf{N}
Check the connections of P/J8705 and P/J8735. P/J8705 and P/J8735 are securely connected.
Y N
Connect P/J8705 and P/J8735 securely.
Check for an open or short circuit between J8705 and J8735. The wires between J8705 and J8735 are OK.
Y N
Repair the open wire or short circuit.
Enter [012-046] and [012-047] alternately. Measure the voltages between Finisher PWB J8705-3, 4, 5, 6 (+) and GND (-). Each voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7)

Replace the Staple Assembly (PL 22.4).
Enter [012-046] and [012-047] alternately. The display changes.
Y N
Check the connections of P/J8701 and P/J8731. P/J8701 and P/J8731 are securely connected.

N
Connect P/J8701 and P/J8731 securely.
Check for an open or short circuit between J8701 and J8731. The wires between J8701 and J8731 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8701-4 (+) and GND (-). The voltage is approx. +5 VDC .
Y^{N}
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.

A B
Measure the voltage between Finisher PWB P/J8701-5 (+) and GND (-). Enter [012-046] and [012-047] alternately. The voltage changes.
Y N
Replace the Staple Assembly (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-301 (A-Finisher) Top Cover Interlock OPEN

BSD-ON:CH15.1

The Top Cover Interlock Open was detected.

Initial Actions

- Check that the Top Cover can be opened and closed.
- Check the Finisher Top Cover Interlock Sensor and the Finisher Top Cover Interlock +24V Switch are properly installed, not broken, and have no foreign objects
- Power Off/ON.

Procedure

Check the following;

- Top Cover installation
- Finisher Top Cover Interlock Sensor for damage
- Finisher Top Cover Interlock +24 V Switch actuator for any damage

These parts are in normal condition.

$Y^{Y} \quad \mathbf{N}$
Repair or replace any of the parts that has a defect.
Enter Component Control [012-300]. Open and close the Top Cover to block and unblock the Finisher Top Cover Interlock Sensor. The display changes.
Y \mathbf{N}
Check the connections of P/J8701 and P/J8730. P/J8701 and P/J8730 are securely connected.
Y N
Connect P/J8701 and P/J8730 securely.
Check for an open or short circuit between J8701 and J8730. The wires between J8701 and J8730 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8701-3 (+) and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between Finisher PWB J8701-2 (+) and GND (-). Open and close the Top Cover to block and unblock the Finisher Top Cover Interlock Sensor. The voltage changes.
Y N
Replace the Finisher Top Cover Interlock Sensor (PL 22.3).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Measure the voltage between Finisher PWB J8702-1 (+) and GND (-). The voltage is approx. +24VDC.

Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-302 (A-Finisher) Front Cover Interlock OPEN

 BSD-ON:CH15.1The Front Cover Interlock Open was detected.

Initial Actions

- Check that the Top Cover can be opened and closed
- Check that the Finisher Front Interlock Switch is properly installed, not broken, and has no foreign object.
- Power Off/ON.

Procedure

Check the following;

- Front Cover installation
- hinges for any damage
- Finisher Top Cover Interlock Sensor for any damage

Thee above parts are OK.

Y N
Repair or replace any of the parts that are defected.
Enter Component Control [012-302]. Open and close the Front Cover to turn On and Off the Finisher Front Interlock Switch. The display changes.
Y \mathbf{N}
Connect the connections of P/J8702 and P/J8733. P/J8702 and P/J8733 are securely connected.
Y N
Connect P/J8702 and P/J8733 securely.
Check for an open or short circuit between J8702 and J8733. The wires between J8702 and J8733 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8702-4 (+) and GND (-). Open and close the Front Cover to turn On and Off the Finisher Front Interlock Switch. The voltage changes.
Y N
Replace the Finisher Front Interlock Switch (PL 22.7).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Measure the voltage between Finisher PWB J8702-1 (+) and (-). The voltage is approx. +24VDC.
Y N
Go to Wirenet 7.2.38 A-Finisher +24VDC and check the +24VDC circuit.

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-903 (A-Finisher) Paper Remains at Compiler Exit Sensor
 BSD-ON:CH15.3

- At Power On, the Compile Exit Sensor detected paper.
- While the Main Motor was operating at initialization at Power On, the Compile Exit Sensor detected paper.
- When the Cycle down operation at the end of a job was complete, the Compile Exit Sensor was On.

Initial Actions

- Check the power supply voltage at the customer site for a drop.
- Check the Compile Exit Sensor is properly installed and free from foreign objects and that the actuator is not binding.
- Power Off/ON.

Procedure

Check for paper remaining on the Compile Exit Sensor and how it is installed. The sensor is properly installed with no paper left there.
Y N
Remove the remaining paper and reinstall the sensor properly.
Run DC330[012-150].
Enter Component Control [012-150]. Actuate the Compile Exit Sensor. The display changes. Y $\quad \mathbf{N}$

Check the connections of P/J8709 and P/J8728. P/J8709 and P/J8728 are securely connected.
Y N
Connect P/J8709 and P/J8728.
Check for an open or short circuit between J8709 and J8728. The wires between J8709 and J8728 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between Finisher PWB J8709-3 (+) and GND (-). The voltage is approx.+5VDC.

N

Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit
Measure the voltage between Finisher PWB J8702-2 (+) and GND (-). Actuate the Compile Exit Sensor. The voltage changes.
Y N
Replace the Compile Exit Sensor (PL 22.5).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

012-935 (A-Finisher) Paper Remains at Ent Sensor

BSD-ON:CH15.3

- At Power On the Finisher Entrance Sensor detected paper.
- While the Main Motor was operating at initialization at Power On, the Finisher Entrance Sensor detected paper.
- When the Cycle down operation at the end of a job was complete, the Finisher Entrance Sensor was On.

Initial Actions

- Check the power supply voltage at the customer site for a drop.
- Check the Finisher Entrance Sensor is properly installed and free from foreign objects and that the actuator is not binding.
- Power Off/ON.

Procedure

Check for paper remaining on the Finisher Entrance Sensor and how it is installed. The sensor is properly installed and free from paper.
Y N
Remove the remaining paper and reinstall the sensor properly.
Enter Component Control [012-140]. Move the Finisher Entrance Sensor actuator by hand or with a piece of paper. The display changes.

N
Check the connections of P/J8709 and P/J8729. P/J8709 and P/J8729 are securely connected.
Y N
Connect P/J8709 and P/J8729 securely.
Check for an open or short circuit between J8709 and J8729. The wire between J8709 and J8729 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8709-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$\mathbf{Y} \quad \mathbf{N}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8709-5 (+) on the Finisher PWB and GND (-). Actuate the Finisher Entrance Sensor. The voltage changes.
Y N
Replace the Finisher Entrance Sensor (PL 22.5).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

016-210 Software Option (HDD Error) RAP

One of the Software option functions cannot be executed due to a HDD error or the HDD is not installed.

Initial Actions

Power Off/On

Procedure

Check HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists, replace the HDD (PL 11.2).

016-211 Software Option (System Memory Low) RAP

One of the Software option functions cannot be executed due to insufficient System Memory capacity.

Initial Actions

Power Off/On

Procedure

Refer customer to following User Guide headings to check memory usage:

- Allocate Memory
- Memory Settings
- Covers
- Mailbox Screen
- Properties
- Properties Features
- Data Encryption
- Memory Full Procedure
- Maximum Stored Pages

016-212 Software Option (Page Memory Low) RAP

One of the Software option functions cannot be executed due to insufficient Page Memory capacity.

Initial Actions
Power Off/On

Procedure

Refer customer to following User Guide headings to check memory usage:

- Allocate Memory
- Memory Settings
- Properties
- Properties Features
- Maximum Stored Pages
- Mailbox Screen
- Data Encryption
- Memory Full Procedure
- Covers

016-213 Software Option (Printer PWB) RAP

BSD-ON:16.1
One of the Software option functions cannot be executed due to a PRT_CARD error or PRT_CARD not installed.

Procedure

Check installation of the Printer PWB (PL 11.2)

016-214 Serial Number Mismatch RAP
The Serial Numbers are not in sync.
Initial Actions
Power Off/On

Procedure

Go to GP 4.

016-215 Software Option RAP

BSD-ON:16.1/17.1

Functions such as scanner cannot be executed due to an option PWB error.

Initial Actions

Power Off/On

Procedure

Check installation and electrical connections of PWBs on PL 11.1 and PL 11.2.

016-216 Software Option RAP

BsD-on:16.1/17.1
Functions such as scanner cannot be executed due to an option PWB error.
Initial Actions
Power Off/On

Procedure

Check installation and electrical connections of PWBs on PL 11.1 and PL 11.2.

016-217 Software Option RAP

BSD-ON:16.1/17.1
Functions such as scanner cannot be executed due to an option PWB error.

Initial Actions

Power Off/On

Procedure

Check installation and electrical connections of PWBs on PL 11.1 and PL 11.2.

016-219 Software Option RAP

BSD-ON:16.1/17.1

Functions such as scanner cannot be executed due to an option PWB error.

Initial Actions

Power Off/On

Procedure

Check installation and electrical connections of PWBs on PL 11.1 and PL 11.2.

016-311 Scanner Install RAP

BSD-ON:6.2

The system detected that the scanner is not installed.

Procedure

Check the electrical connections between the IIT and the ESS.
Ensure ribbon cable is connected to P/J 320 on ESS PWB (PL 11.2)
NOTE: FAX may be removed for access (PL 11.3)
If the problem persists, check the connections on the IIT/IPS PWB (PL 13.3)

016-315 IIT Interface RAP

BSD-ON:6.2

An error was detected in the IF between the IIT and the IOT.

Procedure

Check the connection of each connector between the IIT and the IOT.
Replace the IIT/IPS PWB (PL 13.3) If the problem persists, replace the MCU PWB (PL 11.1).

016-316 Page Memory Not Detected RAP

The system detected that the Page Memory (Standard) of the scanner was not installed.

Initial Actions

Power Off/On

Procedure

Ensure P/J's on the ESS PWB (PL 11.2) and the IIT/IPS PWB (PL 13.3) are securely connected.

Check the installation of the Printer PWB if present.

016-317 Page Memory Error- Standard RAP

 BSD-ON:16.1The system detected an error in the Page Memory (Standard) of the scanner.

Initial Actions

Power Off/On

Procedure

Ensure P/J's on the ESS PWB (PL 11.2) and the IIT/IPS PWB (PL 13.3) are securely connected.

Check the installation of the Printer PWB if present.

016-318 Page Memory Error- Option RAP

BSD-ON:16.1
The system detected an error in the Page Memory (Option) of the scanner.

Initial Actions

Power Off/On

Procedure

Check the installation of the Printer PWB if present.
Refer customer to following User Guide headings to check memory usage:

- Allocate Memory
- Memory Settings
- Properties
- Properties Features
- Maximum Stored Pages
- Mailbox Screen
- Data Encryption
- Memory Full Procedure
- Covers

016-321 Fax Module RAP

BSD-ON:16.1/17.1
An error was detected at System Check Fax.

Initial Actions

Power Off/On

Procedure

Check the installation of the FAX PWB.
Check that P/Js on FAX PWB are securely connected.

016-322 JBA Account Full RAP

BSD-ON:16.1

The accumulated accounting data in Job Based Accounting reached the specified value.

Procedure

Switch the power off then on 2 minutes after the job is attempted (after an external Accounting Server has read the accounting data).

016-323 B Formatter RAP
An internal formatting error occurred.
Initial Actions
Power Off/On

Procedure

If the problem persists, replace the ESS PWB (PL 11.2).

016-450 SMB Host Name Duplicated RAP

A PC of the same host name exists on the network.

Initial Actions

Power Off/On

Procedure

Refer customer to Systems Administrator Guide headings:

- Information Checklist
- Changing the Settings
- Setting Format of config.txt

016-454 DNS Dynamic Update RAP

Unable to retrieve the IP address from DNS.

Initial Actions

Power Off/On

Procedure

Check the DNS confutation and IP address of the retrieve setting.

016-455 SMTP Server Time-out RAP

There is no response from the SMTP server within the specified time (60 sec).

Initial Actions

Power Off/On

Procedure

If the time on the machine is incorrect, User Guide heading Changing the Default Time Settings procedure resets the time. Or follow procedure below.

1. Press the Log In/Out button on the control panel.
2. Enter the Key Operator ID using the numeric keypad on the control panel. Select Confirm on the System Administrator Login screen.
NOTE: The default Key Operator ID is (five one's) "11111". If the Authentication feature is enabled, you may be required to enter a password. The default password is "x-admin".
3. Select System Settings on the System Administrator Menu screen.
4. Select System Settings on the System Settings screen.
5. Select Common Settings on the System Settings screen.
6. Select Machine Clock/Timers on the Common Settings screen.
7. Select the required option.
8. Select Change Settings.
9. Change the value using the scroll buttons or select required options.
10. Select Save
11. Return to main menu.

016-456 SMTP time asynchronous RAP

A standard time synchronized source message and an asynchronous message was received from the SMTP server.

Initial Actions

Power Off/On

Procedure

If the time on the machine is incorrect, User Guide heading Changing the Default Time Set tings procedure resets the time. Or follow procedure below.

1. Press the Log In/Out button on the control panel.
2. Enter the Key Operator ID using the numeric keypad on the control panel. Select Confirm on the System Administrator Login screen.

NOTE: The default Key Operator ID is (five one's) "11111". If the Authentication feature is enabled, you may be required to enter a password. The default password is "x-admin".
3. Select System Settings on the System Administrator Menu screen.
4. Select System Settings on the System Settings screen.
5. Select Common Settings on the System Settings screen.
6. Select Machine Clock/Timers on the Common Settings screen.
7. Select the required option.
8. Select Change Settings.
9. Change the value using the scroll buttons or select required options.
10. Select Save.
11. Return to main menu.

016-461 TBD RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-500 DIMM RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-501 S2X RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-502 ROM Write RAP

There is a ROM writing failure in the Controller.
Initial Actions
Power Off/On

Procedure

Remove and replace the DIMM (PL 11.2)
If the problem persists, disconnect and reconnect the electrical connections on the HDD (PL 11.2)

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

016-503 SMTP Redirector RAP

The Redirector cannot resolve the SMTP (Simple Mail Transfer Protocol) Server address.

Initial Actions

Power Off/On

Procedure

Refer customer to System Administrator Guide headings

- E-mail
- Information Checklist

016-504 Redirector POP Server RAP

The Redirector cannot resolve the POP (Post Office Protocol) Server address.

Initial Actions

Power Off/On

Procedure

Specify the correct POP Server name or specify the IP address.
Refer customer to System Administrator Guide headings

- E-mail
- E-mail Environments
- E-mail Setting Setup
- POP3 Server Settings
- Test Mail

016-505 Redirector POP Authentication RAP

The Redirector cannot pass POP (Post Office Protocol) authentication.

Initial Actions

Power Off/On

Procedure

Check that the login name and password for the POP Server are correct.
Refer customer to System Administrator Guide headings

- E-mail
- E-mail Environments
- E-mail Setting Setup
- POP3 Server Settings
- Test Mail

016-506 Image Log RAP

The Image Log in the HDD is full.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-507 Image Log Send RAP

The Image Log send command 1 in the HDD failed.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-508 Image Log RAP

The Image Log send command 2 in the HDD failed.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-509 Image Log RAP

The Image Log block send command 1 in the HDD failed.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-510 Image Log RAP

The Image Log block send command 2 in the HDD failed.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-511 Image Log RAP

The Image Log invalid send rule 1 executed in the HD.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2)

016-512 Image Log RAP

The Image Log invalid send rule 2 executed in the HD.

Initial Actions

Power Off/On

Procedure

Switch off the power and disconnect and reconnect the electrical connectors in the ESS and HDD. Switch on the power.

If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

If the problem persists, replace the HDD (PL 11.2).

016-522 LDAP RAP

There is a LDAP (Lightweight Directory Access Protocol) server SSL (Secure Socket Layer) authentication error. An SSL Client Certificate could not be acquired.

The LDAP server requires an SSL Client Certificate.

Initial Actions

Power Off/On

Procedure

Set the SSL Client Certificate on the machine.

016-523 LDAP RAP

There is a LDAP (Lightweight Directory Access Protocol) server SSL (Secure Socket Layer) authentication error. The server certificate data was incorrect.

The machine does not trust the LDAP server's SSL certificate.

Initial Actions

Power Off/On

Procedure

Register the root certificate of the LDAP server SSL Certificate on the machine.

016-524 LDAP RAP

There was a LDAP server SSL authentication error. The server certificate is not yet valid.

Initial Actions

Power Off/On

Procedure

Change to a valid LDAP server SSL certificate. The [Authentication with SSL] setting in [LDAP Server/Directory Service can be set to [Disabled] to avoid an error, but the connected LDAP server security is not guaranteed.

016-525 LDAP RAP

There was a LDAP server SSL authentication error. The server certificate has expired.

Initial Actions

Power Off/On

Procedure

Change to a valid LDAP server SSL certificate. The [Authentication with SSL] setting in [LDAP Server/Directory Service can be set to [Disabled] to avoid an error, but the connected LDAP server security is not guaranteed.

016-526 LDAP RAP

There was a LDAP server SSL authentication error. The server name does not match the certificate.

Initial Actions

Power Off/On

Procedure

Set the LDAP server address on the machine to match the address on the LDAP server SSL certificate. The [Authentication with SSL] setting in [LDAP Server/Directory Service can be set to [Disable] to avoid an error, but the connected LDAP server security is not guaranteed.

016-527 LDAP RAP

There was a LDAP server SSL authentication error. There was an SSL authentication internal error.

Initial Actions

Power Off/On

Procedure

This error was generated by the software.

016-533 LDAP RAP

There was a Kerberos server authentication protocol error. The machine and the Kerberos server clocks have a time difference that exceeds the Kerberos server clock skew value.

Initial Actions

Power Off/On

Procedure

Check that the machine and the Kerberos server clocks have the correct time.

016-534 LDAP RAP

There was a Kerberos server authentication protocol error. The realm assigned to the machine does not exist on the Kerberos server or the machine is not connecting to the Kerberos server address.

Initial Actions

Power Off/On

Procedure

Check that the realm name and Kerberos server address settings on the machine are correct. If connected with Windows 2000 or Windows 2003 Server, make sure the realm name is in upper case characters.

016-539 LDAP RAP

There was a Kerberos server authentication protocol error.

Initial Actions

Power Off/On

Procedure

This error was generated by the software.

016-539 LDAP RAP

There was a Kerberos server authentication protocol error.
Initial Actions
Power Off/On

Procedure

This error was generated by the software.

016-543 Attestation Agent error 543 (REALM_UNKNOWN)

 RAPThe specified realm/domain has disappeared from the ApeosWare Authentication Agent.(The domain was manually deleted at the ApeosWare Authentication Agent after obtaining the realm name list from the device.)

Procedure

Either update the realm list using the Realm Update button of the device or add the domain into the ApeosWare Authentication Agent.

016-545 Attestation Agent error 545 (CLOCKSKEW_ERR)

RAP

A Clock skew error has occurred in attestation.

The time of ApeosWare Authentication Agent and ActiveDirectory is out of sync with the upper limit of the Kerberos ClockSkew set in the ActiveDirectory.

Procedure

Match the time of the PC where the ApeosWare Authentication agent is installed in with the time of the PC where the ActiveDirectory is.

Furthermore, if the Windows Time Service in the PC where the ApeosWare Authentication Agent is installed is stopped, start it up.

Refer to the ApeosWare Authentication agent User Guide for solutions.

016-546 Attestation Agent error 546 RAP

A general user tried to obtain the information of another user.

Procedure

Contact our Customer Support Center.

016-548 Attestation Agent error 548

 (UNREGISTERED_DEVICE) RAPThe information of the machine that is performing the authentication operation is not in the database (GetUserInformation method only).

The device is not registered in the ApeosWare Authentication Agent.

Procedure

Register the device in the ApeosWare Authentication Agent. Refer to the ApeosWare Authentication Agent User Guide for solutions. Match the time of the PC where the ApeosWare Authentication agent is installed in with the time of the PC where the ActiveDirectory is.

016-553 Attestation Agent error 553 (VERSION_MISMATCH) RAP

The version information written in the SOAP Header cannot be understood. The ApeosWare Authentication Agent does not support the version of the device interface.

Procedure

The version of the ApeosWare Authentication Agent needs to be upgraded.
Check that the machine is a product that is supported by the upgraded version of the ApeosWare Authentication Agent.

016-554 Attestation Agent error 554

(CONFIGRATION_ERROR) RAP

The existence check for the specified user in the event of an authentication error has failed.
The domain user reference login name or the reference password of the ApeosWare Authentication Agent domain is incorrect.

Procedure

Set the domain user reference login name or the reference password of the ApeosWare
Authentication Agent domain to the correct items.

016-555 Attestation Agent error 555

(SERVICE_ISNOT_WORKING) RAP

Timed out when connecting to the authentication server.
The ApeosWare Authentication Agent cannot connect to the database or the Active Directory.

Procedure

Check that the ApeosWare Authentication Agent can connect to the database or the Active Directory.

Refer to the ApeosWare Authentication Agent User Guide for solutions

016-556 Attestation Agent error 556

(SERVICE_IS_PROCESSING) RAP

Timeout during database processing.

Error has occurred in the database that the ApeosWare Authentication Agent is connected to due to overloading.

Procedure

Wait for a while before authenticating again as the service is overloaded.
If that did not solve the problem, check the ApeosWare Authentication Agent.
Refer to the ApeosWare Authentication Agent User Guide for solutions.

016-557 Attestation Agent error 557 (INTERNAL_ERROR) RAP
Another error has occurred in attestation.
An internal error has occurred in the ApeosWare Authentication Agent.

Procedure

Check the ApeosWare Authentication Agent.
Refer to the ApeosWare Authentication Agent User Guide for solutions.

016-558 Attestation Agent error 558 (MISC_ERR) RAP

The machine has received an unknown error from the ApeosWare Authentication Agent.

Procedure

Turn the power OFF then ON.

016-560 Attestation Agent error 560 RAP

A communication error has occurred between the ApeosWare Authentication Agent and the machine

Procedure

Check that the network cable is connected and check the settings of the Authentication Agent function.

If DNS address of the Server is set as the Server name/IP address of the ApeosWare Authentication Agent in the printer function settings list, check that DNS is enabled

016-562 Attestation Agent error 562 RAP

Attestation Agent Error
*ICCG External Attestation agent detected a duplicated ID

Procedure

Correct a temporary user entered into ActiveDirectory or Attestation Agent so that it does not have the same IC card info as any other user.

016-569 Attestation Agent error 569 RAP

Errors related to the functions of the Authentication Agent other than listed previously Attestation Agent Error

Procedure

Turn the power OFF then ON

016-574 Host Name Error RAP

A failure in resolving a problem with a host name in FTP scan

Procedure

Check the connection to DNS.
Or check that the destination server name is entered on DNS.

016-575 DNS Server Error in FTP RAP
In FTP scan, the server was not found on DNS.

Procedure

Set DNS address.
Or set the destination server address, using IP address.

016-576 Server Connection Error in FTP RAP

In FTP scan, there is a problem with the connection to the server.

Procedure

Check that the destination FTP server and this machine are set up so that they can communicate with each other on the network. For example, check the following:

- The IP address of the server is correct
- The network cable is connected

016-577 FTP Service RAP

FTP Service has a problem.

Procedure

Check the following:

- FTP Service is activated
- Port No. used for FTP Service is correct

016-578 Login/Password Error RAP

A login name or password error in FTP scan.

Procedure

Check the login name (user name) and password are correct.

016-579 Scanning Picture Error RAP

There is a problem with the place to save images scanned in FTP scan.

Procedure

Check that the scanned-images saving place on the FTP scan server is correct.

016-580 File Name Acquisition Failure RAP

A failure in acquiring a file name/folder on the FTP scan server.

Procedure

Check the right to access the FTP scan server.

016-581 File Name Suffix Limit Error RAP

The suffix of a FTP scan file name/folder name exceeds the limit.

Procedure

Change the file name/destination folder, or move or delete the file in the destination folder.

016-582 File Creation Failure RAP

A failure in creating a FTP scan file.

Procedure

Check the following:

- That the specified name is a file name that can be created in the storage place.
- That the storage place has some space available.

016-583 Lock Folder Creation Failure RAP

A failure in creating a FTP scan lock folder

Procedure

Check the following:

- If the existing lock directory (*.LCK) is left on the destination, manually delete it and retry the job.
- That the specified name is a folder name that can be created in the storage place.
- That there is no folder with the same name as the specified one.
- That the storage place has some space available.

016-584 Folder Creation Failure RAP

A failure in creating a FTP scan folder

Procedure

Check the following:

- That the specified name is a folder name that can be created in the storage place.
- That there is no folder with the same name as the specified one.
- That the storage place has some space available.

016-585 File Delete Failure RAP

A failure in deleting a FTP scan file.Check the right to access the server.

Procedure

Check the right to access the server.

016-586 Lock Folder Delete Failure RAP

A failure in deleting a FTP scan lock folder

Procedure

Check the following:

- The right to access the server.
- If the existing lock directory (*.LCK) is left on the destination, manually delete it and retry the job.

016-587 Folder Delete Failure RAP

A failure in deleting a FTP scan folder

Procedure

Check the right to access the server

016-588 Data Write-in Failure RAP

A failure in writing data onto the FTP scan server

Procedure

Check that the storage place has some space available.

016-589 Data Read Failure RAP

A failure in reading data from the FTP scan server

Procedure

Check that the user has the [right to read data from] folder on the server.

016-590 Data Reading Failure RAP

[Overwrite prohibited] is selected as action to be taken when a duplicated FTP scan file name is detected.

Procedure

Select any option other than [Overwrite prohibited]

016-591 Scan Filing Policy Injustice RAP

FTP scan filing policy is illegal (when Add selected).

Procedure

If [Add] is selected as action to be taken when a duplicated file name is detected, check that the file format is not a multi-page one.

016-592 NEXTNAME.DAT file access error RAP

NEXTNAME.DAT file access error in FTP scan

Procedure

If [Add] is selected as action to be taken when a duplicated file name is detected, check that NEXTNAME.DAT file is correct.

016-593 Internal Scan Error RAP

An internal error occurred in FTP scan.

Procedure

If the same operation causes this to reoccur, contact our Custom Support Center.

016-594 TYPE Command Failure RAP

In FTP scan, a TYPE command failed. (network error)

Procedure

If the same operation causes this to reoccur, contact our Custom Support Center.

016-595 Port Command Failure RAP

In FTP scan, a Port command failed. (network error)

Procedure

If the same operation causes this to reoccur, contact our Custom Support Center.

016-596 CDUP Command Failure RAP

In FTP scan, a CDUP command failed. (network error)

Procedure

If the same operation causes this to reoccur, contact our Custom Support Center.

016-597 Same Name File Exists RAP

FTP scanning stopped because another file (folder) with the same name existed. (CreditMutuel specification)

Procedure

Check the following:

- With multiple machines not accessing the same folder on the same server, repeat the same operation.
- If this still reoccurs, contact our Custom Support Center.

016-600 Key Operator Authentication Locked RAP

The number of incorrect Key Operator log in attempts reached the limit.

Procedure

NOTE: Default is 5 events. Chain 700-xxx Common [700-563] can be set between 1 to 10 events.
With this feature enabled, the machine denies access when an incorrect System Administrator
ID is entered the selected number of times.
If required, refer to GP 3 to reset password to (five one's) 11111 default if the System Adminis trator ID is unavailable.

016-601 Illegal Access Detection RAP

The number of incorrect authentication log in attempts reached the limit.

Procedure

NOTE: Default is 10 users. Chain 700-xxx Common [700-564] can be set 1 to 600 users. If required, refer to GP 3 to reset password to (five one's) 11111 default if the System Administrator ID is unavailable.

016-701 ART EX Memory Expended RAP

Insufficient memory was detected while using the ART EX.

Initial Actions

Power Off/On

Procedure

Decrease the resolution setting.

016-702 Out of Page Buffer RAP

Insufficient Print Page Buffer is detected.

Initial Actions

Power Off/On

Procedure

Requires Print Page buffer memory expansion, a decrease of resolution, or set to Print Guarantee mode (Print Guarantee mode is only for PLW). For PCL, set the PCL Heap Memory/ Band Buffer Ratio to above 1:2.

Refer customer to System Administrator Guide headings

- When printing fails
- Setting Format of config.txt

016-703 E-mail To Invalid Box RAP

The system detected an unopened or invalid mailbox and aborted a job when receiving an Email.

Initial Actions

Power Off/On

Procedure

Send the E-mail to a valid mailbox destination or set up the appropriate mailbox.
Refer customer to Mailbox section in User Guide

016-704 Mailbox Full RAP

When accessing the HD, the control logic detected that the mailbox was full (it exceeded the maximum number of documents per box) and aborted the job.

Initial Actions

Power Off/On

Procedure

Delete unnecessary documents and then repeat the operation.
Refer customer to Mailbox section in User Guide.

016-705 Secure Print RAP

Registration for Secure Print failed because Security Storage cannot be done without a HD.

Initial Actions

Power Off/On

Procedure

Check HDD electrical connections (PL 9.2).
If the problem occurred at installation, check whether the operations for Secure Print are correct.

Refer customer to User Guide headings:

016-706 Maximum Users Exceeded RAP

When accessing the HD, the system detected that the job exceeded the maximum number for users for Proof Prints and aborted the job.

Initial Actions

Power Off/On

Procedure

Delete unnecessary documents/users and print again.
Refer customer to User Guide headings Maximum Stored Pages,
Create/Check User Accounts

016-707 Sample Print RAP

Proof Print Registration failed because it cannot be stored without a HD

Initial Actions

Power Off/On

Procedure

Check HDD electrical connections (PL 11.2).
If the problem occurred at installation, check whether the operations for Proof Print are correct.

016-708 HDD Full Annotation/Watermark RAP

When an Annotation/Watermark image was to be stored in the HDD, the Full status was detected and the job was aborted.

Initial Actions

Power Off/On

Procedure

Check HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists, replace the HDD (PL 9.2).

016-709 ART EX Command RAP

An ART EX command error occurred during PLW processing.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-710 Delayed Print RAP

- A Delay Print Job was received from the machine that has no HDD installed.
- The number of jobs that can be simultaneously received (100 jobs) was exceeded.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists, replace the HDD (PL 11.2).

016-711 E-mail Transmission Size Limit RAP

The send module (redirector) attempted to send data exceeding the system data size limit for Scan to E-mail.

Initial Actions

Power Off/On

Procedure

Decrease the send parameter for resolution (send image quality) and resend.
Reduce the image using the send parameter and resend (e.g. A3 to A4).
Change the [Upper Limit of Data Size] setting in the Specifications Settings Screen on the UI Panel (default 2MB recommended).

016-712 Panther Capacity (I-Formatted) RAP

The processed data is too small (the specified range for the document is too small).

nitial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-713 Security Box Password RAP

There is a password error in the security box.
Initial Actions
Power Off/On

Procedure

A procedure is not available at time of publication.

016-714 Security Box Enable RAP

The security box is not enabled.
Initial Actions
Power Off/On

Procedure

A procedure is not available at time of publication.

016-716 TIFF Data Overflow RAP

There is a spooling problem with TIFF (Tagged Image File Format) data.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists perform GP 6 Special Boot Modes Spool Initialization.
If the problem persists remove and replace the DIMM (PL 11.2)
If the problem persists, disconnect and reconnect HDD electrical connections (PL 11.2)

016-718 PCL6 Memory RAP

Insufficient memory was detected while performing Printer COntrol Language functions.

Initial Actions

Power Off/On

Procedure

Cancel the job, reduce resolution, and rerun the job.

016-719 Out of PCL Memory RAP

Insufficient memory is detected while using PCL.

Initial Actions

Power Off/On

Procedure

The print job exceeded the memory capacity of the print control language driver. Ask customer to break up the print job into smaller parts.

016-720 PCL Command RAP

A PCL command error occurred during PCL processing
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-721 Other Errors RAP

The Auto Tray Switching feature was enabled when Auto Paper Off is selected for all paper trays on the Paper Type Priority screen.

Procedure

Inform customer that when Auto Tray Switching feature is enabled, select a paper type other than Auto Paper Off option on the Paper Type Priority screen.

016-722 Staple Position RAP

The job was cancelled when the Staple Position could not be determined.

Initial Actions

Ensure the staple position selection matches the available staple position in the finisher.

Procedure

Refer customer to following User Guide headings:

- [Image Rotation] - [Rotation Direction Screen]

016-724 Staple Position RAP

The staple selection and hole punch selection is not compatible.

Initial Actions

Ensure the staple position selection and hole punch position selection is compatible (no holes will be punched on staples or staples located in holes)

Procedure

Refer customer to following User Guide headings:

- [Image Rotation] - [Rotation Direction Screen]

016-725 B-Formatter Image RAP

There is a B -Formatter Library image conversion error.
Initial Actions
Power Off/On

Procedure

If the problem persists, replace the ESS PWB (PL 11.2).

016-726 PDL Auto Switch RAP
The Page Description Language failed to change.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-727 Printer Request

The result of a print request is a zero-page document that cannot be stored in a mailbox, and the job is canceled.

Initial Actions

Power Off/On

Procedure

Set the print option to print blank pages, and reprint to confirm if the output is not blank. Add text if the output is blank, and try printing again.

016-728 TIFF Data Unsupported RAP

The TIFF (Tagged Image File Format) data contains a tag that is not set in the Image File Expansion Library.

Initial Actions

Power Off/On

Procedure

Refer customer to following User Guide headings:

- TIFF-S, TIFF-S, and TIFF-J in Internet iFax Profile
- Job Templates - Network Scanning
- File Format
- Properties

016-729 TIFF Data Size RAP

The specified TIFF (Tagged Image File Format) settings exceed the upper limit of the valid number of colors and pixels.

Initial Actions

Power Off/On

Procedure

Refer customer to following User Guide headings:

- TIFF-S, TIFF-S, and TIFF-J in Internet Fax Profile
- Job Templates - Network Scanning
- File Format
- Properties

016-730 ART Command Unsupported RAP

A command not supported by the ART was detected.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-731 TIFF Data Invalid RAP

The TIFF (Tagged Image File Format) data is corrupt
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists, refer customer to following User Guide headings:

- TIFF-S, TIFF-S, and TIFF-J in Internet iFax Profile
- Job Templates - Network Scanning
- File Format
- Properties

016-733 Destination Address RAP
There is an error in the destination address.
Initial Actions
Power Off/On

Procedure

Verify the address is correct.

016-734 Transmission Report RAP

There is a simple transmission report error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-735 Updating Job Template RAP

The system attempted to output the Job Template List while the Job Template was being updated.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-736 Remote Directory Lock RAP

There is a lock error in the remote directory

Initial Actions

Power Off/On

Procedure

Ask the customer to check the directory that is locked and clear that directory.

016-737 Remote Directory Removal RAP
There is a lock removal error in the remote directory.
Initial Actions
Power Off/On

016-741 Downloading Mode RAP

Unable to select the downloading mode.

Procedure

Enter Tools and enable download mode.

Procedure

A procedure is not available at time of publication.

016-742 TBD RAP
A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-743 TBD RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-744 TBD RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-745 TBD RAP

A definition is not available at time of publication.

Procedure

A procedure is not available at time of publication.

016-746 Unsupported PDF File RAP

There was transparency or JBIG2 in a PDF version 1.3 file.

Procedure

Ask customer to print using the driver from Acrobat Reader.

016-747 Insufficient Memory

An error occurred while processing the annotation image data due to insufficient memory.

Procedure

Take one of the following actions:

- Increase the annotation image memory size
- Reduce the number of the images in [Repeat Image]
- If the problem persists, Power Off/On the machine

016-748 HDD Full RAP

HDD Full status was detected and the job was aborted when accessing a mailbox.

Initial Actions

Power Off/On

Procedure

Refer customer to check Mailbox section in User Guide to make available more HDD space.
If the problem persists check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program. If the problem persists perform GP 6 Special Boot Modes HDD Initialization.

016-749 Post Script Font RAP

The specified font is not found in the ROM or the HDD.

Initial Actions

Power Off/On

Procedure

Refer customer to User Guide index on Change Print Settings or Print Mode Settings.

016-750 Print Job RAP

The control logic detected an error in the print job ticket

Initial Actions

Power Off/On

Procedure

Refer customer to User Guide section Change Print Settings or Print Mode Settings.

016-751 PDF RAP

One of the following errors occurred while performing PDF Bridge processing

- Syntax error
- Use of undefined commands
- Parameter error
- Broken PDF file
- Internal error

Initial Actions
Power Off/On

Procedure

Ask customer to print using the driver from Acrobat Reader

016-752 PDF Memory Limit RAP

Insufficient memory was detected during PDF Bridge processing.
Initial Actions
Power Off/On

Procedure

Ask customer to check print settings. When the Print mode is set to [High Quality], if the setting for [Standard] is set to [Normal], change the setting to [High Speed].

016-753 PDF Password Mismatch RAP

BSD-ON:16.1

When processing a PDF file that is protected by a password, the password in the UI panel settings and the password specified using XPJL (set in the Contents Bridge Utility) do not match.

Procedure

Specify the correct password using the UI or the Contents Bridge.

016-754 PDF LZW Not Installed RAP BSD-ON:16.1

The PDF Bridge tried to process the PDF file compressed in LZW without the [Contents Bridge Expansion Kit] installed.

Procedure

Install the [Contents Bridge Expansion Kit].
Print using the driver from Acrobat Reader.

016-755 PDF Print Prohibited RAP
BSD-ON:16.1
The system processed a print prohibited PDF file.

Procedure

Use Adobe Reader to clear the print prohibition setting and print the PDF file.

016-756 Auditron - Prohibit Service RAP

The service is prohibited.

Procedure

Ask the key operator or system or account administrator to enable usage of the machine.

016-757 Auditron - Invalid User RAP

The account is not registered.

Procedure

Ask key operator or system or account administrator to set up the account or check the users password.

016-758 Auditron - Disabled Function RAP

An illegal account was detected.

Procedure

Ask the key operator or system or account administrator to add the account rights.

016-759 Auditron - Reached Limit RAP

The number of pages reached the maximum number of pages for this service.

Procedure

Ask the key operator or system or account administrator to raise the page limit.

016-760 PostScript Decompose RAP

An error occurred in PostScript Decompose processing.

Procedure

Resend the job. If the problem persists, refer customer to User Guide headings:

- PostScript Memory
- CentreWare Internet Services properties
- Memory Settings
- Allocate Memory
- When printing fails
- Setting Format of config.txt

016-761 FIFO Empty RAP

There is a FIFO (first in first out) image enlargement error.

Procedure

Print in Fast Print mode.
Set the [Print Mode] to [Normal] and rerun. If the problem continues, set [Page Print Mode] to [On].

016-762 Print Language RAP

The specified print language is not installed

Procedure

In [Specify Print Mode] under [Port Settings], specify another print language.

016-764 SMTP Server Connection RAP
SMTP server response code errors.

Procedure

Repeat the operation.

016-765 SMTP Server HDD Full RAP

Unable to send e-mail due to the Hard Drive on the SMTP server is full.

Procedure

Retrieve E-mail in the Server HDD. Reconsider the Server capacity.

016-766 SMTP Server File System RAP

SMTP server response code error.

Procedure

Contact the SMTP Server Administrator and ask the administrator to reconsider the Server capacity limit.

016-767 Invalid E-mail Address RAP
Unable to send e-mail due to an incorrect address.

Procedure

Check the destination of the E-mail.

016-768 Invalid Sender Address RAP

Unable to connect to the SMTP server due to the machines incorrect mail address.

Procedure

Check whether the E-mail address is valid within the domain and check the setting of the Email address of the machine.

016-769 SMTP Server Unsupported DSN RAP
SMTP server does not support conformation of mail distribution (DSN)

Procedure

Enable the most appropriate ESMTP function in the SMTP Server. Or, send the E-mail with sent confirmation turned off.

A
016-770 FAX Function Cancelled RAP
The direct fax function is disabled.

Procedure

Check with the System Administrator whether the function is enabled.

016-771 JBIG Parameter RAP
There is a JBIG (Joint Bi-level Image Experts Group) parameter error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job

016-772 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

A B
016-773 JBIG Parameter RAP
There is a JBIG (Joint Bi-level Image Experts Group) parameter error
Initial Actions
power Off/Pn
Procedure
Ask customer to cancel and rerun the job.

A B

016-774 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-775 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-776 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-777 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-778 JBIG Parameter RAP

There is a JBIG (Joint Bi-level Image Experts Group) parameter error.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

016-779 Scanned Image Conversion Error RAP

An error occurred due to causes other than HDD access during scanned image conversion processing in I-Formatted.

Procedure

Repeat the operation.

016-780 Attached Document TIFF RAP

There is a TIFF (Tagged Image File Format) error in the attached document.

Procedure

Ask customer to cancel and rerun the job.

016-781 Scan Server Connect Error RAP

This fault can occur in the following circumstances:.

- The machine was unable to establish a connection to the Scan Server during the Network Scanning file transfer operation
- The machine was either unable to establish a connection to the Email (SMTP) server or was unable to authenticate (log in) to the Email server during the Scan to Email or Internet Fax file transfer operation.

Procedure

The customer can print to the machine through the Ethernet port on the machine.
Y N
Confirm that the Ethernet network drop cable is securely connected to the machine and the wall port. The recessed green LED next to the Ethernet port on the machine should be lit if the machine is connected to a live Ethernet drop. The green LED is lit. Y \mathbf{N}

Connect another Ethernet straight through cable between the machine and the wall port and have the customer confirm that the wall port is live.
If the LED is still off, replace the Printer PWB in the machine.
Verify that the machine has the correct TCP/IP settings with the customer. The cause of the printing problem is likely to be the cause for the Scanning failure as well.

For Scan to Email or Internet Fax failures, perform the following

1. Print a Print Mode System Settings list report.
2. Check the SMB section on page 5 of the report for the following:

- The Host Name setting must have no spaces in the name and no periods (.), slashes (/ or \backslash) or star symbols (*) in the name. If the Host Name has a space in it or has any of these characters, have the customer change the Host Name to eliminate these characters. If the problem continues, proceed to step 3.

3. Have the customer confirm that the Email / Internet Fax Settings section on page 5 the report contain the correct settings for their network

- The Send Email setting must be set to Enabled.
- The Server Name / IP Address setting under the sub-header SMTP Server mus either be set with the IP address or Host Name of the customer's SMTP E-mai server.

NOTE: If the Host Name of the SMTP Server is entered into the machine, then the machine must be configured with the customer's DNS settings (listed on page 3 of the report).
The Machine's E-mail Address setting must contain an email address with the customer's domain name and the address must be entered in the proper syntax (i.e.: wc7132@company.com)

- The E-mail Send Authentication setting will be set in one of the following ways:
- \quad Set to OFF if the customer's SMTP E-mail server does not require the machine to authenticate or log in prior to sending the e-mail message.
- Set to SMTP AUTH if the customer's SMTP E-mail server requires that the machine authenticate or log in to the server using an SMTP log in name and password prior to sending the e-mail message.
- If the E-mail Send Authentication setting is set to SMTP AUTH, then an additional setting labeled SMTP AUTH Login Name will appear on page 5 of the report along with the Log in name that the machine will use. The customer must verify the Log in name listed on the report. A Password may also have been entered into the machine, however, it will not be listed on the report.
_ \quad Set to POP3 AUTH if the customer wants the machine to authenticate or log in to their POP3 server using a POP3 log in name and password prior to sending the e-mail message.
- If the E-mail Send Authentication setting is set to POP3 AUTH, then have the customer verify the Login Name that is listed under the header POP3 Server on page 5 on the report. A POP3 Password may also have been entered into the machine, however, it will not be listed on the report.

The customer confirmed that the Email / Internet Fax settings are correct.

Y \mathbf{N}
If the customer is not available or has confirmed that the settings are not correct, then they must confirm that the settings are correct or they must enter the correct settings into the machine before any further troubleshooting can be done.

Escalate to your next level of support.

For Network Scanning failures, perform the following:

Use the procedure in GP 14 to configure your PWS as a "scan server" and then use the Network Scanning feature on the machine to scan a document into your PWS.

The fault 16-781 is displayed when scanning using GP 14.

Y N

The cause for the fault is either on the customer's network or with the settings in the machine. Press the [All Services] button on the machine Control Panel, then select the [Network Scanning] button on the Touch screen. There is at least one Template listed. Y N

Have the customer demonstrate how they are scanning and how they get the fault to occur. The customer is selecting the [Scan to FTP/SMB] button after pressing the [All Services] button.
Y N
Have the customer contact the Customer Support Center for help with properly configuring their machine for Network Scanning.

The Scan to FTP/SMB feature allows the customer to manually enter the destination server settings at the machine UI prior to scanning a document rather than using a previously created Template. If a fault is occurring when they use this feature, then they are either entering the wrong IP address or Host Name of their destination server or the server is not capable of accepting a connection from the machine. Refer the customer to the WC7132 User Guide for details on using this feature and to ensure that they are entering their settings correctly.

Select each one of the listed Templates and press the <Start> button to determine if the fault only occurs when certain Templates are used.

NOTE: Templates that prompt for a password were created as "Private" Templates, which require that a password be entered at the machine UI before the scanning job will start.

The fault occurs with at least one of the listed Templates

Y N
Have the customer demonstrate how they get the fault to occur.
Templates are created using one of two methods: Templates with the @ sign to the left of their name were created using the machine's CentreWare Internet Services web interface; Templates that have no @ sign in their name were created using the Smart Send software. The next step is to determine if the Templates that create the fault are of the same type. The fault occurs when selecting Templates with the @ symbol to the left of the Template name.
Y $\quad \mathbf{N}$
Templates that do not have the @ sign in their name were created using the Smar Send software. Escalate to your next level of support for help with this type of Template.

The top of the machine's Touch screen will display previously programmed settings for each highlighted Template including an IP address or Host name followed by a colon (: and either number 21 or 139 . Highlight one of the Templates that generate the fault and look at the "Job Template" settings associated with the Template. The "Job Template" setting contains an IP address or Host name followed by:21 or:139.
Y N
Refer the customer to the section titled "CentreWare Internet Services" in the WC7132 User Guide for information on properly configuring the machine's Reposi tory settings or have the customer contact the Customer Support Center to get help.

Perform each of the following steps in order:

1. Print a Print Mode System Settings list report.
2. Check the SMB section on page 5 of the report for the following:

- The Host Name setting must have no spaces in the name and no periods (.), slashes (/ or
) or star symbols (*) in the name. If the Host Name has a space in it or has any of these symbols, have the customer change the Host Name to eliminate these items.

3. Have the customer confirm that the Default File Destination section and all Alternate File Destination sections listed on page 5 of the report contain the correct settings for their network, including:

- The Protocol setting must be set to either FTP or SMB.
- The Server setting must contain either the IP address or SMB Host Name of the destination Scan server.

NOTE: If the Host Name of the Scan server is entered into the machine, then the machine must be configured with the customer's DNS settings (listed on page 3 of the report).

The customer confirmed that the File Destination settings are correct.

Y N
The customer must enter the correct File Destination settings into the machine using the machine's Centreware Internet Services Web Interface. Refer the customer to the section titled "CentreWare Internet Services" in the WC7132 User Guide for details.

Have the customer create a new Template and associate the Template with the Defaul File Destination. The same fault is displayed when the new Template is used.

Y N
The same fault is displayed when the new Template is used
Escalate to your next level of support.
There is a machine problem. Perform the following:

- Reload the system software
- Refer to GP 13 to delete all Templates and Repository settings. Then, refer the customer to the section titled "CentreWare Internet Services" in the WC7132 User Guide for details on how to recreate the Templates and re-enter the Repository settings
- Re initialize the NVM by selecting the SYS-SYSTEM and SYS-USER NVM platforms.

016-782 Scan Server Login Error RAP

The machine was unable to log in successfully to the Scan Server during the Network Scanning file transfer operation.

Procedure

The customer can print to the machine through the Ethernet port on the machine.
Y $\quad \mathrm{N}$
Confirm that the Ethernet network drop cable is securely connected to the machine and the wall port. The recessed green LED next to the Ethernet port on the machine should be lit if the machine is connected to a live Ethernet drop. The green LED is lit.
Y $\quad \mathbf{N}$
Connect another Ethernet straight through cable between the machine and the wall port and have the customer confirm that the wall port is live.
If the port is live, connect the CSE PWS to the Ethernet port using an Ethernet crossover cable to see if the green LED will light up with the machine and PWS fully booted up.
If the LED is still off, replace the Printer PWB in the machine.
Verify that the machine has the correct TCP/IP settings with the customer. The cause of the printing problem is likely to be the cause for the Scanning failure as well.

Press the [All Services] button on the machine Control Panel, then select the [Network Scanning] button on the Touch screen. There is at least one Template listed.
Y \mathbf{N}
Have the customer demonstrate how they are scanning and how they get the fault to occur. The customer is selecting the [Scan to FTP/SMB] button after pressing the [All Services] button.
Y \mathbf{N}
Have the customer contact the Customer Support Center for help with properly configuring their machine for Network Scanning.

The Scan to FTP/SMB feature allows the customer to manually enter the destination server settings at the machine UI prior to scanning a document rather than using a previously created Template. If a fault is occurring when they use this feature, then they are either entering the wrong IP address or Host Name of their destination server or the server is not capable of accepting a connection from the machine. Refer the customer to the WC7132 User Guide for details on using this feature and to ensure that they are entering their settings correctly.

Disconnect the Ethernet network cable from the machine. Select one of the Templates and scan a document with the network cable disconnected. The same fault (16-782) is displayed.
$\mathbf{Y} \quad \mathrm{N}$
Use the procedure in GP 14 to configure your PWS as a "scan server" and then use the Network Scanning feature on the machine to scan a document into your PWS. The fault $\mathbf{1 6 - 7 8 2}$ is displayed when scanning to your PWS.
Y $\quad \mathrm{N}$
The cause for the customer's problem is either on the customer's network or with the settings in the machine.
Reconnect the customer's network cable to the machine. Select each one of the listed Templates and press the [Start] button.

NOTE: Templates that prompt for a password were created as "Private" Templates, which require that a password be entered at the machine UI before the scanning job will start.

The fault occurs with at least one of the listed Templates.

Y N

Have the customer demonstrate how they get the fault to occur.
Templates are created using one of two methods: Templates with the @ sign to the left of their name were created using the machine's CentreWare Internet Services web interface; Templates that have no @ sign in their name were created using the Smart Send software. The next step is to determine if the Templates that create the fault are of the same type. The fault occurs when selecting Templates with the @ symbol to the left of the Template name.
Y N
Templates that do not have the @ sign in their name were created using the Smart Send software. Escalate to your next level of support for help with this type of Template.

Highlight one of the Templates that generate the fault and select the Output Format tab on the Touch screen. This will display the Log In name associated with the Template as well as a Password field that will either have a string of stars in it that represent the password or will show [Not Set].
Select the [Log In] button, remove the existing Log In name, type in the name anonymous and select the [Save] button. Then select the [Password] button, remove all stars so that the password is blank and select the [Save] button. Press the <Start> button to attempt a Network Scanning job. The job is successfully transferred to the server.
Y N
A person with knowledge of the customer's network is available.
Y N
Escalate to your next level of support.
Press the <Clear All> button to restore the original Log In name and Password. Highlight the Template and select the Output Format tab on the Touch screen. Have the network person type in the correct Log In name and either type in the correct Password or remove the Password that is displayed. Then press the <Start> button to attempt a Network Scanning job. The job is successfully transferred to the server.
Y N
Escalate to you next level of support.
The Log In Name and/or Password that are set in the selected Template are incorrect. Refer the customer to the WC7132 User Guide for details on editing the Repository settings of the selected Template to enter the correct Log In Name and/or Password.

The Log In Name and/or Password that are set in the selected Template are incorrect. Refer the customer to the WC7132 User Guide for details on editing the Repository settings of the selected Template to enter the correct Log In Name and/or Password.

If the 16-782 fault does not occur when disconnecting the customer's network cable and attempting a scan job but the 16-782 fault does occur when the machine is connected to the PWS, then there is likely a set up problem when using the GP 14 procedure. Escalate to your next level of support.

There is a machine problem. Perform the following steps, in order:

- Reload the system software
- Refer to GP 13 to delete all Templates and Repository settings. Then, refer the customer to the section titled "CentreWare Internet Services" in the WC7132 User Guide for details on how to recreate the Templates and re-enter the Repository settings.
- Re initialize the NVM by selecting the SYS-SYSTEM and SYS-USER NVM platforms.

016-783 Invalid Server Path RAP

The specified path cannot be found during Scan to Server file transfer.

Procedure

Check the server path name specified in the job template.
If this code appears while using CentreWare Scan Service, refer to the 'CentreWare Scan Service Installation Guide'.

016-784 Server Write Error RAP

The Server cannot be written to during Scan to Server file transfer.

Procedure

Check that "Write Authorization" is established in the Server directory.
Free up space on the Server disk.
If this code appears while using CentreWare Scan Service, refer to the 'CentreWare Scan Service Installation Guide'.

016-785 Server HD Full RAP

The Server File System became full during Scan to Server file transfer.

Procedure

Check that "Write Authorization" is established in the Server directory.
Remove unnecessary data from the server hard drive to free up space on the Server disk.
If this code appears while using CentreWare Scan Service, refer to the 'CentreWare Scan Service Installation Guide'.

016-786 HD Full-Scan Write Error RAP

A temporary file in Scan to Server file transfer cannot be written to the internal HDD.

Procedure

The HDD may be temporarily full with print jobs. Wait and retry.
Format the HDD.
Replace the HDD (PL 11.2).

016-788 Retrieve to Browser RAP

Failed to retrieve a file from the Web browser.

Procedure

Take one of the following actions, and try again.

- Reload the browser page.
- Restart the browser.
- Power Off/On.

016-789 HD Full - Job Memory RAP

During iFax or sending mail designated for forwarding, the send module (Redirector) attempted to send data exceeding the System Data [Upper Limit of Data Size for Scan to E-mail] to the internet.

Procedure

Decrease the send parameter for resolution (send image quality) and resend.
Reduce the image using the send parameter and resend (e.g. A3 to A4).
Change the [Upper Limit of Data Size] setting in the Specifications Settings Screen on the UI Panel (default 2MB recommended).

016-790 Stapling Cancelled RAP

Stapling is cancelled

Procedure

No action required. Stapling is cancelled by the customer.

016-791 File Retrieve RAP

Failed to access the forwarding destination or the job template save location with [Scan to FTP/SMB] or [Job Template].

Procedure

Check whether you can access the server specified by the forwarding destination.

016-792 Specified Job RAP

Failed to get the job history report specified in [Job Counter Report].

Procedure

The specified job history does not exist.

016-793 MF I/O HD Full RAP

Free space is insufficient on the hard disk.

Procedure

Either remove unnecessary data from the hard disk to increase free disk space, or initialize the hard disk.

016-798 No Trust Marking Option RAP
Unable to print the document because a HDD is disconnected.

Procedure

Install/reattach the HDD (PL 11.2) and print again.

016-799 PLW Print Instruction RAP

An invalid print parameter is included.

Procedure

Check the print data and options, and print again.

016-981 HDD access error RAP

HDD Full was detected because Mailbox Scan, Fax Scan, Secure Print, Delay Print, Sample Print, or Scheduled Print was specified when the HDD partition/ide0c capacity is small.

Print Job only prints the jobs stored in the HD, so this Fault does not occur for [Job Fail 016748].

Procedure

1. Split the job into pages in order to prevent FULL state. Reduce the resolution if possible.
2. Delete documents that are no longer needed, such as: Mailbox documents, FAX Send Wait documents, Secure Print documents and Delayed Print documents. Make sure that there is space in the HDD before re-scanning and re-printing.

When the procedures above did not work, expand the HDD partition size for the corresponding service that needs it.

016-982 HDD access error 2 RAP

HDD was determined to be Full due to collate, stored or interrupted jobs.

Procedure

Process or delete the jobs (documents) stored in the same HDD partition, and repeat the operation.

If the above procedures do not resolve the problem, expand the HDD partition size of the relevant service.

016-983 Log Image Storage Area on Disk Full RAP

This is prepared for the user to interfere and cancel a copy/scan job when the log image storage area on the disk becomes full with the level of ensuring creation set to [High].

Procedure

Press the Cancel Job button to cancel the job.

Rerun the job.

If the situation is the same despite some re-attempts, delete unnecessary documents saved in the device or change the level of ensuring creation (to Low). However, if the level is set to Low, log image creation cannot be ensured.

016-985 Data size overflow (Scan to E-mail) RAP

Due to data size exceeding the upper limit for Scan to E-mail, data could not be sent.

Procedure

Take one of the following actions, and try again:

- Reduce the number of document pages.
- Reduce the resolution in [Scan Resolution].
- Decrease the ratio in [Reduce/Enlarge].
- For multivalued scanning, increase the ratio in [Image Compression].
- Ask the System Administrator to increase the value for [Maximum E-mail Size].

018-505 SMB-DOS protocol error RAP

Unable to authenticate due to an incorrect user name or password.SMB

Procedure

Check the user name and password with the system administrator.
Note: The password cannot be verified. If you have forgotten the password, reset the password.

018-543 Shared name error in SMB server RAP
A shared name on the SMB scan server is wrong.

Procedure

Check what the specified shared name is and enter the correct one.

018-547 Number restriction over of SMB scan users RAP

The limited number of SMB scan users is exceeded.

Procedure

1. Check what the limited number of users that can connect to a shared folder is.
2. Check that the number of users that use the server simultaneously is not over max.

018-595 LDAP protocol error RAP

Attestation Server detected a duplicated user. (LDAP)

Procedure

Correct the user entered in database on the LDAP server so that it does not have the same IC card info as any other user.

018-701 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-702 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-703 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-704 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-705 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-706 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-707 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-708 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-710 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-711 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-712 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-713 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-714 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-716 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-717 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-718 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-719 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-720 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-721 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are present. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-732 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-733 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-734 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-735 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-736 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-748 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-749 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-750 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-751 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-752 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-753 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-754 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-764 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-765 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-766 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-767 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-768 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-769 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-770 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-771 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-780 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-781 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-782 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-783 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-784 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-785 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-786 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-787 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
${ }^{Y} \quad \mathrm{~N}$
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-788 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-789 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-790 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-791 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-792 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-793 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-794 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-795 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y N
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-796 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
Y \mathbf{N}
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

018-797 LDAP RAP

There is an error in the Lightweight Directory Access Protocol.

Procedure

Verify that print jobs are printing or print a Configuration Report and verify that network setup settings are indicated. The printer is operational or the Config Report indicates valid network settings.
$\mathbf{Y} \quad \mathbf{N}$
Check for damage with the network connection. If there is no damage then there is a problem with the network. Tell the customer that the network requires service.

There is a problem with the LDAP setups on the machine or with the remote LDAP server. Ask the customer to verify the machine LDAP setups. If OK then there is a problem with the remote LDAP server.

021-360 EP Accessory Failure RAP

An error occurred in the connection to the EP accessory. The accessory that was supposed to be installed is not present

Procedure

Check the connections and P/Js on the ESS PWB (PL 11.2) and check that any accessory PWB's are installed securely.

If the problem persists, reload Software (ADJ 9.3.1).

021-361 EP Accessory Kind Configuration Error RAP

The System Data 850-007 is set to 0 (Off) during connection to conventional countdown EP related accessories.

Procedure

Check that the System Data 850-007 is set correctly
If it is set correctly, perform the following
Reload Software (ADJ 9.3.1).

If the problem persists, pull out and insert the EPSV board and check the P/Js.

If the problem persists, replace the ESS PWB (PL 11.2).

021-731 EP Accessory - Function Disabled RAP

When MDSS is connected and color copying is prohibited using the Coin Kit, a color copy job was requested.

Procedure

Check the settings

021-732 EP Accessory - Service Canceled By Disable RAP
With an accessory installed, there was a missing card, insufficient fee paid or a shortage of card value.

Initial Actions
Power OFF/ON

Procedure

Insert a Xerox card, copy card or cash into the accessory and ensure that there are sufficient fees or card value.

021-733 EP Accessory - Service Canceled By Color Mode Restriction RAP
With an accessory installed, there was Color Mode Restriction or the upper limit was reached.

Initial Actions

Power OFF/ON

Procedure

Operate the Color Mode Restriction Key SW to enable Color mode. Or, replace the card with another card that does not reach the upper limit in Color mode.

021-750 Used Parts Request Failure (EP-SV) RAP

When the Used Parts Collection Order was processed, an error was notified by the EP-SV.

Initial Actions

Power OFF/ON

Procedure

Contact the Service Center.

021-751 Maintenance Request Failure (EP-SV) RAP
When an Inspection/Repair/Preliminary Diagnostic Request was processed, an error was notified by the EP-SV.

Initial Actions
Power OFF/ON

Procedure

Check that the telephone line is connected. Wait and send the request again.

021-770 Used Parts Request Failure (EP-DX) RAP

The Used Parts Collection Order could not be processed due to a busy line

Initial Actions

Power OFF/ON

Procedure

Contact the call center.

021-771 Maintenance Request Failure (EP-DX) RAP
The Inspection/Repair/Preliminary Diagnostics Request could not be processed due to a busy line.

Initial Actions
Power OFF/ON

Procedure

Check that the telephone line is connected. Wait and send the request again.

021-772 EP-DX - Installation/Removal Failure RAP
Installation and removal could not be executed due to a busy line.
Initial Actions
Power OFF/ON

Procedure

Ask for the connection to be made idle.

021-941 EP - Scan Service Paused By Disable RAP

With an accessory installed, there was a missing card, insufficient fee paid or a shortage of card value.

Initial Actions
Power OFF/ON

Procedure

Insert a Xerox card, copy card or cash into the accessory and ensure that there are sufficient fees or card value.

021-942 EP - Scan Service Paused By Color Mode RAP

With an accessory installed, there was Color Mode Restriction or the upper limit was reached.

nitial Actions

Power OFF/ON

Procedure

Operate the Color Mode Restriction Key SW to enable Color mode. Or, replace the card with another card that does not reach the upper limit in Color mode.

021-943 EP - Print Service Paused By Disable RAP

With an accessory installed, there was a missing card, insufficient fee paid or a shortage of card value.

Initial Actions
Power OFF/ON

Procedure

Insert a Xerox card, copy card or cash into the accessory and ensure that there are sufficient fees or card value.

021-944 EP - Print Service Paused By Color Mode RAP

With an accessory installed, there was Color Mode Restriction or the upper limit was reached.

nitial Actions

Power OFF/ON

Procedure

Operate the Color Mode Restriction Key SW to enable Color mode. Or, replace the card with another card that does not reach the upper limit in Color mode.

021-945 EP - Service Paused By Disable RAP

With an accessory installed, there was a missing card, insufficient fee paid or a shortage of card value.

Initial Actions
Power OFF/ON

Procedure

Insert a Xerox card, copy card or cash into the accessory and ensure that there are sufficient fees or card value.

021-946 EP - Service Paused By Color Mode RAP

With an accessory installed, there was Color Mode Restriction or the upper limit was reached.

nitial Actions

Power OFF/ON

Procedure

Operate the Color Mode Restriction Key SW to enable Color mode. Or, replace the card with another card that does not reach the upper limit in Color mode.

024-340 IOT-ESS Communication 1 RAP

 BSD-ON:3.1/16.1An abnormal parameter is set for the send function.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).

024-341 IOT-ESS Communication 2 RAP

BSD-ON:3.1/16.1

A transmission failure occurred, the Sequencing number of the sent Message Packet is incorrect.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the MCU PWB (PL 11.1).

024-342 IOT-ESS Communication 3 RAP

 BSD-ON:3.1A transmission failure occurred, the Packet number of the sent Message Packet is incorrect.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-343 IOT-ESS Communication 4 RAP

BSD-ON:3.1

A transmission failure occurred, the Message Length of the sent Message Packet is incorrect.
Initial Actions
Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-345 IOT-ESS Communication 5 RAP

 BSD-ON:3. 1A transmission failure occurred when the Check Code of the sent Message Packet is incorrect.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-346 IOT-ESS Communication 6 RAP BSD-ON:3.1

A transmission failure occurred, a parity error was detected by hardware in the IOT.
Initial Actions
Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-347 IOT-ESS Communication 7 RAP

 BSD-ON:3.1/16.1The ESS PWB detected a communication error between the IOT and the ESS.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-348 IOT-ESS Communication 8 RAP

BSD-ON:3.1/16.1

The ESS PWB detected a communication error between the IOT and the ESS.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-349 IOT-ESS Communication 9 RAP

 BSD-ON:3.1A transmission failure occurred as the acknowledgement could not be received after 2 resend attempts. (After header recognition, receive interruption was detected by the IOT.)

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-350 IOT-ESS Communication 10 RAP

BSD-ON:3.1

The NAK that notifies of the occurrence of a transmission failure is received. (The Sequencing number of the received Message Packet is incorrect.)

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-351 IOT-ESS Communication 11 RAP

 BSD-ON:3.1The NAK that notifies of the occurrence of a transmission failure is received. (The Packet number of the received Message Packet is incorrect.)

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-354 IOT-ESS Communication 14 RAP

BSD-ON:3.1
The NAK that notifies of the occurrence of a transmission failure is received. (A parity error was detected by hardware of the UART.)

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.
If the problem persists reload Software (ADJ 9.3.1).

024-356 IOT-ESS Communication 16 RAP

 BSD-ON:3.1/16.1A transmission failure is received, an overrun error was detected by hardware of the UART.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-360 IOT-ESS Initialization RAP

BSD-ON:

The IOT and ESS failed to initialize

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-362 Page Sync Start RAP

BSD-ON:3.1/16.1

During IOT output, before the output data was written to FIFO Full (first in first out), Page Sync activated.

Initial Actions

Power Off/On

Procedure

Electrical noise on the power circuit for the machine may be excessive. Verify the ground connections on the ESS Chassis.

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-363 Page Sync Stop RAP

BSD-ON:3.1/16.

During IOT output, before output in the specified size, Page Sync was disabled.

Initial Actions

Move away machines that are noisy.

Procedure

Electrical noise on the power circuit for the machine may be excessive. Verify the ground connections on the ESS Chassis.

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists reload Software (ADJ 9.3.1).

024-364 DMA Transfer RAP

Reduction/enlargement failed to access the data in Direct Memory Access.

Procedure

NOTE: There is a high probability that the cause is faulty firmware or data corruption (DIMM or HDD).
Reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists, replace the DIMM (PL 11.2).
If the problem persists, replace the HDD (PL 11.2).

024-367 Decompression Synchronization RAP

BSD-ON:3.1/16.1

Incorrect line synchronization was detected.

Initial Actions

Power Off/On

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the DIMM (PL 11.2).
If the problem persists, replace the HDD (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

024-368 PCI RAP

BSD-ON:3.1/16.1

PCl access error occurred due to a faulty PCl bus.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

024-370 Marker Code Detection RAP

BSD-ON:3.1/16.1

During Enlarge, when the file was enlarged only by the specified size, the end code (FF02) cannot be found in the compressed data.

Procedure

The problem occurs only for specific documents.
Y N
Perform following as required:

1. Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.
2. Replace the DIMM (PL 11.2).
3. Perform Hard Disk Diagnostic Program. If the problem persists, replace the HDD (PL 11.2)
4. Replace the ESS PWB (PL 11.2).

Perform following as required:

1. Reload Software (ADJ 9.3.1).
2. Change the Print mode (Norma//High Quality/High Resolution).
3. Change the port settings or the Receive Buffer size.)

024-371 IOT-ESS Communication 21 RAP

 BSD-ON:3.1/16.1When the Controller and IOT are turned On, a response from the IOT to a request to establish communications was not detected within the specified time.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).
If the problem persists, replace the MCU PWB (PL 11.1).

024-372 IOT-ESS Communication 22 RAP

BSD-ON:3.1/16.1

An illegal instruction for IOT Port number or time-out timing or the pointer or transfer size was detected.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the MCU PWB (PL 11.1) If the problem persists, replace the ESS PWB (PL 11.2).

024-373 IOT-ESS Communication 23 RAP

 BSD-ON:3.1/16.1In response to a message packet from the Controller, the acknowledgement packet was not received within the specified time even after the specified number of attempts.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).
If the problem persists, replace the MCU PWB (PL 11.1) If the problem persists, replace the ESS PWB (PL 11.2).

024-375 IOT-ESS Communication 24 RAP

BSD-ON:3.1/16.1

An illegal instruction for IOT Port number or time-out timing or for the pointer or for transfer size was detected.

Procedure

Check that P/Js 402 on the MCU PWB (PL 11.1) and P/J 310 on the ESS PWB (PL 11.2) are securely connected.

If the problem persists, reload Software (ADJ 9.3.1).

024-600 Billing Master Counter RAP

 BSD-ON:There is a billing master counter error RAP

Procedure

Perform GP 4 Replacing Billing PWBs.

024-601 Billing Backup Counter 1 RAP

 BSD-ON:There is a billing backup counter error RAP

Procedure

Perform GP 4 Replacing Billing PWBs.

024-602 Billing Backup Counter 2 RAP BSD-ON:

There is a billing backup counter error RAP

Procedure

Perform GP 4 Replacing Billing PWBs.

024-603 Software Key Master Counter RAP

 BSD-ON:There is a software key master counter error RAP

Procedure

A procedure is not available at time of publication.

024-604 Software Key Backup Counter 1 RAP BSD-ON:

There is a software key backup counter 1 error RAP

Procedure

A procedure is not available at time of publication.

024-605 Software Key Backup Counter 2 RAP BSD-ON:

There is a software key backup counter 2 error RAP

Procedure

A procedure is not available at time of publication.

024-747 Print Instruction RAP

Error in the combination of print parameters (stored file size, paper size, source paper tray duplexing, output destination).

Procedure

The center tray will not receive output, and output goes to Finisher (if Finisher is available).
$Y^{\mathbf{N}}$
Go to Service Call Procedures.
Key operator is available to change settings.
N
NOTE: Service procedure to restore output capability to center tray on Top Cover (PL 10.1).

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics).
b. Access Diagnostic Routines (Accessing Diagnostic routines).
2. Select NVM Read/Write.
3. Enter Chain-Link 742-261
4. Select Confirm.

NOTE: Display now shows Current Value (Zero)
5. To enter new value (one), press 1 on the numeric keypad, then Select Save NOTE: The Current Value now reads 1.
6. Select Close.
7. Select Close again. Power off and on if the setting is not active.

NOTE: Customer procedure to restore output capability to center tray on Top Cover (PL 10.1)

1. Press the Log In / Out Button on the Control Panel and enter (five one's) 11111 using the number keypad and select Confirm.
2. Select System Settings.
3. Select System Settings again.
4. Select Common Settings.
5. Select Other Settings.
6. Select Change Setting.
7. Select Offset Stacking Module.
8. Select Save.
9. Select Close
10. Select Close again.
11. Select Close again.
12. Select Exit. Power off and on if the setting is not active.

024-910 Tray 1 size mismatch RAP

BSD-ON:8.7

After feeding from Tray 1, the lengths detected by the Registration Sensor and the Tray 1 Size Switch did not match

Initial Actions

- Reload the tray.

Procedure

Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Feed paper from another tray. The problem occurs when paper is fed from another tray.
Y \mathbf{N}
Check the guide. The guide is set correctly.
Y \mathbf{N}
Set the guide correctly.
Check the operation of the Guide Actuator. The Guide Actuator works.
Y N
Set the guide correctly.
Check the installation of the Tray 1 Paper Size Switch. The Tray 1 Paper Size Switch is installed correctly.
Y N
Install the Tray 1 Paper Size Switch (PL 2.1) correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connection of P/J106. P/J106 is connected correctly.
Y N
Connect P/J106.
Check the wire between J106 and J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wire between J106 and J405 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P405A-8 (+) and GND (-) (BSD 8.7 Flag 2). The voltage is approx. +5 VDC .
$Y \quad N$
Replace the MCU PWB (PL 11.1)

A B
Measure the voltage between the MCU PWB P405A-7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.
Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1)
Replace the MCU PWB (PL 11.1).

024-911 Tray 2 size mismatch RAP

BSD-ON:8.7

After feeding from Tray 2, the lengths detected by the Registration Sensor and the Tray 2 Size Switch did not match

Initial Actions

- Reload the tray.

Procedure

Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Feed paper from another tray. The problem occurs when paper is fed from another tray.
Y \mathbf{N}
Check the guide. The guide is set correctly.
Y N
Set the guide correctly.
Check the operation of the Guide Actuator. The Guide Actuator works.
Y N
Set the guide correctly.
Check the installation of the Tray 2 Paper Size Switch. The Tray 2 Paper Size Switch is installed correctly.
Y N
Install the Tray 2 Paper Size Switch (PL 14.1) correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
Y \mathbf{N}
Check the connection of P/J106. P/J106 is connected correctly.
Y N
Connect P/J106.
Check the wire between J106 and J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wire between J104 and J403 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P405A-8 (+) and GND (-) (BSD 8.7 Flag 2). The voltage is approx. +5 VDC .
$Y \quad N$
Replace the MCU PWB (PL 11.1).

A B
Measure the voltage between the MCU PWB P405A-7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.
Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1)
Replace the MCU PWB (PL 11.1).

024-912 Tray 3 size mismatch RAP

BSD-ON:8.7

After feeding from Tray 3, the lengths detected by the Registration Sensor and the Tray 3 Size Switch did not match

Initial Actions

- Reload the tray.

Procedure

Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.Clear away the foreign substances and paper powder. Correct the distortion.

Feed paper from another tray. The problem occurs when paper is fed from another tray. $Y \quad N$

```
Check
```

N
Set the guide correctly.
Check the operation of the Guide Actuator. The Guide Actuator works.
Y N
Set the guide correctly.
Check the installation of the Tray 3 Paper Size Switch. The Tray 3 Paper Size Switch is installed correctly.
Y N
Install the Tray 3 Paper Size Switch (PL 14.1) correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
Y \mathbf{N}
Check the connection of P/J106. P/J106 is connected correctly.
N
Connect P/J106.
Check the wire between J106 and J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wire between J106 and J405 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P405A-8 (+) and GND (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
A B

024-916 Mix Full Stack RAP

BSD-ON:12.8

The output paper stacked on the Finisher Stacker Tray reaches capacity (for the same paper size only).

Initial Actions

- Power Off/On

Procedure

Check the tray raise/lower mechanism for foreign substances and distortion. No distortion or foreign substances are found in the tray raise/lower mechanism.
Y N
\mathbf{N}
Clear away the foreign substances. Correct the distortion.

Execute Component Control [012-267 Stack Height Sensor]. Actuate the Stack Height Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of P/J8815, P/J8825 and P/J8850. P/J8815, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8815, P/J8825 and P/J8850.
Check the wire between J 8815 and J 8850 for an open circuit or a short circuit (BSD 12.8 Flag 1/Flag 2). The wire between J8815 and J8850 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850B-6 (+) and GND (-) (BSD 12.8 Flag 2). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850B-5 (+) and GND (-) (BSD 12.8 Flag 2).
Actuate the Stack Height Sensor with paper. The voltage changes.
N
Replace the Stack Height Sensor (PL 17.5).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor starts up.
Y N
Check the connections of $P / J 8847$ and $P / J 8827$. $P / J 8847$ and $P / J 8827$ are connected correctly.

Y N

Connect P/J8847 and P/J8827.

A B
Check the wire between J8847 and P8827 for an open circuit or a short circuit (BSD 12.8 Flag 5). The wire between J8847 and P8827 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Stacker Motor (PL 17.10) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-917 Stacker Tray Staple Set Over Count RAP

 BSD-ON:12.9The number of stapled copies exceeded the capacity of the Stacker Tray.

Initial Actions

- Power Off/On

Procedure

Check the connection of each Finisher PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. [024-917] reoccurs.
N
Return to Service Call Procedures.
Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1),

024-919 Face UP Tray Close RAP

When output was sent to the Face Up Tray, the Face Up Tray was detected as closed.

Initial Actions

Open the Face Up Tray.

Procedure

Check that the P/Js on the MCU PWB (PL 11.1) are securely connected.

024-920 Face Down Tray 1 Paper Full RAP

 BSD-ON:There is no description available at time of publication.

Procedure

There is no procedure available at time of publication.

024-922 Face Down Tray 1 Paper Full RAP BSD-ON:

There is no description available at time of publication.

Procedure

There is no procedure available at time of publication.

024-923 Y Toner Empty

Y Toner Cartridge is Empty.

Initial Actions

Check the following:

- Replace the Y Toner Cartridge if empty (PL 5.2)
- Ensure that the Y Toner Cartridge is inserted properly
- For Y Toner spills in the machine

Procedure

Check for Image Quality Defects. An Image Quality Defect is present
Y \mathbf{N}
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
The Defect is Low Image Density or Uneven Density.
Y N
The Defect is Background.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
Go to IQ6 and troubleshoot IOT Background.
Go to IQ3 and troubleshoot Low Image Density or Uneven Density.

024-924 M Toner Empty

M Toner Cartridge is Empty.

Initial Actions

Check the following:

- Replace the M Toner Cartridge if empty (PL 5.2)
- Ensure that the M Toner Cartridge is inserted properly
- For M Toner spills in the machine

Procedure

Check for Image Quality Defects. An Image Quality Defect is present.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
The Defect is Low Image Density or Uneven Density.
Y N
The Defect is Background.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
Go to IQ6 and troubleshoot IOT Background.
Go to IQ3 and troubleshoot Low Image Density or Uneven Density.

024-925 C Toner Empty

C Toner Cartridge is Empty.

Initial Actions

Check the following:

- Replace the C Toner Cartridge if empty (PL 5.2)
- Ensure that the C Toner Cartridge is inserted properly
- For C Toner spills in the machine

Procedure

Check for Image Quality Defects. An Image Quality Defect is present.
Y \mathbf{N}
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
The Defect is Low Image Density or Uneven Density.
Y N
The Defect is Background.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions
Go to IQ6 and troubleshoot IOT Background.
Go to IQ3 and troubleshoot Low Image Density or Uneven Density.

024-928 Scratch Sheet Compile RAP

Defective paper (Scratch Sheet), which is informed by IOT with Sheet Exit command, is output to Complier.

Procedure

Check that the Top Cover Interlock is closed.

024-930 Stacker Tray Full RAP

BSD-ON:12.8

The output paper stacked on the Finisher Stacker Tray reaches capacity (for mixed paper size)

Initial Actions

- Power Off/On

Procedure

Check the tray raise/lower mechanism for foreign substances and distortion. No distortion or foreign substances are found in the tray raise/lower mechanism.
Y N
Clear away the foreign substances. Correct the distortion.
Execute Component Control [012-267 Stack Height Sensor]. Actuate the Stack Height Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8815, P/J8825 and P/J8850. P/J8815, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8815, P/J8825 and P/J8850.
Check the wire between J8815 and J8850 for an open circuit or a short circuit (BSD 12.8 Flag 1/Flag 2). The wire between J8815 and J8850 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850B-6 (+) and GND (-) (BSD 12.8 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850B-5 (+) and GND (-) (BSD 12.8 Flag 2).
Actuate the Stack Height Sensor with paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 17.5).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor (PL 16.10starts up.
Y $\quad N$
Check the connections of $P / J 8847$ and $P / J 8827$. $P / J 8847$ and $P / J 8827$ are connected correctly.
Y N
Connect P/J8847 and P/J8827.

A B
Check the wire between J8847 and P8827 for an open circuit or a short circuit (BSD 12.8 Flag 5). The wire between J8847 and P8827 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Stacker Motor (PL 16.10) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-934 Paper Type Mismatch RAP

BSD-ON:

There is no description available at time of publication.

Procedure

There is no procedure available at time of publication.

024-946 Tray 1 Position RAP

BSD-ON:7. 1

The Tray 1 Paper Size Switch detected no tray.

Initial Actions

- Reload the tray correctly.
- Check the operation of the tray actuator.

Procedure

(TM)
Remove Trays 1 and 2. Replace Tray 1 with Tray 2. [024-946] occurs.
Y N
Replace the faulty part of the Tray 1 Actuator.
Check the installation of the Tray 1 Paper Size Switch. The Tray 1 Paper Size Switch is installed correctly.
Y N
Install the Tray 1 Paper Size Switch correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).

024-947 2TM Tray 2 Position RAP

 BSD-ON:7.3The Tray 2 Paper Size Switch detected no tray.

Initial Actions

- Install the tray correctly.
- Check the operation of the tray actuator.

Procedure

Check the installation of the Tray 2 Paper Size Switch. The Tray 2 Paper Size Switch is installed correctly.
Y N
Install the Tray 2 Paper Size Switch correctly.
Check the connections of $\mathrm{P} / \mathrm{J} 820$ and $\mathrm{P} / \mathrm{J} 548$ (BSD 7.3). Connectors are connected correctly.
Y N
Connect P/J820 and P/J548.
Check the wire between J820 and J548 for an open circuit or a short circuit (BSD 7.3). The wire between J820 and J548 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P548-14 (+) and GND (-) (BSD 7.3). The voltage is approx. +3.3VDC.
Y \mathbf{N}
Replace the Tray Module PWB (PL 14.7).
Measure the voltage between the Tray Module PWB P548-13 (+) and GND (-) (BSD 7.3). Move the actuator of the Tray 2 No Paper Sensor. The voltage changes.
Y N
Replace the Tray 2 No Paper Sensor (PL 14.1).
Replace the Tray Module PWB (PL 14.7).

024-947 TTM Tray 2 Position RAP

BSD-ON:7.5

The Tray 2 Paper Size Switch detected no tray.

Initial Actions

- Install the tray correctly.
- Check the operation of the tray actuator.

Procedure

Check the installation of the Tray 2 Paper Size Switch. The Tray 2 Paper Size Switch is installed correctly.
Y N
Install the Tray 2 Paper Size Switch correctly.
Check the connections of P/J820 and P/J548 (BSD 7.3). Connectors are connected correctly.
Y N
Connect P/J820 and P/J548.
Check the wire between J820 and J548 for an open circuit or a short circuit (BSD 7.5). The wire between J820 and J548 is conducting without an open circuit or a short circuit. Y N

Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P548-14 (+) and GND (-) (BSD 7.5). The voltage is approx. +3.3 VDC .
Y N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P548-13 (+) and GND (-) (BSD 7.3). Move the actuator of the Tray 2 No Paper Sensor. The voltage changes.
Y N
Replace the Tray 2 No Paper Sensor (PL 15.1).
Replace the Tray Module PWB (PL 15.9).

024-948 2TM Tray 3 Position RAP

 BSD-ON:7.5The Tray 3 Paper Size Switch detected no tray.

Initial Actions

- Install the tray correctly.
- Check the operation of the tray actuator.

Procedure

Check the installation of the Tray 3 Paper Size Switch. The Tray 3 Paper Size Switch is installed correctly.
Y N
Install the Tray 3 Paper Size Switch correctly.
Check the connections of P/J824 and P/J548 (BSD 7.4). Connectors are connected correctly.
Y N
Connect P/J824 and P/J548.
Check the wire between J824 and J548 for an open circuit or a short circuit (BSD 7.4). The wire between J824 and J548 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P548-7 (+) and GND (-) (BSD 7.4). The voltage is approx. +3.3VDC.
Y \mathbf{N}
Replace the Tray Module PWB (PL 14.7).
Measure the voltage between the Tray Module PWB P548-6 (+) and GND (-) (BSD 7.4). Move the actuator of the Tray 3 No Paper Sensor. The voltage changes.
Y N
Replace the Tray 3 No Paper Sensor (PL 14.1).
Replace the Tray Module PWB (PL 14.7).

024-948 TTM Tray 3 Position RAP

BSD-ON:7.5

The Tray 3 Paper Size Switch detected no tray.

Initial Actions

- Install the tray correctly.
- Check the operation of the tray actuator.

Procedure

Check the installation of the Tray 3 Paper Size Switch. The Tray 3 Paper Size Switch is installed correctly.
Y N
Install the Tray 3 Paper Size Switch correctly.
Check the connections of P/J824 and P/J548 (BSD 7.6). Connectors are connected correctly.
Y N
Connect P/J824 and P/J548.
Check the wire between J824 and J548 for an open circuit or a short circuit (BSD 7.6). The wire between J824 and J548 is conducting without an open circuit or a short circuit. Y N

Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P548-7 (+) and GND (-) (BSD 7.6). The voltage is approx. +3.3VDC.
Y N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P548-6 (+) and GND (-) (BSD 7.6). Move the actuator of the Tray 3 No Paper Sensor. The voltage changes.
Y N
Replace the Tray 3 No Paper Sensor (PL 15.1).
Replace the Tray Module PWB (PL 15.9).

024-950 Tray 1 Empty RAP

BSD-ON:7.7
Tray 1 is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Tray 1 No Paper Sensor (PL 2.3) and the operation of the actuator. The Tray 1 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 1 Level Sensor.
Execute Component Control [071-101 Tray 1 No Paper Sensor]. Manually activate the Tray 1 No Paper Sensor (PL 2.3). The display changes.
Y N
Check the connections of P/J101, P/J611 and P/J424. Connectors are connected correctly.

Connect P/J101, P/J611 and P/J424.
Check the wire between J101 and J424 for an open circuit or a short circuit (BSD 7.7 Flag 4/Flag 5). The wire between J 101 and J 409 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P424A-10 (+) and GND (-) (BSD 7.7 Flag $5)$. The voltage is approx. +5VDC.
Y $\quad \mathrm{N}$
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P424A-12 (+) and GND (-) (BSD 7.7 Flag 4). Activate the actuator of the Tray 1 No Paper Sensor (PL 2.3). The voltage changes. Y N

Replace the Tray 1 No Paper Sensor (PL 2.3).
Replace the MCU PWB (PL 11.1).
Replace the MCU PWB (PL 11.1).

024-951 2TM Tray 2 Empty RAP

BSD-ON:7.9

Tray 2 is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Tray 2 No Paper Sensor (PL 14.3) and the operation of the actuator. The Tray 2 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 2 Level Sensor.
Execute Component Control [072-102 Tray 2 No Paper Sensor]. Manually activate the Tray 2 No Paper Sensor (PL 14.3). The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J102B, P/J661B and P/J549. Connectors are connected correctly.
Y N
Connect P/J102B, P/J661B and P/J549.
Check the wire between J102B and J549 for an open circuit or a short circuit (BSD 7.9 Flag 5/Flag 4). The wire between J102B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P549-25 (+) and GND (-) (BSD 7.9 Flag 5). The voltage is approx. +5VDC.
Y N
Replace the Tray Module PWB (PL 14.7).
Measure the voltage between the Tray Module PWB P549-27 (+) and GND (-) (BSD 7.9 Flag 4).
Activate the actuator of the Tray 2 No Paper Sensor (PL 14.3). The voltage changes.
Y N
Replace the Tray 2 No Paper Sensor (PL 14.3).
Replace the Tray Module PWB (PL 14.7).
Replace the Tray Module PWB (PL 14.7).

024-951 TTM Tray 2 Empty RAP

 BSD-ON:7.11Tray 2 is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Tray 2 No Paper Sensor (PL 15.6) and the operation of the actuator. The Tray 2 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 2 Level Sensor.
Execute Component Control [072-102 Tray 2 No Paper Sensor]. Manually activate the Tray 2 No Paper Sensor (PL 15.6). The display changes.
Y N
Check the connections of P/J102B, P/J661B and P/J549. Connectors are connected correctly.
Y N
Connect P/J102B, P/J661B and P/J549.
Check the wire between J102B and J549 for an open circuit or a short circuit (BSD 7.11 Flag 5/Flag 4). The wire between J102B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P549-25 (+) and GND (-) (BSD 7.11 Flag 5). The voltage is approx. +5VDC.
Y N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P549-27 (+) and GND (-) (BSD 7.11 Flag 4).
Activate the actuator of the Tray 2 No Paper Sensor (PL 15.6). The voltage changes.
Y \mathbf{N}
Replace the Tray 2 No Paper Sensor (PL 15.6)
Replace the Tray Module PWB (PL 15.9)
Replace the Tray Module PWB (PL 15.9)

024-952 2TM Tray 3 Empty RAP

BSD-ON:7.10

Tray 3 is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Tray 3 No Paper Sensor (PL 14.3) and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor.
Execute Component Control [073-101 Tray 3 No Paper Sensor]. Manually activate the Tray 3 No Paper Sensor (PL 14.3). The display changes.
Y \mathbf{N}
Check the connections of P/J102A, P/J661A and P/J549. Connectors are connected correctly.
Y N
Connect P/J102A, P/J661B and P/J549.
Check the wire between J102A and J549 for an open circuit or a short circuit (BSD 7.10 Flag 4/Flag 5). The wire between J102A and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P549-10 (+) and GND (-) (BSD 7.10 Flag 5). The voltage is approx. +5 VDC .
Y N
Replace the Tray Module PWB (PL 14.7).
Measure the voltage between the Tray Module PWB P549-12 (+) and GND (-) (BSD 7.10 Flag 4).
Activate the actuator of the Tray 3 No Paper Sensor (PL 14.3). The voltage changes.
Y N
Replace the Tray 3 No Paper Sensor (PL 14.3).
Replace the Tray Module PWB (PL 14.7).
Replace the Tray Module PWB (PL 14.7).

024-952 TTM Tray 3 Empty RAP

BSD-ON:7.12

Tray 3 is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the Tray 3 No Paper Sensor (PL 15.6) and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor.
Execute Component Control [073-101 Tray 3 No Paper Sensor]. Manually activate the Tray 3 No Paper Sensor (PL 15.6). The display changes.
Y N
Check the connections of P/J102A, P/J661A and P/J549. Connectors are connected correctly.
Y N
Connect P/J102A, P/J661B and P/J549
Check the wire between J102A and J549 for an open circuit or a short circuit (BSD 7.12 Flag 4/Flag 5). The wire between J102A and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P549-10 (+) and GND (-) (BSD 7.12 Flag 5). The voltage is approx. +5VDC.
Y N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P549-12 (+) and GND (-) (BSD 7.12 Flag 4).
Activate the actuator of the Tray 3 No Paper Sensor (PL 15.6). The voltage changes.
Y \mathbf{N}
Replace the Tray 3 No Paper Sensor (PL 15.6)
Replace the Tray Module PWB (PL 15.9)
Replace the Tray Module PWB (PL 15.9)

024-954 MSI Empty RAP

BSD-ON:7.13

The MSI is out of paper.

Initial Actions

- Power Off/On

Procedure

Check the installation of the MSI No Paper Sensor (PL 7.1) and the operation of the actuator. The MSI No Paper Sensor is installed correctly and the actuator works.
Y \mathbf{N}
Reinstall the MSI No Paper Sensor.
Execute Component Control [075-100 MSI No Paper Sensor]. Manually activate the MSI No Paper Sensor (PL 9.1). The display changes.
Y N
Check the connections of $\mathrm{P} / \mathrm{J} 108, \mathrm{P} / \mathrm{J} 610$ and $\mathrm{P} / \mathrm{J} 424$. Connectors are connected correctly.

Connect $\mathrm{P} / \mathrm{J} 108, \mathrm{P} / \mathrm{J} 610$ and $\mathrm{P} / \mathrm{J} 424$.
Check the wire between J 108 and J 424 for an open circuit or a short circuit (BSD 7.13 Flag 3/Flag 4). The wire between J108 and J424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P424-6 (+) and GND (-) (BSD 7.13 Flag 4).
The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P424-8 (+) and GND (-) (BSD 7.13 Flag 3) Activate the actuator of the MSI No Paper Sensor (PL 9.1). The voltage changes.
Y N
Replace the MSI No Paper Sensor (PL 9.1).
Replace the MCU PWB (PL 11.1)
Replace the MCU PWB (PL 11.1).

024-958 MSI Size RAP

BSD-ON:7.13

The MSI is unable to detect the paper size.

Initial Actions

- Power Off/On
- Check the operation of the MSI Guide.

Procedure

Check the installation and operation of the MSI Guide. The MSI Guide is installed correctly and the actuator works.
$Y \quad \mathbf{N}$
Reinstall the MSI Guide.
Measure the voltage between the MCU PWB P424-3 (+) and GND (-) (BSD 7.13 Flag 1).
Manually operate the MSI Guide. As the MSI Guide moves, the voltage changes accordingly.
Y N
Check the connections of $\mathrm{P} / \mathrm{J} 107, \mathrm{P} / \mathrm{J} 609, \mathrm{P} / \mathrm{J} 610$ and $\mathrm{P} / \mathrm{J} 424$. Connectors are connected correctly.
Y N
Connect P/J107, P/J609, P/J611 and P/J424.
Check the wire between J107 and J424 for an open circuit or a short circuit (BSD 7.13 Flag 2). The wire between J107 and J424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P454-1 (+) and GND (-) (BSD 7.13 Flag 2). The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Replace the MSI Paper Size Sensor (PL 9.1).
Replace the MCU PWB (PL 11.1).

024-959 Tray 1 Paper Size RAP

BSD-ON:7.1

There is a Tray 1 paper size error.

Procedure

Check the condition of the Tray 1 Paper Size Switch assembly (PL 2.1). Repair as required.
If the switch is in good condition go to the OF 2 Size Switch Assembly RAP.

024-960 Tray 2 Paper Size RAP

BSD-ON:7.3/7.5
There is a Tray 2 paper size error.

Procedure

Check the condition of the Tray 2 Paper Size Switch assembly (PL 14.1/PL 15.1). Repair as required.

If the switch is in good condition go to the OF 2 Size Switch Assembly RAP.

024-961 Tray 3 Paper Size RAP

BSD-ON:7.4/7.6
There is a Tray 3 paper size error.

Procedure

Check the condition of the Tray 3 Paper Size Switch assembly (PL 14.1/PL 15.1). Repair as required.

If the switch is in good condition go to the OF 2 Size Switch Assembly RAP.

024-965 ATS/APS Paper (IOT detect) RAP

BSD-ON:7.7/7.8/7.9/7.10/7.11/7.12

No paper is loaded in the tray.

Initial Actions

- Power Off/On
- Reload the relevant tray.

Replace the relevant No Paper Sensor (PL 2.3, PL 14.3).
Replace the relevant PWB (MCU PWB (PL 11.1) or Tray Module PWB (PL 14.7).
For Tray 1, replace the MCU PWB (PL 11.1).
For Tray 2, or Tray 3 replace the Tray Module PWB (PL 14.7)

Procedure

Check the actuator of the relevant No Paper Sensor. The actuator is not distorted or damaged.
Y \mathbf{N}
Replace the actuator.
Actuate the actuator of the relevant No Paper Sensor.
Tray 1: Component Control [071-101 Tray 1 No Paper Sensor]
Tray 2: Component Control [072-102 Tray 2 No Paper Sensor]
Tray 3: Component Control [073-101 Tray 3 No Paper Sensor]
The display changes.
Y N
Check the connections of the following connectors:
Tray 1: P/J101, P/J611, P/J424
Tray 2: P/J102B, P/J661B, P/J549
Tray 3: P/J102A, P/J661A, P/J549
The connectors are securely connected
Y \mathbf{N}
Connect the connectors.
Check the following harnesses for an open circuit or a short circuit.
Tray 1: Between J101 and J424 (BSD 7.7 Flag 4/Flag 5)
Tray 2: Between J102B and J549 (BSD 7.8 Flag 4/Flag 5)
Tray 3: Between J102B and J549 (BSD 7.10 Flag 4/Flag 5)
The relevant harnesses are conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the following points $(+)$ and GND (-).
Tray 1: MCU PWB P424-A10 (BSD 7.7 Flag 5)
Tray 2: MCU PWB P549-25 (BSD 7.8 Flag 5)
Tray 3: TM PWB P549-10 (BSD 7.10 Flag 5)
The voltage is approx. +5VDC.
Y N
Replace the relevant PWB (MCU PWB (PL 11.1) or the Tray Module PWB (PL 14.7)
Measure the voltage between the MCU PWB P409A-12 (+) and GND (-).
Tray 1: MCU PWB P409A-12 (BSD 7.7 Flag 4)
Tray 2: MCU PWB P409B-12 (BSD 7.8 Flag 4)
Tray 3: TM PWB P549-A12 (BSD 7.10 Flag 4)

024-966 ATS/APS Destination RAP

BSD-ON:7.1-7.6

APS/ATS is unable to detect the paper size.

Initial Actions

- Refer to BSD 7.1-7.6.
- Reload the tray.

Procedure

Check the installation of the relevant Size Sensor. The relevant Size Sensor is installed correctly.
$Y \quad N$
Install the relevant Size Sensor correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).

024-967 Mixed Width Paper (Staple Job) RAP

BSD-ON:3.4

Paper Width Mix was detected during stapling.

Initial Actions

- Power Off/On

Procedure

Check the connection of each MCU PWB connector. The connectors are securely connected.
Y $\quad \mathrm{N}$
Connect the connectors.
Check the connection of each Finisher PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the wire between J416 and J8843 for an open circuit or a short circuit (BSD 3.4 Flag 2/ Flag 1). The wire between J 416 and J 8843 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB J416-A3 (+) and GND (-) (BSD 3.4 Flag 2). The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-976 Staple Status Failed RAP

 BSD-ON:12.6- After the Stapler Motor turned On (Forward rotation), the system did not detect that the Staple Head Home Sensor switched from Off to On within the specified time.
- After the Stapler Motor turned On (Reverse rotation), the Staple Head Home Sensor did not turn On within the specified time.

Initial Actions

- Power Off/On

Procedure

Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The Stapler Motor can be heard.
Y N
Check the connections of $P / J 8819$ and $P / J 8847$. $P / J 8819$ and $P / J 8847$ are connected correctly.

Y N

Connect P/J8819 and P/J8847.
Check the wire between J 8819 and J 8847 for an open circuit or a short circuit (BSD 12.6 Flag 1). The wire between J8819 and J8847 is conducting without an open circuit or a short circuit.

Y N

Repair the open circuit or short circuit.
Replace the Staple Assembly (PL 17.8) If the problem persists, replace the Finisher PWB (PL 17.12).

Execute Component Control [012-244 Staple Head Home Sensor].Alternately execute Component Control [012-046 Staple Motor FORWARD ON] and Component Control [012-047 Staple Motor REVERSE ON]. The display changes.
Y \mathbf{N}
Check the connections of $P / J 8818$ and $P / J 8852$. $P / J 8818$ and $P / J 8852$ are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 2/Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and GND (-) (BSD 12.6 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8) If the problem persists, replace the Finisher PWB (PL 17.12).

024-977 Stapler Feed Ready RAP

 BSD-ON:12.6When starting Staple, Staple Ready Sensor Off was detected.
Empty stapling was within 13 times.

Initial Actions

- Power Off/On
- Reload the Staple Cartridge.

Procedure

Execute Component Control [012-243 Staple Ready Sensor]. Install and remove the Staple Cartridge. The display changes.
Y N
Check the Staple Cartridge for failure or foreign substances. There are no foreign substances and nothing has failed.

Y $\quad \mathrm{N}$

Repair the failure and remove the foreign substances.
Check the connections of $P / J 8818$ and $P / J 8852$. $P / J 8818$ and $P / J 8852$ are connected correctly.

Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and GND (-) (BSD 12.6 Flag 2). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8852-3 (+) and GND (-) (BSD 12.6 Flag 3). Install and remove the Staple Cartridge. The voltage changes.
$\boldsymbol{Y} \quad \mathbf{N}$
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-979 Stapler Near Empty RAP

BSD-ON:12.6

- The Staple Pin is nearly empty.
- The cartridge has not been installed.

Initial Actions

- Power Off/On

Procedure

Execute Component Control [012-242 Low Staple Sensor]. Install and remove the Staple Pin Cartridge. The display changes.
Y $\quad \mathbf{N}$
Check the Staple Pin Cartridge for failure or foreign substances. There are no foreign substances and nothing has failed.
Y N
Repair the failure and remove the foreign substances.
Check the connections of P/J8818 and P/J8852. P/J8818 and P/J8852 are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J8818 and J8852 for an open circuit or a short circuit (BSD 12.6 Flag 2/Flag 3). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8852-1 (+) and GND (-) (BSD 12.6 Flag 2). The voltage is approx. +5VDC.

Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8852-4 (+) and GND (-) (BSD 12.6 Flag
3). Install and remove the Staple Pin Cartridge. The voltage changes.

Y N
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-980 Stacker Tray Full RAP

BSD-ON:12.8

The output paper stacked on the Finisher Stacker Tray reaches capacity (for mixed paper size)

Initial Actions

- Power Off/On

Procedure

Check the tray raise/lower mechanism for foreign substances and distortion. No distortion or foreign substances are found in the tray raise/lower mechanism.
Y N
Clear away the foreign substances. Correct the distortion.
Execute Component Control [012-267 Stack Height Sensor]. Actuate the Stack Height Sensor with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8815, P/J8825 and P/J8850. P/J8815, P/J8825 and P/ J8850 are connected correctly.
Y N
Connect P/J8815, P/J8825 and P/J8850.
Check the wire between J8815 and J8850 for an open circuit or a short circuit (BSD 12.8 Flag 1/Flag 2). The wire between J8815 and J8850 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850B-6 (+) and GND (-) (BSD 12.8 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850B-5 (+) and GND (-) (BSD 12.8 Flag 2).
Actuate the Stack Height Sensor with paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 17.5).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor (PL 16.10starts up.
Y $\quad N$
Check the connections of $P / J 8847$ and $P / J 8827$. $P / J 8847$ and $P / J 8827$ are connected correctly.
Y N
Connect P/J8847 and P/J8827.

A B
Check the wire between J8847 and P8827 for an open circuit or a short circuit (BSD 12.8 Flag 5). The wire between J8847 and P8827 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Stacker Motor (PL 16.10) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

024-982 Stacker Lower Safety Warning RAP

BSD-ON:12.8

- After the Stacker Motor turned On (descending), the Stack Height Sensor did not turn On within the specified time.
- After the Stacker Motor turned On (descending), the Stack Height Sensor did not turn Off within the specified time.

Initial Actions

- Power Off/On

Procedure

Check the tray raise/lower mechanism for foreign substances and distortion. No distortion or foreign substances are found in the tray raise/lower mechanism.
Y N
Clear away the foreign substances. Correct the distortion.
Execute Component Control [012-267 Stack Height Sensor]. Actuate the Stack Height Sensor with paper. The display changes.
Y N
Check the connections of P/J8815, P/J8825 and P/J8850. P/J8815, P/J8825 and P/ J8850 are connected correctly.

Connect P/J8815, P/J8825 and P/J8850.
Check the wire between J8815 and J8850 for an open circuit or a short circuit (BSD 12.8 Flag 1/Flag 2). The wire between J8815 and J8850 is conducting without an open circuit or a short circuit.
\mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P8850B-6 (+) and GND (-) (BSD 12.8 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P8850B-5 (+) and GND (-) (BSD 12.8 Flag 2).
Actuate the Stack Height Sensor with paper. The voltage changes.
Y \mathbf{N}
Replace the Stack Height Sensor (PL 17.5).
Replace the Finisher PWB (PL 17.12).
Alternately execute Component Control [012-060 Stacker Motor up ON] and Component Control [012-061 Stacker Motor down ON]. The Stacker Motor (PL 16.10starts up.
Y $\quad \mathbf{N}$
Check the connections of P/J8847 and P/J8827. P/J8847 and P/J8827 are connected correctly.
Y N
Connect P/J8847 and P/J8827.
A B

024-985 MSI Feed RAP

BSD-ON:7.13/8.1

The job was aborted during MSI feed.

Initial Actions

- Power Off/On

Procedure

Check the document size. The size of the document is within the specification.
Y N
Use a paper size within the specification.
Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.

Check the installation and operation of the MSI Guide. The MSI Guide is installed correctly and the actuator works.
Y N
Reinstall the MSI Guide
Measure the voltage between the MCU PWB P424-3 (+) and GND (-) (BSD 7.13 Flag 1).
Manually operate the MSI Guide. As the MSI Guide moves, the voltage changes accordingly.
Y N
Check the connections of P/J107, P/J609, P/J605 and P/J424. Connectors are connected correctly.
Y N
Connect P/J107, P/J609, P/J605 and P/J424.
Check the wire between J107 and J424 for an open circuit or a short circuit (BSD 7.13 Flag 1/Flag 2). The wire between J 107 and J 424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P424-1 (+) and GND (-) (BSD 7.13 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Replace the MSI Paper Size Sensor (PL 9.3).
Replace the MCU PWB (PL 11.1).

024-916 (A-Finisher) Mix Stack Full

BSD-ON:CH15.2, CH15.8

In detection of Half Position (Mix Full position), one of the following is met:

- Paper in the job is larger (longer in either lead/trail edge or side edge) than the last paper of the previous job.
- The width of the last paper of the previous job is less than 279.4 mm and a change is made to Staple Mode.
- The size of the last paper of the previous job is "unknown."

Initial Actions

- Check that the Stack Height Sensor is properly installed, not broken and has no foreign objects.
- Check Stacker Stack Sensors 1 and 2 are properly installed and free from foreign objects and that their actuators are not broken.
- Power Off/On.

Procedure

Check the paper size of the job. The paper of the job is equal in size to or smaller than (in either lead/trail edge or side edge) the last paper of the previous job.
Y N
Load paper of the appropriate size.
Check the settings of the Staple Mode for the current job. The settings are the same as the ones for the previous job.
Y N
Return the Staple Mode settings to the previous ones.
Check for paper and/or foreign objects on the Stacker Tray. The Stacker Tray is in normal condition with no paper or foreign object left there.

Y N

Remove the remaining paper and/or foreign object(s).
Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The drive mechanism is free of defects and gears seat properly.
Y N
Repair the Stacker Tray mechanism.
Enter Component Control [012-267]. Block and unblock the Stack Height Sensor with a piece of paper. The display changes.
Y N
Check the connections of P/J8708 and P/J8727. P/J8708 and P/J8727 are securely connected.

Connect P/J8708 and P/J8727 securely.
Check for an open or short circuit between J8708 and J8727. The wires between J8708 and J8727 are OK.
$Y \quad N$
Repair the open or short circuit.
Measure the voltage between J8708-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$Y \quad N$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8708-2 (+) on the Finisher PWB and GND (-). Block and unblock the Stack Height Sensor. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-278]. Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The display changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J8707 and P/J8722. P/J8707 and P/J8722 are securely connected.
Y N
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J8707 and J8722. The wires between J8707 and J8722 are OK
Y N
Repair the open or short circuit.
Measure the voltage between J8707-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC.
$Y \mathrm{~N}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8707-5 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 1 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-279]. Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The display changes.
Y N
Check the connections of P/J8707 and P/J8721. P/J8707 and P/J8721 are securely connected.
Y N
Connect P/J8707 and P/J8721 securely.

Check for an open or short circuit between J8707 and J8721. The wires between J8707 and J8721 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5VDC.
$Y \quad N$
Using Chapter 7 Wirenets, check the +5VDC circuit to J8707-3 on the Finisher PWB.
Measure the voltage between J8707-2 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 2 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y N
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.

Connect P/J8711 and P/J8736 securely
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK.
Y N
Repair the open or short circuit

Enter [012-060], measure the voltage between J8711-1 (+) on the Finisher PWB and GND (-). The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-061], measure the voltage between J8711-2 (+) on the Finisher PWB and GND (-). The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Stacker Motor (PL 22.8)
Check the connections of the connectors between the Finisher and the IOT. The connectors are securely connected.
Y N
Connect the connectors securely.
If the problem continues, replace the Finisher PWB (PL 22.7).

024-917 (A-Finisher) Stacker Tray Staple Set Over Count

 BSD-ON:CH15.2, CH15.8While sets of stapled sheets of paper are being ejected, the Staple Set Count for the Stacker Tray exceeded 30.

Initial Actions

- Check that the Stack Height Sensor is properly installed, not broken and has no foreign objects.
- Check Stacker Stack Sensors 1 and 2 are properly installed and free from foreign objects and that their actuators are not broken.
- Power Off/On.

Procedure

Check for remaining paper and foreign objects on the Stacker Tray. The Stacker Tray is in normal condition with no paper or foreign object left there.

Y N

Remove the remaining paper and/or foreign object(s)
Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The drive mechanism is free of defects and gears seat properly.
Y \mathbf{N}
Repair the Stacker Tray mechanism.
Enter Component Control [012-267]. Block and unblock the Stack Height Sensor with a piece of paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8708 and P/J8727. P/J8708 and P/J8727 are securely connected.
Y N
Connect P/J8708 and P/J8727.
Check for an open or short circuit between J8708 and J8727. The wires between J8708 and J8727 are OK.
Y N
Repair the open wire or short circuit.

Measure the voltage between J8708-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5VDC.
Y $\quad N$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit

Measure the voltage between J8708-2 (+) on the Finisher PWB and GND (-). Block and unblock the Stack Height Sensor with a piece of paper. The voltage changes.
Y \mathbf{N}
Replace the Stack Height Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-330]. Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The display changes.
Y N
Check the connections of P/J8707 and P/J8722. P/J8707 and P/J8722 are securely connected.
Y N
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J8707 and J8722. The wires between J8707 and J8722 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$Y \quad N$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5 VDC circuit.
Measure the voltage between J8707-5 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 1 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-279]. Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the acceptance surface. The display of DC330[012-279] changes.
Y N
Check the connections of P/J8707 and P/J8721. P/J8707 and P/J8721 are securely connected.
Y N
Connect P/J8707 and P/J8721 securely.
Check for an open wire or short circuit between J8707 and J8721. The wire between J8707 and J8721 is normally conductive with no open wire or short circuit.
Y
Repair the open wire or short circuit.
Measure the voltage between J8707-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8707-2 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The voltage changes.

Replace the Stacker Stack Sensor 2 (PL 22.8).

B C
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y N
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.
Y \mathbf{N}
Connect P/J8711 and P/J8736 securely.
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK.
Y N
Repair the open or short circuit.
Enter [012-060], measure the voltage between J8711-1 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-061], measure the voltage between J8711-2 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Stacker Motor (PL 22.8).
Check the connections of the connectors between the Finisher and the IOT. The connectors are securely connected.
Y N
Connect the connectors securely.
If the problem continues, replace the Finisher PWB (PL 22.7).

024-928 (A-Finisher) Scratch Sheet Compile

 BSD-ON:CH15.2Sheet Information command made abnormal paper (scratched paper) reported by the IOT ejected into the compiler.

NOTE: This Fail Code is an operation message. If this fail code is frequently declared, perform the procedure below.

Initial Actions

- Check that the Top Cover can be opened and closed.
- Power Off/On.

Procedure

Check the specifications of paper. The paper is in spec.
Y \mathbf{N}
Replace the paper with new paper that is in spec.
Check the condition of the paper. The paper is in normal condition without any problem that causes the paper to be bent or caught.
Y N
Resolve any problem that causes the paper to be bent or caught.
Check for a Fail Code. Another Fail Code is displayed.
Y N
If the problem continues, replace the Finisher PWB (PL 22.7).
Go to the appropriate Fault Code.

024-930 (A-Finisher) Stacker Tray Full Stack

 BSD-ON:CH15.8
One of the following

- At Power On, the Stack Height Sensor detected the height and the Full position.
- During the operation of adjusting (lowering) the height of the Stacker Tray for small paper to be ejected, the Full position was detected.
- During the operation of adjusting (lowering) the height of the Stacker Tray for large paper to be ejected, the Half position (Full-of-Large-Sheets position) was detected.
- With the Half position (Full-of-Large-Sheets position) already detected, paper (large paper) a stack of which is limited to the Half position was ejected.

Initial Actions

- Check that the Stack Height Sensor is properly installed, not broken and has no foreign objects.
- Check Stacker Stack Sensors 1 and 2 are properly installed and free from foreign objects and that their actuators are not broken.
- Power Off/On.

Procedure

Check for remaining paper and foreign objects on the Stacker Tray. The Stacker Tray is free of paper or foreign objects.
$\mathbf{Y} \quad \mathbf{N}$
Remove the remaining paper and/or foreign object(s).
Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The drive mechanism is in normal condition, not deformed or broken and with no not-seated gears.
Y N
Repair the Stacker Tray mechanism.
Enter Component Control [012-267]. Block and unblock the Stack Height Sensor with a piece of paper. The display changes.
Y \mathbf{N}
Check the connections of P/J8708 and P/J8727. P/J8708 and P/J8727 are securely connected.
Y N
Connect P/J8708 and P/J8727 securely.
Check for an open or short circuit between J8708 and J8727. The wires between J8708 and J8727 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8708-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5 VDC circuit.

A B
Measure the voltage between J8708-2 (+) on the Finisher PWB and GND (-). Block and unblock the Stack Height Sensor with a piece of paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Run DC330[012-278].
Enter [012-278]. Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The display changes.
Y \mathbf{N}
Check the connections of $P / J 8707$ and $P / J 8722$. $P / J 8707$ and $P / J 8722$ are securely connected.
Y N
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J8707 and J8722. The wires between J8707 and J8722 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC . $\mathbf{Y} \quad \mathbf{N}$

Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8707-5 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 1 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-279]. Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The display changes.
Y N
Check the connections of $P / J 8707$ and $P / J 8721$. $P / J 8707$ and $P / J 8721$ are securely connected.
Y $\quad \mathrm{N}$
Connect P/J8707 and P/J8721 securely.
Check for an open or short circuit between J 8707 and J8721. The wires between J8707 and J8721 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5VDC.

C
$Y^{\mathbf{N}}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8707-2 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 2 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y \mathbf{N}
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.
Y $\quad \mathrm{N}$
Connect P/J8711 and P/J8736 securely.
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK.
Y N
Repair the open or short circuit.
Enter [012-060], measure the voltage between J8711-1 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Replace the Finisher PWB (PL 22.7).
Enter [012-061], measure the voltage between J8711-2 (+) on the Finisher PWB and GND (-). The voltage changes.
Y $\quad \mathbf{N}$
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Stacker Motor (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

024-976 (A-Finisher) Staple NG

BSD-ON:CH15.5

As Staple Head Home Sensor On was not detected within 450 msec after the start of the operation of closing the Stapler Head, the reverse rotation started. After that, Staple Head Home Sensor On was detected.

Initial Actions

- Check that the Top Cover and the Front Cover can be opened and closed.
- Check that the Staple Assembly and the Cartridge are properly installed, not broken and include no foreign objects.
- Power Off/On.

Procedure

Check for remaining paper and foreign objects on the Compile Tray. The Compile Tray is free of paper and/or foreign objects.
$Y \quad \mathbf{N}$
Remove the remaining paper and/or foreign object(s).
Enter Component Control [012-046] and [012-047] alternately. The Staple Motor rotates.
${ }^{Y} \mathrm{~N}$
Check the connections of P/J8705 and P/J8735. P/J8705 and P/J8735 are securely connected.
Y N
Connect P/J8705 and P/J8735 securely.
Check for an open or short circuit between J8705 and J8735. The wires between J8705 and J8735 are OK.
Y N
Repair the open or short circuit.
Measure the voltages between J8705-3 to $6(+)$ on the Finisher PWB and GND (-). Enter [012-046] and [012-047] alternately. Each voltage changes.
Y N
Replace the Finisher PWB (PL 22.7).
Replace the Staple Assembly (PL 22.4).
Enter [012-046] and [012-047] alternately. The display changes.
Y N
Check the connections of P/J8701 and P/J8731. P/J8701 and P/J8731 are securely connected.

Connect P/J8701 and P/J8731 securely.
Check for an open or short circuit between J8701 and J8731. The wires between J8701 and J8731 are OK.
Y N
Repair the open or short circuit.

A B
Measure the voltage between J8701-4 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$Y \mathrm{~N}$
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between J8701-5 (+) on the Finisher PWB and GND (-). Enter [012046] and [012-047] alternately. The voltage changes.
Y N
Replace the Staple Assembly (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

024-977 (A-Finisher) Stapler Feed Ready Fail

 BSD-ON:CH15.5- In the operation of getting the Stapler head ready at initialization, Stapler Ready Sensor ON was not detected until a specified number (13) of Head idle-stapling operations.
- Immediately before stapling, the Stapler Ready Sensor was Off.

Initial Actions

- Check that the Staple Assembly and the Cartridge are properly installed, not broken and include no foreign objects.
- Power Off/On.

Procedure

Enter Component Control [012-243]. Remove and reinstall the Cartridge from/in the Staple Assembly. The display changes.
$Y^{\mathbf{N}}$
Check the connections of P/J8701 and P/J8731. P/J8701 and P/J8731 are securely connected.
Y N
Connect P/J8701 and P/J8731 securely.
Check for an open or short circuit between J8701 and J8731. The wires between J8701 and J8731 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8701-4 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8701-6 (+) on the Finisher PWB and GND (-). Remove and reinstall the Cartridge from/in the Staple Assembly. The voltage changes.
Y N
Replace the Staple Assembly (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

024-979 (A-Finisher) Stapler Near Empty

BSD-ON:CH15.5

One of the following:

- At Power On, Low Staple Sensor ON was detected.
- Immediately before the start of the operation of closing the Stapler Head, Low Staple Sensor ON was detected.

Initial Actions

- Check that the Front Cover can be opened and closed.
- Check that the Staple Assembly and the Cartridge are properly installed, not broken and include no foreign objects.
- Power Off/On.

Procedure

Check what amount of staples remain in the Cartridge. The is enough staples remaining run the stapler.
Y N
Replace the Cartridge.
Run DC330[012-242].
Enter Component Control [012-252]. Remove and reinstall the Cartridge from/in the Staple Assembly. The display changes.
Y \mathbf{N}
Check the connections of P/J8701 and P/J8731. P/J8701 and P/J8731 are securely connected.
Y $\quad \mathrm{N}$
Connect P/J8701 and P/J8731 securely.
Check for an open or short circuit between J8701 and J8731. The wires between J8701 and J8731 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8701-4 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y \mathbf{N}
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between J8701-7 (+) on the Finisher PWB and GND (-). Remove and reinstall the Cartridge from/in the Staple Assembly. The voltage changes.
Y N
Replace the Staple Assembly (PL 22.4).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

024-980 (A-Finisher) Stacker Tray Full Stack

BSD-ON:CH15.8

One of the following:

- At Power On, the Stack Height Sensor detected the height and the Full position.
- During the operation of adjusting (lowering) the height of the Stacker Tray for small paper to be ejected, the Full position was detected.
- During the operation of adjusting (lowering) the height of the Stacker Tray for large paper to be ejected, the Half position (Full-of-Large-Sheets position) was detected.
- With the Half position (Full-of-Large-Sheets position) already detected, paper (large paper) a stack of which is limited to the Half position was ejected.

Initial Actions

- Check that the Stack Height Sensor is properly installed, not broken and has no foreign objects.
- Check Stacker Stack Sensors 1 and 2 are properly installed and free from foreign objects and that their actuators are not broken.
- Power Off/On

Procedure

Check for remaining paper and foreign objects on the Stacker Tray. The Stacker Tray is free of paper and/or foreign objects.
Y \mathbf{N}
Remove the remaining paper and/or foreign object(s).
Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The drive mechanism is free of defects and the gears seat properly.
Y $\quad \mathbf{N}$
Repair the Stacker Tray mechanism
Enter COmponent Control [012-267]. Block and unblock the Stack Height Sensor with a piece of paper. The display changes.
$Y \quad N$
Check the connections of P/J8708 and P/J8727. P/J8708 and P/J8727 are securely connected.
Y \mathbf{N}
Connect P/J8708 and P/J8727 securely.
Check for an open or short circuit between J8708 and J8727. The wires between J8708 and J8727 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8708-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5VDC.
Y N
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.

Measure the voltage between J8708-2 (+) on the Finisher PWB and GND (-). Block and unblock the Stack Height Sensor with a piece of paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 22.10).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Run DC330[012-278].
Enter [012-278]. Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The display changes.
Y \mathbf{N}
Check the connections of P/J8707 and P/J8722. P/J8707 and P/J8722 are securely connected.
Y N
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J 8707 and J8722. The wires between J8707 and J8722 are OK.
Y N
Repair the open wire or short circuit.
Measure the voltage between J8707-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$\mathrm{Y} \quad \mathrm{N}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5 VDC circuit.
Measure the voltage between J8707-5 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The voltage changes.
Y N
Replace the Stacker Stack Sensor 1(PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Run DC330[012-279].
Enter [012-279]. Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The display changes.

Check the connections of P/J8707 and P/J8721. P/J8707 and P/J8721 are securely connected.
Y \mathbf{N}
Connect P/J8707 and P/J8721 securely.
Check for an open or short circuit between J8707 and J8721. The wires between J8707 and J8721 are OK
Y N
Repair the open or short circuit.
Measure the voltage between J8707-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
$Y^{\mathbf{N}}$
Go to Wirenet 7.2.36 A-Finisher +5VDC and check the +5VDC circuit.
Measure the voltage between J8707-2 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The voltage changes.

Replace the Stacker Stack Sensor 2 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y N
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.
Y $\quad \mathbf{N}$
Connect P/J8711 and P/J8736 securely
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK.
Y N
Repair the open or short circuit.
Enter [012-060], measure the voltage between J8711-1 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-061], measure the voltage between J8711-2 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Replace the Stacker Motor (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

024-982 (A-Finisher) Stacker Lower Safety Warning

 BSD-ON:CH15.8The condition below occurred four consecutive times.

- In the operation of adjusting the height of the Stacker Tray (lowering the tray) for paper to be ejected during a job, the height of it cannot be adjusted within a specified time.

Initial Actions

- Check the Stack Height Sensor is properly installed, not broken, and has no foreign object.
- Check the Stacker Stack Sensors 1 and 2 are properly installed and have no foreign objects and that their actuators are not broken.
- Power Off/On.

Procedure

Check for remaining paper and foreign objects on the Stacker Tray. The Stacker Tray is free from paper and/or foreign objects.
Y N
Remove the remaining paper and/or foreign object(s).
Check the drive mechanism to the Stacker Tray for a deformed or broken part and not-seated gears. The drive mechanism is free of defects and gears seat properly.

Y \mathbf{N}

Repair the Stacker Tray mechanism.
Run DC330[012-267].
Enter Component Control [012-267]. Block and unblock the acceptance surface of the Stack Height Sensor with a piece of paper. The display changes.
Y N
Check the connections of P/J8708 and P/J8727. P/J8708 and P/J8727 are securely connected.
Y N
P/J8708 and P/J8727 are securely connected.
Check for an open or short circuit between J8708 and J8727. The wires between J8708 and J8727 are OK.

Y N

Repair the open or short circuit.
Measure the voltage between J8708-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between J8708-2 (+) on the Finisher PWB and GND (-). Block and unblock the Stack Height Sensor with a piece of paper. The voltage changes.
Y N
Replace the Stack Height Sensor (PL 22.10).

A B
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Run DC330[012-278].
Enter [012-278]. Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The display changes.
Y \mathbf{N}
Check the connections of P/J8707 and P/J8722. P/J8707 and P/J8722 are securely connected.
$Y^{\mathbf{N}}$
Connect P/J8707 and P/J8722 securely.
Check for an open or short circuit between J8707 and J8722. The wires between J8707 and J8722 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-6 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC .
Y N
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.
Measure the voltage between J8707-5 (+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 1 actuator by hand to block and unblock the sensor. The voltage changes.
N
Replace the Stacker Stack Sensor 1 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Run DC330[012-279].
Enter [012-279]. Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The display changes.
$Y^{\mathbf{N}}$
Check the connections of P/J8707 and P/J8721. P/J8707 and P/J8721 are securely connected.
$\mathbf{Y} \quad \mathbf{N}$
Connect P/J8707 and P/J8721 securely.
Check for an open or short circuit between J8707 and J8721. The wires between J8707 and J8721 are OK.
Y N
Repair the open or short circuit.
Measure the voltage between J8707-3 (+) on the Finisher PWB and GND (-). The voltage is approx. +5 VDC.
$Y \quad \mathrm{~N}$
Go to Wirenet 7.2.36 A-Finisher +5 VDC and check the +5 VDC circuit.

C D
Measure the voltage between J8707-2(+) on the Finisher PWB and GND (-). Rotate the Stacker Stack Sensor 2 actuator by hand to block and unblock the sensor. The voltage changes.

N
Replace the Stacker Stack Sensor 2 (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-060] and [012-061] alternately. The Stacker Motor rotates.
Y N
Check the connections of P/J8711 and P/J8736. P/J8711 and P/J8736 are securely connected.
Y N
Connect P/J8711 and P/J8736 securely.
Check for an open or short circuit between J8711 and P8736. The wires between J8711 and P8736 are OK.
Y N
Repair the open or short circuit.
Enter [012-060], measure the voltage between J8711-1 (+) on the Finisher PWB and GND (-). The voltage changes.
Y N
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

Enter [012-061], measure the voltage between J8711-2 (+) on the Finisher PWB and GND (-). The voltage changes.
Y \mathbf{N}
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).v

Replace the Stacker Motor (PL 22.8).
Check the wires and connectors for an intermittent open or short circuit. If the problem continues, replace the Finisher PWB (PL 22.7).

025-596 Diagnostic HDD Maintenance RAP

 BSD-ON:16.1A error is declared when the HDD Fail Forecast occurred.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

025-597 Diagnostic HDD Initialize RAP

BSD-ON:16.1

An error is declared when the HDD Initialization Diagnostic was executed.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

026-700 LDAP Protocol Max Error RAP

In handling Address Book, an out-of-spec LDAP protocol is detected.

Procedure

The server uses the out-of-spec LDAP protocol not supported by this machine. If trying to reproduce this, contact our Custom Support Center.

026-701 Address Book Request Overflow RAP

Overflowing with inquiries for Address Book

Procedure

If multiple input devices including the machine Panel and Web-Ul make simultaneous inquiries for this machine Address Book, lengthen the intervals between inquiries.

026-702 Address Book Directory Service Overflow RAP

Address Book Directory Service is overflown.

Procedure

Software internal to this machine is defective.

027-452 Duplicate IP Address RAP

BSD-ON:16.1
A PC with the same IP address exists on the network.

Initial Actions

Change the IP address.

Procedure

If the problem persists, replace the ESS PWB (PL 11.2).

027-501 POP Server RAP

The Mail I/O cannot resolve the POP (Post Office Protocol) Server address.

Initial Actions

Power Off/On

Procedure

Specify the correct POP (Post Office Protocol) Server name or specify the IP address.

027-502 POP Authentication RAP

The Mail I/O cannot pass POP (Post Office Protocol) authentication.

nitial Actions

Power Off/On

Procedure

Check that the login name and password for the POP (Post Office Protocol) Server are correct.

027-513 SMB Scan Client RAP

A SMB scan client does not have the right to access. (Win9x series)
Initial Actions
Power Off/On

Procedure

Check if the specified user is allowed to read/write a file in storage place on the SMB server. If not, make the setting that allows the user to access.

027-514 Host Name Solution Error RAP

A failure in resolving a problem with a host name in SMB scan

Initial Actions

Power Off/On

Procedure

Check the connection to DNS. Or check that the destination server name is entered on DNS.

027-515 DNS Server Error in SMB RAP

In SMB scan, the server was not found on DNS.

Procedure

Set DNS address.
Or set the destination server address, using IP address.

027-516 Server Connection Error in SMB RAP

In SBM scan, there is a problem with the connection to the server.

Procedure

Check that the destination SMB server and this machine are set up so that they can communicate with each other on the network. For example, check the following:

- Network Cable for connection
- TCP/IP Setup
- Communication through Port 137 (UDP), Port 138 (UDP) and Port 139 (TCP)
- If any communication is conducted beyond subnet, check WINS Server settings and check that any problem with server name address can be resolved properly

027-518 Login/Password Error RAP

A login name or password error in SMB scan.

Procedure

Check the login name (user name) and password are correct.

027-519 Scanning Picture Error RAP

There is a problem with the scanned images saving place SBM scan server.

Procedure

Check the following:

- That the storage place is correct.
- That the specified storage place is not linked to another server for DFS setting. Directly specify the server to link to, shared name and storage place.

027-520 File Name Acquisition Failure RAP

A failure in acquiring a file name/folder on the SMB scan server.

Procedure

Check the right to access the SMB scan server.

027-521 File Name Suffix Limit Error RAP

The suffix of a SMB scan file name/folder name exceeds the limit.

Procedure

Change the file name/destination folder, or move or delete the file in the destination folder.

027-522 File Creation Failure RAP

A failure in creating a SMB scan file.

Procedure

Check the following:

- That the specified name is a file name that can be created in the storage place.
- That the specified file name is not used by another user.
- That there is no file or folder with the same name as the specified file name.

027-523 Lock Folder Creation Failure RAP

A failure in creating a SMB scan lock folder

Procedure

Check the following:

- If the existing lock directory (*.LCK) is left on the destination, manually delete it and retry the job.
- That the specified name is a folder name that can be created in the storage place.
- That there is no folder with the same name as the specified one.
- That the storage place has some space available.

027-524 Folder Creation Failure RAP

A failure in creating a SMB scan folder

Procedure

Check the following:

- That the specified name is a folder name that can be created in the storage place.
- That there is no folder with the same name as the specified one
- That the storage place has some space available.

027-525 File Delete Failure RAP

A failure in deleting a SMB scan file.

Procedure

Check that another user does not handle the file in the specified storage place.

027-526 Lock Folder Delete Failure RAP

A failure in deleting a SMB scan lock folder

Procedure

If the existing lock directory (*.LCK) is left on the destination, manually delete it and retry the job.

027-527 Folder Delete Failure RAP

A failure in deleting a FTP scan folder

Procedure

Check that another user does not handle the file in the specified storage place.

027-528 Data Write-in Failure RAP

No space available in the specified storage place on the SMB scan data server.

Procedure

Check that the storage place has some space available.

027-529 Data Read Failure RAP

An error internal to SMB Library occurred.

Procedure

Do the same operation again. If this does not resolve the problem, contact our Customer Support Center.

027-530 Data Reading Failure RAP

[Overwrite prohibited] is selected as action to be taken when a duplicated SMB scan file name is detected.

Procedure

Select any option other than [Overwrite prohibited].

027-531 Scan Filing Policy Injustice RAP

SMB scan filing policy is illegal (when Add selected).

Procedure

If [Add] is selected as action to be taken when a duplicated file name is detected, check that the file format is not a multi-page one.

027-532 NEXTNAME.DAT file access error RAP

NEXTNAME.DAT file access error in SMB scan

Procedure

If [Add] is selected as action to be taken when a duplicated file name is detected, check that NEXTNAME.DAT file is correct.

027-533 Internal Scan Error RAP

An internal error occurred in SMB scan.

Procedure

If the same operation causes this to reoccur, contact our Custom Support Center.

027-543 Server Name Specification Error RAP

A specified SMB server (NetBIOS) name is wrong.

Procedure

Check that the SMB server name is correct.

027-547 SMB Protocol error 4-007 RAP

SMB protocol error. An invalid character was detected in the specified domain name.

Procedure

Check with the network administrator for the domain name.
Also, check if the domain name set on the machine is correct, using the following procedure:
1.Enter the System Administration mode, and select [System Settings] > [System Settings] > [Network Settings] > [Remote Authentication Server/Directory Service] > [SMB Server Settings].
2.Select the SMB server to check the domain name.

027-548 SMB Protocol error 4-008 RAP

SMB protocol error. An invalid character was detected in the specified domain name.

Procedure

Check with the network administrator for the domain name.

027-549 SMB Protocol error 4-009 RAP
SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-564 SMB Protocol error 4-024 RAP

SMB protocol error. The SMB server was not found.

Procedure

Check if the connection between the authentication server and the machine has been established via a network. For example, check the following points:
-Network cable connection TCP/IP settings
-Connection via Port 137 (UDP)/Port 138 (UDP)/Port 139 (TCP)

027-565 SMB Protocol error 4-025 RAP
SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-566 SMB Protocol error 4-026 RAP

SMB protocol error. SMB (TCP/IP) is not active.

Procedure

Check on CentreWare Internet Services that SMB (TCP/IP) is active on the [Port Status] screen of the [Properties] tab.

027-569 SMB (TCP/IP) is not Started RAP

SMB (TCP/IP) has not been started.

Procedure

Check on CentreWare Internet Services that SMB (TCP/IP) is active on the [Port Status] screen of the [Properties] tab.

027-572 SMB Protocol error 4-032 RAP
SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-573 SMB Protocol error 4-033 RAP
SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-574 SMB Protocol error 4-034 RAP

SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-576 SMB Protocol error 4-036 RAP
SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-578 SMB Protocol error 4-038 RAP

SMB protocol error.

Procedure

Try again. If the problem persists, contact our Customer Support Center.

027-584 SMB Protocol error 4-044 RAP

SMB protocol error. The SMB server is in shared security mode

Procedure

The SMB server may be on Windows 95, Windows 98, or Windows Me OS. Set the SMB server on an OS other than Windows 95, Windows 98, or Windows Me OS.

027-585 SMB Protocol error 4-045 RAP
SMB protocol error. Login disabled period.

Procedure

Check with the system administrator for the login-permitted period.

027-586 SMB Protocol error 4-046 RAP
SMB protocol error. The password has expired.

Procedure

Obtain a valid password from the system administrator.

027-587 SMB Protocol error 4-047 RAP

SMB protocol error. The password must be changed.

Procedure

Log in to Windows, and change the password. Ask the system administrator to change the setting so that you do not need to change the login password next time.

027-588 SMB Protocol error 4-048 RAP
SMB protocol error. The user is invalid.

Procedure

Ask the system administrator for validating the user.

027-589 SMB Protocol error 4-049 RAP

SMB protocol error. The user was locked out.

Procedure

Ask the system administrator for canceling the lockout status.

027-590 SMB Protocol error 4-050 RAP
SMB protocol error. The user was locked out.

Procedure

Obtain a valid user account from the system administrator. Or, ask the system administrator to extend the account expiration date.

027-591 SMB Protocol error 4-051 RAP

SMB protocol error. Users are restricted. A blank password is invalid.

Procedure

Set the password for the user.

027-599 SMB Protocol error 4-other codes RAP
SMB library internal error other than 27-547 to 27-579 has occurred

Procedure

Operate again.

027-599 SMB Protocol error 4-other codes RAP
SMB library internal error other than 27-547 to 27-579 has occurred.

Procedure

Operate again.

027-706 Certificate RAP
The authentication certificate is not available.

Procedure

Obtain an authentication certificate.

027-707 Certificate Expired RAP

The authentication certificate expired.

Procedure

Obtain new authentication certificate.

027-708 Certificate Valid RAP
The authentication certificate is not credible.

Procedure

Check the authentication certificate information and retry.

027-709 Certificate Revoked RAP

The authentication certificate is revoked.

Procedure

Reestablish authentication certificate or obtain a new authentication certificate.

027-710 Invalid S/MIME Mail RAP

The Mail I/O received S/MIME (Secure/Multipurpose Internet Mail Extensions) mail even though S/MIME was set to [Off].

Procedure

Enable S/MIME as required.

027-711 S/MIME Mail Certificate RAP

The Mail I/O received the S/MIME (Secure/Multipurpose Internet Mail Extensions) signature mail but could not obtain the sender certificate.

Procedure

Request for the mail to be resent. Check the setting of the S/MIME device as required.

027-712 S/MIME Mail Certificate RAP

The Mail I/O received the S/MIME (Secure/Multipurpose Internet Mail Extensions) signature mail with valid sender certificate but a signature verification error is detected.

Procedure

Request that mail to be resent with a valid sender certificate.

027-713 S/MIME Mail Altered RAP

The Mail I/O received the S/MIME (Secure/Multipurpose Internet Mail Extensions) signature mail but corrupted mail is detected.

Procedure

Check the sender as required.

027-714 S/MIME Mail Invalid RAP

The Mail I/O received the S/MIME (Secure/Multipurpose Internet Mail Extensions) signature mail with different sender mail address and signature mail address.

Procedure

Check the sender as required.

027-715 S/MIME Mail Certificate Registration RAP

The certificate supported by S/MIME (Secure/Multipurpose Internet Mail Extensions) encrypted mail is not registered in the device.

Procedure

Check that the certificate of the destination is registered in the certificate store of the device

027-716 Email Signature RAP

The system detected that prohibited E-mails without a signature were received.

Procedure

Check the E-mail signatures and retry.

027-720 Extension Server Host RAP

Either the specified Server for the application interface cannot be found or the DNS could not be resolved.

Procedure

Check the connection to the destination Server for the application interface. Set the destination Server address for the application interface using IP address as required.

027-721 Extension Server RAP

The system attempted to connect to the application interface but the host replied that the application cannot be found.

Procedure

Check the host and then repeat the operation

027-722 Extension Server Time-out RAP

The system attempted to connect to the application interface but failed due to a time-out.

Procedure

Check the host and then repeat the operation.

027-723 Extension Server Authentication RAP

The system attempted to connect to the application interface but authentication failed.

Procedure

Check the host and then repeat the operation.

027-724 Extension Server Access RAP

The application interface failed (for all causes other than service could not be found, time-out or authentication failure).

Procedure

Check the host and then repeat the operation.

027-725 Extension Server Operation RAP

Job operation of the application interface failed.

Procedure

Check the destination host of the application interface and then repeat the operation.

027-726 Extension Server State RAP

The status of the destination of the application interface is unknown.

Procedure

Check the destination host of the application interface and then repeat the operation.

027-727 Extension Server Parameters RAP
The parameter used for the application interface is incorrect.

Procedure

Check the destination host of the application interface and then repeat the operation.

027-728 Extension Server File RAP

The file used for the application interface is incorrect.

Procedure

Check the destination host of the application interface and then repeat the operation.

027-737 Template Server Read RAP

An error was received from the server for one of the following FTP commands: [TYPE A], [LIST] and [RETR] when reading from the Job Template Pool Server.

Procedure

Check that [Read Authorization] is established for the storage destination server directory set as a resource.

027-739 Invalid Template Server Path RAP

An error was received from the Server for the FTP command [CWD] and the specified path of the Job Template Pool Server cannot be found.

Procedure

Set the resource of the storage destination path from the client PC using CentreWare.

027-740 Template Server Login RAP

Login to the FTP Server failed.

Procedure

Set the login name and password in the Job Template file storage destination
From another PC connected to the network, check that login to the above account is possible.
From a client PC, set a login name and password as a resource using CenterWare.

027-741 Template Server Connect RAP

The system failed in obtaining data connection or list data while connecting to the Job Template Pool Server using the FTP command [LIST].

Procedure

Connect the network cable from the machine correctly.
From the destination server, use [ping] to check that the machine can be [seen]
Perform the [ping] test on the destination server from the PSW.
From a client PC, check that FTP connection to the destination server is possible.

027-742 HDD File System RAP

BSD-ON:16.1
The HDD is full when writing to a local HDD Job Template or when writing temporary work files

Initial Actions

Power Off/On

Procedure

Replace the HDD (PL 11.2).

027-743 Template Server Install RAP

The address format of the Job Template Pool Server is incorrect.

Procedure

Set the parameters related to the Job Template Pool Server.

027-744 Template Address RAP

An error occurred while recalling the DNS Resolution Library

Procedure

Check the connection to the DNS (Domain Name System). Check that the Job Template Pool Server domain name is registered in the DNS.

027-745 Template Address Server RAP

The DNS Server address is not set during address resolution.
Initial Actions
Power Off/On

Procedure

Set the DNS address. Check the Job Template Pool Server address using IP address.

027-746 Job Template Pool Server RAP

The port of the protocol specified in Job Template Pool Server settings is not running.

Procedure

Start up the port of the protocol (FTP client or SMB) specified in Job Template Pool Server settings.

027-750 Fax Document Inhibited RAP

iFAX Document E-mail and iFAX Transfer instructions were received when iFAX Document Email and IFAX Transfer is prohibited.

Procedure

Change the transfer setting to receive iFAX.

027-751 Job Template Analysis RAP
An error is detected when analyzing the given instruction.

Procedure

Verify the job set up selections.

027-752 Required User Entry Not Entered RAP

The instruction to start the job is issued but the required user entry not entered.

Procedure

Do not link the entry box to instructions that require user entry.
Set preset values for the items in the instruction requiring user entry.

027-753 Job Flow Service Disabled RAP

The system attempted to create a job to recall an external service while the Job Flow Service is invalid.

Procedure

Ask customer to enable the Job Flow Service

027-754 Job Flow Service File Signature Mismatch RAP
Job flow service File signature setting mismatch.

Procedure

A mismatch of file signatures set by instructions

027-796 E-mail Not Printed RAP

 BSD-ON:16.1E-mails without attachments were received when the settings were set to [Do not print header and content].

Procedure

Ask customer to change the settings and repeat the operation.
Ask customer to check the remote machine.
If the problem continues, replace the FCB PWB (PL 11.3)
If the problem persists, replace the EMB PWB (PL 11.3)
If the problem persists, replace the ESS PWB (PL 11.1).

027-797 Invalid Output Destination RAP

BSD-ON:16.1
E-mail was received with E-mail to Box and E-mail to Fax not selected.

Procedure

Change the settings and repeat the operation.
If the problem persists check the remote machine.
Replace the FCB PWB (PL 11.3)
If the problem persists, replace the EMB PWB (PL 11.3)
If the problem persists, replace the ESS PWB (PL 11.2).

033-363 Fax Control RAP

BSD-ON:16.1/17.1

There was an ESS reset when the FCB PWB did not respond.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3),

033-710 Fax Control RAP

BSD-ON:16.1/17.1

The specified document does not exist.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-712 Fax Control RAP
BSD-ON:16.1
Memory is at maximum limit.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-713 Fax Control RAP
BSD-ON:16.1
The Chain-Link does not exist.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-715 Fax Control RAP

BSD-ON:16.1
The job cannot be processed with the host in the current status.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-716 Fax Control RAP

BSD-ON:16.1
The specified mailbox does not exist.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-717 Fax Control RAP

BSD-ON:16.1/17.1

Verification of the specified password failed.

Procedure

Perform following as required

1. Verify machine is connected to dedicated analog line (not ISDN).
2. Verify that no password is set.

Customer can perform following steps if system admin is accessible with code (five one's) 11111, or code is available.
a. Press the Log In / Out Button on the Control Panel and enter (five one's) 11111 using the number keypad and select Confirm.
b. Select System Settings.
c. Select System Settings again.
d. Select FAX Mode Settings.
e. Select Local Terminal Settings.
f. Check that 3. Machine Password is (not set). If it is (not set), select close/exit as required. Go to step 3. If a password is set, go to step g.
g. Select 3. Machine Password and select Change Settings.
h. Select Backspace as required to delete the password.
i. Select Save.
j. Select Close/Exit as required.
k. Select Close again.
l. Select Close again.
m . Power machine off and on to verify setting change.
3. Initialize NVM.

033-718 Fax Control RAP

BSD-ON:16.1/17.1

The document does not exist in the Polling Send box or the specified mailbox.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel the job and resend.

033-719 Fax Control RAP

BSD-ON:16.1/17.1
The document does not exist in the Polling Send box or the specified mailbox.

Procedure

Ask customer to cancel the job and resend.
If the problem persists check the Fax line connection (telephone line).
If the problem persists check the electrical connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3).
If the problem persists perform GP 2 Fax Checkout.

033-721 Fax Control RAP

BSD-ON:16.1/17.1

The specified page cannot be created.

Procedure

Ask customer to cancel the job and resend.

033-722 Fax Control RAP
BSD-ON:16.1/17.1
A stored Fax job is cancelled.

Procedure

Ask customer to resend.

033-724 Fax Control RAP

BSD-ON:16.1/17.1

The upper limit for image data in a single transmission was exceeded.

Procedure

Ask customer to cancel the job and resend in smaller parts.
If the problem persists refer customer to User Guide to find information on lowering memory usage.

033-725 Fax Control RAP

BSD-ON:16.1/17.1
The HDD was full during Fax Receive, Format or report creation.

Initial Actions

Power Off/On

Procedure

Ask customer to request a re-resend.

033-726 Fax Control RAP

BSD-ON:16.1/17.1

Two-sided printing is not available when receiving Fax (mixed-size originals for fax).

Procedure

Ask customer to verify that two-sided printing is not available.

033-727 Fax Control RAP

BSD-ON:16.1/17.1
Rotation is not available when receiving Fax (insufficient memory).

Initial Actions

Power off/on

Procedure

Ask customer to request a re-resend.

033-728 Fax Control RAP

BSD-ON:16.1/17.1

Formatting for Fax Auto Printing was aborted because the instruction for Fax Manual Printing was given during the operation.

Procedure

Ask customer to cancel the job and resend.

033-731 Fax Control RAP

BSD-ON:16.1/17.1
When the system was waiting to receive a Fax job, a simultaneous request from the user to stop the job was received.

Procedure

Ask customer to request a re-resend.

033-732 Fax Control RAP

BSD-ON:16.1/17.1

Stored jobs are deleted in Forced Polling. As there was a print job during Forced Polling, the job was canceled.

Procedure

Ask customer to request a re-resend.

033-733 Fax Control RAP

BSD-ON:16.1/17.1
The job document number related to the job could not be obtained

Procedure

Ask customer to cancel the job and resend.

033-734 Fax Control RAP

BSD-ON:16.1/17.1

Fax Print and Fax Auto Report were started at the same time.

Procedure

Ask customer to cancel the job and resend.

033-735 Fax Control RAP

BSD-ON:16.1/17.1

An error occurred in reserving fax receive memory.

Procedure

Ask customer to request a re-resend

033-736 Fax Control RAP

BSD-ON:16.1/17.1

Fax was not transferred as the data capacity exceeded the threshold value while the Fax Transfer Prohibition Function was activated, based on the data capacity of the Internet Fax Off Ramp.

Procedure

Ask customer to cancel the job and resend

033-737 Fax Control RAP

BSD-ON:16.1/17.1
The Fax Controller detected a failure and could not continue processing the job.

Initial Actions

Power off/on

Procedure

Ask customer to cancel the job and resend.

033-740 Fax Control RAP

BSD-ON:16.1/17.1
The user canceled immediate printing upon receiving.

Procedure

Ask customer to request a re-resend.

033-741 Fax Control RAP

BSD-ON:16.1/17.1

When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match

Procedure

Ask customer to request a re-resend.

033-742 Fax Control RAP

BSD-ON:16.1/17.1
When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match.

Procedure

Ask customer to request a re-resend.

033-743 Fax Control RAP

BSD-ON:16.1/17.1
When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match.

Procedure

Ask customer to request a re-resend.

033-744 Fax Control RAP

BSD-ON:16.1/17.1
When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match.

Procedure

Ask customer to request a re-resend.

033-745 Fax Control RAP

BSD-ON:16.1/17.1
When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match.

Procedure

Ask customer to request a re-resend.

033-746 Fax Control RAP

BSD-ON:16.1/17.1
When transferring image data to the FCB PWB, the conditions for sending the response to the FCB PWB did not match.

Procedure

Ask customer to request a re-resend.

033-747 Fax Control RAP

BSD-ON:16.1/17.1
When requesting to start the service from the FCB PWB, the job could not be created due to causes such as job number overflow.

Procedure

Ask customer to request a re-resend.

033-749 Fax Control RAP

BSD-ON:16.1/17.1
During Fax formatting, the enlarged image data is larger than the reserved memory.

Initial Actions

Power off/on

Procedure

Ask customer to cancel the job and resend.

033-750 Fax Control RAP

BSD-ON:16.1/17.1

Enlargement of error free image data failed when image data was retrieved from the FCB PWB.

Procedure

Ask customer to cancel the job and resend.

033-751 Activity Report suspended RAP

When a communication management report occurred at a print prohibited time period, the machine just goes into sleep mode and the report output is postponed.

Procedure

No action is necessary as it will automatically restart after exiting the print prohibited time period.

033-755 Fax printing is canceled Fax RAP

Because Fax Service did not work, printing a fax document was cancelled.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3)

033-790 Fax Control RAP

BSD-ON:16.1/17.1

The FCB PWB Re-dial Wait Status was set without calculating the number of re-dial attempts.

Procedure

Ask customer to cancel the job and resend.

033-755 Fax Control RAP

BSD-ON:16.1/17.1

Fax printing is cancelled by the defect of the Fax Card.

Procedure

Ask customer to cancel the job and resend. If the problem continues, replace the Fax PWB (PL 11.3).

033-792 Fax Control RAP
BSD-ON:16.1/17.1
The RCC Service was immediately terminated.

Procedure

Ask customer to cancel the job and resend.

034-211 Fax Communication RAP

 BSD-ON:16.1/17.1Failure was detected on the Fax Option Slot 1 PWB.

Procedure

Check the installation of the PWB in Slot 1 on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-212 Fax Communication RAP

BSD-ON:16.1/17.1

Failure was detected on the Fax Option Slot 2 PWB.

Procedure

Check the installation of the PWB in Slot 2 on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-500 Fax Communication RAP

There is incorrect information in the dial data (Recipient telephone number).

Procedure

Ask customer to verify the Fax number and resend.

034-501 Fax Communication RAP

BSD-ON:16.1/17.1

The specified channel is not installed.

Procedure

Ask customer to verify that the specified channel is installed.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-505 Fax Communication RAP

Transmission exceeded memory capacity.

Procedure

Ask customer to cancel the job and resend.

034-506 Fax Communication RAP

A send error is detected in the Recipients Print Sets function when the receiving Fax does not support remote collating and copying.

Procedure

Ask customer to reconfigure the job and resend

034-507 Fax Communication RAP

One of the following occurred.

- The password is incorrect.
- An error in the mailbox number is detected.
- No documents for polling are found.

Procedure

Ask customer to check if the password, mailbox number or document for valid polling

Ask customer to cancel the job and then resend

034-508 Fax Communication RAP

The Fax controller sent a reject command signal and stopped the transmission.

Procedure

Check the Fax line connection (telephone line).
Ask customer to allow a 5 minute recovery time and then resend.

034-509 Fax Communication RAP

The Fax controller stopped the transmission after receiving the invalid procedure signal from the receiving Fax.

Procedure

Check the Fax line connection (telephone line).
Ask customer to cancel the job and then resend.

034-510 Fax Communication RAP

The Fax controller stopped the transmission after receiving the reject command signal from the receiving Fax.

Procedure

Check the Fax line connection (telephone line).
Ask customer to allow a 5 minute recovery time and then resend.
Ask customer to cancel the job and then resend.

034-511 Fax Communication RAP

The receiving Fax is unable to send.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and then resend.

034-512 Fax Communication RAP

An infinite loop was detected at the receiving Fax relay broadcast.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and then resend.

034-513 Fax Communication RAP

The Fax controller received an illegal command from the receiving Fax during remote maintenance.

Procedure

Check the Fax line connection (telephone line).
Ask customer to cancel the job and then resend.

034-514 Fax Communication RAP

The Fax controller received a remote maintenance request from the receiving Fax but the Fax controller does not support this function.

Procedure

Check Fax setup
Ask customer to cancel the job and then resend

034-515 Fax Communication RAP

BSD-ON:16.1/17.1

The Fax controller received a DIS signal from the receiving Fax.
A DCS signal is received when this function is not supported.
An illegal command was received.

Procedure

Check the Fax line connection (telephone line).
Ask customer to cancel the job and then resend.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-520 Fax Communication RAP

The number of services exceeded the limit.

Procedure

Ask customer to reduce the number of selections and then resend.

034-522 Fax Communication RAP

BSD-ON:16.1/17.1

There is no phone line available for manual transmission when manual transmission is disabled.

Procedure

Ask customer to allow a 5 minute recovery time and then resend.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-523 Fax Communication RAP

The Fax controller was unable to accept the service when it is in a prohibited state.

Procedure

Ask customer to allow a 5 minute recovery time and then resend.

034-528 Fax Communication RAP
A manual transmission was requested during dialing.

Procedure

Ask customer to resend.

034-529 Fax Communication RAP

BSD-ON:16.1/17.1

When confirming and receiving print jobs, the jobs cannot be printed when the document size does not match the paper size.

Procedure

Ask customer to check if the paper tray guides are set correctly.
Ask customer to check the size of the paper loaded in the tray
If the problem persists perform GP 2 Fax Checkout.

034-530 Fax Communication RAP

BSD-ON:16.1/17.1

DTMF I/F Time-out is detected when an operation did not occur within the specified time.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-550 Write to FaxCard-ROM error detection RAP

An error has occurred during the process of writing data to the FaxCard-ROM. (During DLD method).

Procedure

Retry job. If retry failed, replace the FaxCard-ROM and perform VerUP operation on the DLD method again

034-702 Fax Communication RAP

BSD-ON:16.1/17.1

Unable the to initiate the call without the address specified, no destination specified.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-703 Fax Communication RAP

 BSD-ON:16.1/17.1The D Channel was deleted from the network.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-704 Fax Communication RAP

BSD-ON:16.1/17.1

There is a ISDN D Channel error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-705 Fax Communication RAP

BSD-ON:16.1/17.

Layer 1 is deactivated with the power on.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-706 Fax Communication RAP

BSD-ON:16.1/17.1

Layer 1 is deactivated with the power off.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-707 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-708 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-709 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-710 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-711 Fax Communication RAP

BSD-ON:16.1/17.1

Fax controller is waiting for a data link time-out.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-713 Fax Communication RAP
There is a transmission time-out.

Procedure

Ask customer to cancel the job and resend.

034-714 Fax Communication RAP
There is a wait release time-out.

Procedure

Ask customer to cancel the job and resend.

034-715 Fax Communication RAP

There is a wait release complete time-out.

Procedure

Ask customer to cancel the job and resend.

034-716 Fax Communication RAP
There is a connection time-out.

Procedure

Ask customer to cancel the job and resend

034-717 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-718 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-719 Fax Communication RAP

BSD-ON:16.1/17.1

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-722 Fax Communication RAP

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Ask customer to cancel the job and resend.

034-724 Fax Communication RAP

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Ask customer to cancel the job and resend.

034-725 Fax Communication RAP

There is an internal fax communication error during preparation to transmit the fax.

Procedure

Ask customer to cancel the job and resend.

034-726 Fax Communication RAP

The I/F buffer is busy.

Procedure

Ask customer to allow a 5 minute recovery time and then resend.

034-729 Fax Communication RAP

The line was cut off when sending In-Channel PB.

Procedure

Ask customer to cancel the job and resend.

034-730 Fax Communication RAP

BSD-ON:16.1/17/1

There is a conflict between incoming and outgoing calls

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-731 Fax Communication RAP

BSD-ON:16.1/17/1
The network cutoff the Fax setup.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-732 Fax Communication RAP

BSD-ON:16.1/17/1

The network cutoff the Fax setup after a time-out.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-733 Fax Communication RAP

BSD-ON:16.1/17/1
There is a sequence error or message incompatibility.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-736 Fax Communication RAP

The Fax network sent the wrong notice.

Procedure

Ask customer to cancel the job and resend.

034-737 Fax Communication RAP

BSD-ON:16.1/17.1

The control failed during call response.

Procedure

Replace the FCB PWB (PL 11.3)
If the problem persists replace the ESS PWB (PL 11.2)

034-738 Fax Communication RAP

BSD-ON:16.1/17.1

There is a Layer 1 start up or activation error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-739 Fax Communication RAP

BSD-ON:16.1/17.1

Layer 1 synchronization is lost.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-740 Fax Communication RAP

BSD-ON:16.1/17.1

There is a frame transmission error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-741 Fax Communication RAP

BSD-ON:16.1/17.1

There is a frame send error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-742 Fax Communication RAP

BSD-ON:16.1/17.1
A frame send error is detected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-743 Fax Communication RAP

BSD-ON:16.1/17.1

When sending frames, the DMA (Dynamic Memory Access) was abnormally terminated.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3).

034-744 Fax Communication RAP

An incorrect channel was terminated

Procedure

Ask customer to cancel the job and resend.

034-745 Fax Communication RAP

BSD-ON:16.1/17.1

A call is initiated to the configured channel.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-746 Fax Communication RAP

BSD-ON:16.1/17.1
There are no usable lines.

Procedure

Ask customer to cancel the job and resend.
Check the Fax line connection (telephone line).
If the problem persists perform GP 2 Fax Checkout.
If the problem persists check the connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3).

034-747 Fax Communication RAP

BSD-ON:16.1/17.1

The network switching equipment is busy.

Procedure

Ask customer to cancel the job and resend.
Check the Fax line connection (telephone line).
If the problem persists perform GP 2 Fax Checkout.
If the problem persists check the connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3).

034-748 Fax Communication RAP

The specified line can not be used.

Procedure

Ask customer to cancel the job and resend.

034-749 Fax Communication RAP
There is a network busy error.

Procedure

Ask customer to cancel the job and resend.

034-750 Fax Communication RAP
There is an error on the network.

Procedure

Ask customer to cancel the job and resend.

034-751 Fax Communication RAP
There is a temporary error on the network.

Procedure

Ask customer to cancel the job and resend

034-752 Fax Communication RAP

The receiving Fax is busy.

Procedure

Ask customer to cancel the job and resend.

034-753 Fax Communication RAP
The receiving Fax is not responding.

Procedure

Ask customer to cancel the job and resend.

034-754 Fax Communication RAP

The receiving Fax is not responding.

Procedure

Ask customer to cancel the job and resend.

034-755 Fax Communication RAP
The receiving Fax refused the call.

Procedure

Ask customer to cancel the job and resend.

034-756 Fax Communication RAP

There is a fault at the receiving Fax.

Procedure

Ask customer to cancel the job and resend.

034-757 Fax Communication RAP
There is a fault at the receiving Fax.

Procedure

Ask customer to cancel the job and resend.

034-758 Fax Communication RAP

The destination Fax number is invalid or incorrect.

Procedure

Ask customer verify the Fax number and resend.

034-759 Fax Communication RAP
There is a network error.

Procedure

Ask customer to cancel the job and resend.

034-760 Fax Communication RAP

There is no line or route to the destination.

Procedure

Ask customer to cancel the job and resend.

034-761 Fax Communication RAP
The Fax number format is invalid.

Procedure

Ask customer verify the Fax number and resend.

034-762 Fax Communication RAP

There is a problem with the destination.

Procedure

Ask customer to cancel the job and resend.

034-763 Fax Communication RAP

Fax communication with the receiving Fax is not authorized.

Procedure

Ask customer to verify the Fax number and resend.

034-764 Fax Communication RAP

BSD-ON:16.117.1

Communication capability is not configured.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-765 Fax Communication RAP

BSD-ON:16.1/17.1

There is a feature limit error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-766 Fax Communication RAP

BSD-ON:16.1/17.1
The selected communication is not implemented.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-767 Fax Communication RAP

BSD-ON:16.1/17.1

The selected mode is not implemented.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-768 Fax Communication RAP

 BSD-ON:16.1/17.1Restricted digital information is insufficient for Fax operation.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-769 Fax Communication RAP

BSD-ON:16.1/17.1

There is a feature error.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-770 Fax Communication RAP

BSD-ON:16.1/17.1

There is a reply and response to status query.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-771 Fax Communication RAP

BSD-ON:16.1/17.1

Access information was discarded.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-772 Fax Communication RAP

There is an internal connection error.

Procedure

Ask customer to cancel the job and resend.

034-773 Fax Communication RAP

BSD-ON:16.1/17.1

An invalid Fax number was dialed.

Procedure

Ask customer to verify the Fax number and resend.

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.

If the problem persists replace the FCB PWB (PL 11.3).

034-774 Fax Communication RAP

BSD-ON:16.1/17.1

An invalid line or channel was specified.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3)

034-776 Fax Communication RAP

A required information element is missing.

Procedure

Ask customer to cancel the job and resend.

034-777 Fax Communication RAP
An undefined type of message was received.

Procedure

Ask customer to cancel the job and resend.

034-778 Fax Communication RAP

An incorrect message was received.

Procedure

Ask customer to cancel the job and resend.

034-779 Fax Communication RAP

No information was received, or the information is not defined.

Procedure

Ask customer to cancel the job and resend

034-780 Fax Communication RAP

Invalid information was received.

Procedure

Ask customer to cancel the job and resend.

034-781 Fax Communication RAP

A received message is not compatible with the call status.

Procedure

Ask customer to cancel the job and resend

034-782 Fax Communication RAP

An error cleared due to time-out.

Procedure

Ask customer to cancel the job and resend.

034-783 Fax Communication RAP

An unspecified protocol error occurred.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-784 Fax Communication RAP

The destination Fax number changed

Procedure

Ask customer to verify the Fax number and resend.

034-785 Fax Communication RAP

An incompatible destination error was received.

Procedure

Ask customer to verify the Fax number and resend.

034-786 Fax Communication RAP

BSD-ON:16.1/17.1
The call identity is not in use.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-787 Fax Communication RAP

BSD-ON:16.1/17.1

The call identity is in use.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists replace the FCB PWB (PL 11.3).

034-788 Fax Communication RAP

BSD-ON:16.1/17.1

The cause for a Fax failure is not identified.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-789 Fax Communication RAP

BSD-ON:16.1/17.1

There is a presentation of an illegal event.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-790 Fax Communication Channel 0 RAP

 BSD-ON:16.1/17.1Channel 0 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3),

034-791 Fax Communication Channel 1 RAP

 BSD-ON:16.1/17.1Channel 1 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-792 Fax Communication Channel 2 RAP BSD-ON:16.1/17.1

Channel 2 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-793 Fax Communication Channel 3 RAP

 BSD-ON:16.1/17.1Channel 3 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-794 Fax Communication Channel 4 RAP BSD-ON:16.1/17.1

Channel 4 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-795 Fax Communication Channel 5 RAP

 BSD-ON:16.1/17.1Channel 5 outside line is not connected.

Procedure

Check the Fax line connection (telephone line).
If the problem persists check the connections on the FCB PWB.
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

034-796 Fax Communication Channel RAP
Incorrect information in the dial data (Recipient Telephone Number).
Procedure
Ask customer to verify the Fax number and resend.

035-500 Fax Protocol RAP

There is an internal fax protocol error during preparation to transmit the fax.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

035-550 Write to FaxG3-ROM error detection RAP

An error has occurred during the process of writing data to the FaxG3-ROM. (During DLD method).

Procedure

Retry job. If retry failed, replace the FaxG3-ROM and perform VerUP operation on the DLD method again.

035-700 Fax Protocol RAP

BSD-ON:16.1/17.1
A modem error occurred.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists perform GP 2 Fax Checkout.
If the problem persists replace the FCB PWB (PL 11.3).

035-701 Fax Protocol RAP

BSD-ON:16.1/17.1

The disconnect signal was not received from the receiving Fax after transmission was not established, or there is a time-out.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-702 Fax Protocol RAP

BSD-ON:16.1/17.1

For the NSS/DTC (Non-Standard Setup/Digital Transmit Command) signal sent from the Fax controller, the DCN (Disconnect) signal was received from the receiving Fax, or transmission was rejected by the Select Receive function on the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.
Check the connections on the FCB PWB (PL 11.3).

035-703 Fax Protocol RAP

BSD-ON:16.1/17.1

DCN (Distributed Computer Network) signal was received from the receiving Fax when sending in Phase-B (pre-message processing).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-704 Fax Protocol RAP

BSD-ON:16.1/17.1

Polling could not be done because the receiving Fax does not support Polling Send function, or the stored document/original was not set.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-705 Fax Protocol RAP

BSD-ON:16.1/17.1

The NSS (Non-Standard Facilities Set-up) signal was sent out three times but there was no response from the receiving Fax, or the DCN (Disconnect) signal was received.

Resending of DCS/NSS (Digital Command Signal/Non-Standard Facilities Set-up) signal exceeded the limit.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-706 Fax Protocol RAP

BSD-ON:16.1/17.1

When sending the NSS (Non-Standard Facilities Set-up) signal, fall back could not be done or a fall back error occurred (In User/Auto Resend Standby).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-707 Fax Protocol RAP

BSD-ON:16.1/17.1

The password does not exist or it was inconsistent.
Transmission was received from another party other than the selected party for transmission.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-708 Fax Protocol RAP

BSD-ON:16.1/17.1

The post command was sent out three times but there was no response from the receiving Fax, or a DCN (Disconnect) signal was received.

Post messages resend over the limit.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-709 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller received a RTN (Retrain Negative) signal from the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.
If the problem persists reduce the send speed and then repeat the operation.

035-710 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller received a PIN (Procedure Interrupt Negative) signal from the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-711 Fax Protocol RAP
BSD-ON:16.1/17.1
DCN (Disconnect) signal or an invalid command was received from the receiving Fax when sending in Phase-D.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-712 Fax Protocol RAP

BSD-ON:16.1/17.1

A NSC (Non-Standard Facilities Command) signal resulted in one of the following:

- The password was incorrect.
- Stored documents/originals for polling was not set on the receiving Fax.
- Document jam on the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-713 Fax Protocol RAP

BSD-ON:16.1/17.1

No response signal was returned from the receiving Fax after the FTT (Failure To Train) signal was sent.

Procedure

Fax phone line may also carry a DSL (Digital Subscriber Line) internet signal, but this is not supported by the hardware. Fax requires an analog only phone line (can be used for voice only).

035-714 Fax Protocol RAP

BSD-ON:16.1/17.1

A DCN (Disconnect) signal was returned from the receiving Fax to the NSC/DTC (Non-Standard Facilities Command/Digital Transmit Command) signal sent from the Fax controller for one of the following:

- Incorrect password

035-715 Fax Protocol RAP

BSD-ON:16.1/17.1

A password mismatch interrupted polling.

Procedure

Ask customer to cancel the job, verify any passwords, and resend.

- No originals for polling
- Paper jam on the receiving Fax

Procedure
There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-716 Fax Protocol RAP

BSD-ON:16.1/17.1

There is a time out or there is no post message.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-717 Fax Protocol RAP

BSD-ON:16.1/17.1

An RTN (Retrain Negative) signal was sent to the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.
If the problem persists reduce the send speed and then repeat the operation.

035-718 Fax Protocol RAP

BSD-ON:16.1/17.1

When no data was sent from the receiving Fax, or after receiving more than 1 page manually, the receiving Fax changed the resolution or the document size and the Fax controller returned to Phase-B (pre-message processing), but no data was sent from the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-719 Fax Protocol RAP

BSD-ON:16.1/17.1

A busy tone was detected in receive Phase-B (pre-message processing).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-720 Fax Protocol RAP

BSD-ON:16.1/17.1

The receiving Fax has one of the following problems:

- A compatibility problem
- Can not receive the DIS/NSF/NSC/DTC (DIgital Identification/Non-Standard Facilities/ Non-Standard Facilities Command/Digital Transmit Command) signals
- Memory is full

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-721 Fax Protocol RAP

BSD-ON:16.1/17.1

DCN (Disconnect) signal was received from the receiving Fax when receiving in Phase-B (premessage processing).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-722 Fax Protocol RAP

BSD-ON:16.1/17.1

The frame length exceeded 3.45 sec in 300 bps command/response.

Procedure

Ask customer to cancel the job and resend.

035-723 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller could not receive the CD (Collision Detection) signal within 3mins after receiving the signal from the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-724 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller sent a FTT (Failure To Train) signal after receiving a DCN (Disconnect) signal from the receiving Fax.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-725 Fax Protocol RAP

BSD-ON:16.1/17.1

The receiving Fax does not support the relay broadcast and mailbox functions.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend. If the resend fails Fax transmission cannot be used and another method of transmitting the data is required.

035-726 Fax Protocol RAP

BSD-ON:16.1/17.1
The Fax controller did not receive the TRN (Train) signal within 10 seconds after Phase-C (message transmission).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-727 Fax Protocol RAP

BSD-ON:16.1/17.1

More than 50% of decoding errors were detected when 148 mm of G3 image information was received in Phase-C (message transmission).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-728 Fax Protocol RAP

BSD-ON:16.1/17.1

One of the following occurred:

- The Fax controller did not detect a normal line within 1 minute after it had begun to receive G3 image information.
- The Fax controller did not detect the EOL (End of Line) signal within 13sec (default) when receiving.
- The Fax controller could not receive the EOL (End of Line) signal within 10sec in Phase-C (message transmission).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-729 Fax Protocol RAP

BSD-ON:16.1/17.1

There is a time-out drop-out when receiving the image information.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-730 Fax Protocol RAP

BSD-ON:16.1/17.1

During training or when sending a command in high speed in Phase-C (message transmission), an error is detected when the modem is not turned on when a HDLC (High Level Data Link Control) signal was sent.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-731 Fax Protocol RAP

BSD-ON:16.1/17.1

An error was detected during V. 8 internal Fax attributes selections.

Procedure

Ask customer to cancel the job and resend.

035-732 Fax Protocol RAP

BSD-ON:16.1/17.1

The V. 34 CD (Collision Detection) is off.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-733 Fax Protocol RAP

BSD-ON:16.1/17.1

There is an error in V. 34 mode (33.6 KBPS rate).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-734 Fax Protocol RAP

BSD-ON:16.1/17.1

During Polling Receive, there was no stored documents/originals for polling, or the polling operation/settings were missed during V. 8 internal Fax attributes selections.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-735 Fax Protocol RAP

BSD-ON:16.1/17.1

During Polling Send, there was no stored documents/originals for polling or the polling operation/settings was missed on the Fax controller during V. 8 internal Fax attributes selections.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-736 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller received the DCN (Disconnect) signal from the receiving Fax, or no response was returned from the receiving Fax to the CTC (Continue To Correct) signal sent by the Fax controller.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-737 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller received the DCN (Disconnect) signal, or no response was returned from the receiving Fax to the EOR (End Of Retransmission) signal sent by the Fax controller.

Resending of CTC/EOR (Continue To Correct/End Of Retransmission) signal exceeded the limit.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-738 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller received the DCN (Disconnect) signal from the receiving Fax, or no response was returned from the receiving Fax to the RR (Receive Ready) signal sent by the Fax controller.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-739 Fax Protocol RAP

BSD-ON:16.1/17.1

There is a time-out after initial 2 way transmissions are established.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-740 Fax Protocol RAP

BSD-ON:16.1/17.1
After the EOR (End Of Re-transmission) signal was sent, transmission stopped or the EORQuit signal was sent from the Fax controller.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-741 Fax Protocol RAP

BSD-ON:16.1/17.1

There is a time-out during Phase-C (message transmission).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-742 Fax Protocol RAP

BSD-ON:16.1/17.1

After the EOR (End of Re-transmission) signal was sent, the ERR (Response For End Of Transmission) signal was returned, or the EOR-Q (End Of Re-transmission-Quit) signal was received by the Fax controller.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-743 Fax Protocol RAP

BSD-ON:16.1/17.1

The receiving Fax can not receive a SUB (Sub-Address).

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-744 Fax Protocol RAP

BSD-ON:16.1/17.1
The receiving Fax can not receive a password.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-745 Fax Protocol RAP

BSD-ON:16.1/17.1

The receiving Fax does not support the SEP (Separator) function.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-746 Fax Protocol RAP

BSD-ON:16.1/17.1

The Fax controller detected one of the following:

- No DT1 signal before dialing.
- A BT1/BT2 signal before dialing.
- A CT1 signal before dialing (a state in which PBX is busy).
- A CT2 signal before dialing.
- No DT1 signal during dialing (This could happen when an outside line was used without any signal sending from the PBX).
- A BT1/BT2 signal during dialing.
- A CT1/CT2 signal during dialing.
- No 2nd DT2 signal during dialing.
- A BT1/BT2 signal during dialing.
- $\mathrm{ACT} 1 / \mathrm{CT} 2$ signal during dialing.
- No third DT3 signal during dialing.
- A BT1/BT2 signal during dialing.
- $A C T 1 / C T 2$ signal during dialing.
- A BT1/BT2 signal after dialing.
- A CT1/CT2 signal after dialing.
- No DT signal from the PBX before dialing.
- A BT signal from the PBX before dialing.
- $A C T$ signal from the $P B X$ before dialing.
- A BT signal from the PBX after dialing.
- A CT signal from the PBX after dialing.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists perform GP 2 Fax Checkout.
If the connections are good then there is a problem with the customers PBX (Private Branch Exchange) line or the receiving fax.

035-747 Fax Protocol RAP

BSD-ON:16.1/17.1

The operation was stopped during dialing by using the Stop button.

Procedure

The customer terminated the transmission. Ask customer to resend the job.

035-748 Fax Protocol RAP

BSD-ON:16.1/17.1

The operation was stopped during transmission by using the Stop button.

Procedure

The customer terminated the transmission. Ask customer to resend the job.

035-749 Fax Protocol RAP

BSD-ON:16.1/17.1

After dialing, the Fax controller did not receive the CED/DIS (Called Station Identification/Digital Identification Signal) from the receiving Fax, causing a transmission error or re-dial to exceed the limit.

Procedure

There is a problem with the receiving Fax. Ask customer to cancel the job and resend.

035-750 Fax Protocol RAP

BSD-ON:16.1/17.1

The machine power failed during transmission, causing an error.

Procedure

Ask customer to cancel the job and resend.

035-751 Fax Protocol RAP

BSD-ON:16.1/17.1

The operation was stopped during document sending by using the Stop button.

Procedure

Ask customer to cancel the job and resend.

035-752 Fax Protocol RAP

BSD-ON:16.1/17.1

The number of jobs exceeded the limit.

Procedure

Ask customer to cancel the job and resend in separate parts.

035-762 Fax Protocol RAP

BSD-ON:16.1/17.1

There was a break in the ISDN (Integrated Services Digital Network) transmission.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3).
Ask customer to cancel the job and resend

036-500 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-501 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-502 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-503 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-504 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-505 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-506 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-507 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-508 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-509 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-510 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-511 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-512 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-513 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-514 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-515 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-516 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-517 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-518 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-519 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-520 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-521 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-522 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-523 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-524 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-525 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-526 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-527 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-528 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-529 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-530 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-531 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-532 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-533 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-534 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-535 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-536 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-537 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-538 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-539 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-540 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-541 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-542 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-550 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

Procedure

Perform GP 2 Fax Checkout.

036-700 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-701 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-702 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-703 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-704 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-705 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-706 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-707 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-708 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-709 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-710 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-711 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-712 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-713 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-714 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-715 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-716 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-717 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-718 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-719 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-720 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-721 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-722 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-723 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-724 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-725 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-726 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-727 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-728 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-729 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-730 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-731 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-732 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-733 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-734 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-735 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-736 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-737 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-738 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-739 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-740 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-741 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-742 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-743 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-744 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-745 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-746 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-747 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-748 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-749 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-750 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-751 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-752 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-753 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-754 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-755 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-756 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-757 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-758 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-759 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-760 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-761 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-762 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-763 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-764 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-765 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-766 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-767 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-768 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-769 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-770 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-771 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-772 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-773 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-774 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-775 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-776 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-777 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-778 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-779 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-780 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-781 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-782 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-783 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-784 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-785 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-786 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-787 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-788 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-789 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-790 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-791 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-792 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-793 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-794 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-795 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-796 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-797 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-798 Fax Parameter RAP

BSD-ON:17.1
There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

036-799 Fax Parameter RAP

BSD-ON:17.1

There is a fax error with either the Fax controller or the receiving fax.

Procedure

Perform GP 2 Fax Checkout.
If the checkout is good then there is a problem with the receiving fax. Ask customer to cancel the job and resend.

041-310 IM Logic Failure

There is an IOT Manager controller software error.

Procedure

Ensure that the MCU PWB E-PROM is secure on the MCU PWB (PL 11.1). Check the connection of each MCU PWB electrical connector. The connectors are connected correctly.
Y \mathbf{N}

Secure the connectors.

Turn on the power again. [041-310] persists.
Y N
Return to Service Call Procedures.
Perform GP 10 Loading and Upgrading Software for the IOT. [041-310] persists.
N
Return to Service Call Procedures.
Replace the MCU PWB (PL 11.1).

041-311 MCU PWB Fuse F2

Fuse F2 on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced.
- Check the harness wires for damage on BSD's 1.2A, 6.5 and 7.9.
- If no problems are found replace the MCU PWB (PL 11.1).

041-312 MCU PWB Fuse F1

Fuse F1 on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced.
- Check the harness wires for damage on the following BSD's; 1.2A, 7.7, 8.1, 8.2, 8.7, 9.4B, 9.6, 10.3, 10.5, 10.7 .
- If no problems are found replace the MCU PWB (PL 11.1).

041-314 MCU PWB Fuse FA

Fuse FA on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced.
- Check the harness wires for damage on the following BSD's; 1.2A and related BSD's for +24 VDC distribution and Wire Net +24VDC-1 to Wire Net +24VDC-6.
- If no problems are found replace the MCU PWB (PL 11.1).

041-319 MCU PWB Interlock Fuse F4

Fuse F4 on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced
- Check the harness wires for damage on BSD's 1.2A, 9.2, 9.4A, 9.5, 9.7, 4.1A.
- If no problems are found replace the MCU PWB (PL 11.1).

041-320 MCU PWB Interlock Fuse F3

Fuse F3 on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced.
- Check the harness wires for damage on BSD 1.2A, and 9.3.
- If no problems are found replace the MCU PWB (PL 11.1).

041-323 MCU PWB Fuse F5

Fuse F5 on the MCU PWB has an open circuit failure.

Procedure

Perform the following:

- Check the connection of each MCU PWB electrical connector.
- If any service was performed immediately before the fuse failure check that no wire damage was caused in the areas that were serviced.
- Check the harness wires for damage on the following BSD's; 1.2A, 4.1A, 6.5, 7.7, 7.9, 8.1, 8.2, 8.7, 9.2, 9.3, 9.4A, 9.4B, 9.5, 9.6, 10.3, 10.5, 10.7.
- If no problems are found replace the MCU PWB (PL 11.1).

041-340 MCU PWB Data RAP

BSD-ON:3.1
There is a MCU PWB Data failure. Data storage address corruption occurred.

Initial Actions

Ensure that the MCU PWB E-PROM is secure on the MCU PWB (PL 11.1).
Ensure that the last software has been loaded.

Procedure

Check the connection of each MCU PWB electrical connector. The connectors are connected correctly.

Y N

Secure the connectors.
Turn on the power again. [041-340] persists.
Y N
Return to Service Call Procedures.
Initialize NVM. [041-340] persists.
Y \mathbf{N}
Return to Service Call Procedures.
Reload software. If the problem persists, replace the MCU PWB (PL 11.1).

041-341 MCU PWB Access RAP

BSD-ON:3.1

There is a MCU PWB Access failure. Read check values do not match write check values.

Initial Actions

Ensure that the MCU PWB E-PROM is secure on the MCU PWB.

Procedure

Check the connection of each MCU PWB connector. The connectors are connected correctly.
Y N
Secure the connectors.
Turn on the power again. [041-341] persists.
Y N
Return to Service Call Procedures.
Initialize NVM. [041-341] persists
Y N
Return to Service Call Procedures.
Replace the MCU PWB (PL 11.1).

041-342 MCU PWB Buffer RAP

BSD-ON:3.1
There is a MCU PWB Buffer full or overflow problem.

Initial Actions

Ensure that the MCU PWB E-PROM is secure on the MCU PWB (PL 11.1).

Procedure

Check the connection of each MCU PWB connector. The connectors are connected correctly.
Y N
Secure the connectors.
Turn on the power again. [041-342] persists.
Y N
Return to Service Call Procedures.
Replace the MCU PWB (PL 11.1).

041-500
IIOT Memory (DDR DIMM) Fault

Procedure

Ensure that the DIMM's are installed correctly.
If the problem continues, replace the DIMM's (PL 11.2),
If the problem persists, replace the ESS PWB (PL 11.2)

041-501

IOT NVM Memory (DDR DIMM) Fault.

Procedure

Ensure that the DIMM's are installed correctly.
If the problem continues, replace the DIMM's (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2)

042-311 Auger Motor Failure RAP BSD-ON:4.1B

The Auger Motor is not rotating at the specified speed.

Initial Actions

- Power OFF/ON

Procedure

Close the LH Cover and the Front Cover.
Execute Component Control [042-003 Auger Motor ON]. The Auger Motor can be heard.
Y N
Go to the BSD 4.2B and troubleshoot the circuit.
Check the installation of the Drum Drive Assembly (PL 1.1). The Drum Drive Assembly is installed correctly.
Y N
Install the Drum Drive Assembly correctly.
Check the wire between J410 and J215 for an open circuit or a short circuit (BSD 4.2B). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Manually rotate the Auger Motor rotor. It rotates smoothly.
Y N
Check for foreign substances that are interfering with operation or installation failure. Foreign substances or installation failure are found.
Y N
Replace the Drum Drive Assembly (PL 1.1).
Remove the foreign substances that are interfering with operation and correct the installation failure.

Replace the Drum Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

042-313 Rear Cooling Fan Failure RAP

BSD-ON:13.1
The Rear Cooling Fan Failed.

Procedure

Execute Component Control [042-006 Rear Fan ON]. The Rear Fan rotates.
Y N
Check connectors J 409 on the MCU PWB and J 224 on the Rear Fan (PL 11.1). The connector or connected.
Y N
Connect connector.
Check the wires between J 409 on the MCU PWB and J 224 on the Rear Fan for an open or shot circuit. The wires are OK.
Y N
Repair or replace as needed.
Check J 409-15A (+) and J 409-18A (-) for +24VDC +24VDC is present.
Y N
Troubleshoot the +24 VDC circuit (BSD 1.2).
Replace the Rear Fan (PL 11.1).
Check for obstructions in the area of the Rear Fan (PL 11.1).

042-324 Drum Motor Drive Failure RAP BSD-ON:4.2A

The Drum Motor is not rotating at the specified speed.

Initial Actions

- Power OFF/ON
- Replace the Xero/Developer Cartridge (PL 4.1) and the Fuser Unit (PL 7.1)

Procedure

Close the LH Cover and the Front Cover.
Execute Component Control [091-004 Drum Motor ON]. The Drum Motor can be heard.
Y N
Go to the OF 3 (MAIN DRIVE ASSY RAP).
Check the installation of the Main Drive Assembly (PL 1.1). The Main Drive Assembly is installed correctly.
Y N
Install the Main Drive Assembly (PL 1.1) correctly.
Check the wire between J409 and J211 for an open circuit or a short circuit (BSD 4.2A). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

Manually rotate the Main Motor rotor. It rotates smoothly.
Y N
Check for foreign substances that are interfering with operation or installation failure Foreign substances or installation failure are found. Y \mathbf{N}

Replace the Main Drive Assembly (PL 1.1).

Remove the foreign substances that are interfering with operation and correct the installaion failure.

Replace the Main Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

042-325 Main Motor Failure RAP

BSD-ON:4.1B
The Main Motor is not rotating at the specified speed.

Initial Actions

- Power OFF/ON
- Reload the Xero/Developer Cartridge (PL 4.1) and the Fuser Unit (PL 7.1).

Procedure

Close the LH Cover and the Front Cover.
Execute Component Control [042-001 Main Motor ON]. The Main Motor can be heard.
Y $\quad \mathbf{N}$
Go to the OF 3 (MAIN DRIVE ASSY RAP).
Check the installation of the Main Drive Assembly (PL 1.1). The Main Drive Assembly is installed correctly.
Y N
Install the Main Drive Assembly correctly.
Check the wire between J 410 and J 214 for an open circuit or a short circuit (BSD 4.1B). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Manually rotate the Main Motor rotor. It rotates smoothly.
Y \mathbf{N}
Check for foreign substances that are interfering with operation or installation failure Foreign substances or installation failure are found.
Y N
Replace the Main Drive Assembly (PL 1.1).
Remove the foreign substances that are interfering with operation and correct the installation failure.

Replace the Main Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

042-400 Filter Life RAP

The Filter Failed.

Procedure

Replace the Filter (PL 12.2).

045-310 Image RAP

BSD-ON:6.2
The IIT image is not ready for transfer.

Procedure

Check the connectors and cables between the IIT/IPS PWB, CCD PWB, and the ESS PWB. The connectors and cables are OK.
Y N
Repair or replace as required (PL 13.3, PL 13.4, PL 11.2)
Power OFF and then ON. The problem continues.
N
Rerun the job.
Replace the IIT/IPS PWB (PL 13.3).

045-311 Controller Communications RAP

 BSD-ON:6.2There is a Controller communications fault.

Procedure

Check the following PWBs for loose connections and/or defective cables:

- Printer PWB (PL 11.2)
- ESS PWB (PL 11.2).
- MCU PWB (PL 11.1).

Repair and/or replace as required.

045-321 Marking Panel RAP

BSD-ON:6.2
There is an internal marking panel control error.

Procedure

Check the connectors and cables between the IIT/IPS PWB, CCD PWB, and the ESS PWB. The connectors and cables are OK.
Y N
Repair or replace as required (PL 13.3, PL 13.4, PL 11.2)
Power OFF and then ON. The problem continues.
\mathbf{N}
Rerun the job.
Replace the IIT/IPS PWB (PL 13.3). If the problem continues, replace the ROS (PL 3.1).

045-322 Marking Pitch RAP

BSD-ON:6.4/6.5

There is an internal marking pitch control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the ROS Unit (PL 3.1). If the problem continues, replace the MCU PWB (PL 11.1).

045-323 Marking Y RAP

BSD-ON:6.4/6.5

There is a marking Y plate control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-324 Marking M RAP

BSD-ON:6.4/6.5

There is a marking M plate control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathbf{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-325 Marking C RAP

BSD-ON:6.4/6.5

There is a marking C plate control error

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-326 Marking K RAP

BSD-ON:6.4/6.5

There is a marking K plate control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.

Y \mathbf{N}

Repair replace as required (PL 11.1, PL 3.1)
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-327 Marking Y RAP

BSD-ON:6.4/6.5

There is a marking Y plate error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-328 Marking M RAP

BSD-ON:6.4/6.5

There is a marking M plate error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathrm{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-329 Marking C RAP

BSD-ON:6.4/6.5

There is a marking C plate error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-330 Marking K RAP

BSD-ON:6.4/6.5

There is a marking K plate error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathbf{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-331 Marking Reject RAP

BSD-ON:6.4/6.5

There is a marking reject control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-332 Marking Reject RAP

BSD-ON:6.4/6.5

There is a marking reject control error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathrm{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-333 Marking Communication RAP

 BSD-ON:6.4/6.5There is a marking module communication error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-334 Marking Drive Communication RAP

BSD-ON:6.4/6.5

There is a marking/drive communication error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathrm{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-335 Marking Fuser Communication RAP

 BSD-ON:There is a marking/fuser communication error.

Procedure

Check the connections and wiring between the MCU PWB and the Fuser. The connections and wiring are OK.
Y^{N}
Repair replace as required (PL 11.1, PL 3.1).
Replace the Fuser (PL 5.1). If the problem continues, replace the MCU PWB (PL 11.1).

045-336 Marking ROS Communication RAP

BSD-ON:6.4/6.5
There is a marking/ROS communication ROS error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y $\quad \mathrm{N}$
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

045-337 Marking Imaging Communication RAP

BSD-ON:6.4/6.5

There is a marking/imaging communication error.

Procedure

Check the connections and wiring between the MCU PWB and the ROS Unit. The connections and wiring are OK.
Y N
Repair replace as required (PL 11.1, PL 3.1).
Replace the MCU PWB (PL 11.1). If the problem continues, replace the ROS Unit (PL 3.1).

047-211 OCT 2 RAP

BSD-ON:10.7

the OCT Home Sensor 2 did not actuate in time after the OCT2 Motor energized.

Procedure

Manually operate the offset mechanism. The offset mechanism moves smoothly.
Y $\quad \mathbf{N}$
Replace the parts that are interfering with operation (PL 8.4).
Execute Component Control [077-103 OCT Home Sensor 2]. Actuate the OCT Home Sensor 2 with paper. The display changes.
Y $\quad \mathrm{N}$
Check the connections of J111, P/J606, J422. Connections are connected correctly. Y N

Connect connectors
Check the wire between J 111 and J 422 for an open circuit or a short circuit (BSD 10.7 Flag 1/Flag 2). The wires are conducting without an open circuit or a short circuit. Y \mathbf{N}

Repair the open circuit or short circuit.
Replace the OCT Home Sensor 2 (PL 8.4).
Alternately execute Component Control [077-011 Offset Motor 2 (CW)] and Component Control [077-012 Offset Motor 2 (CCW)]. The Offset Motor 2 energizes.
Y N
Check the connections of P/J207, P/J606 and J/421. Connections are connected correctly. Y N

Connect connectors
Check the wire between J421 and P207 for an open circuit or a short circuit (BSD 10.7 Flag 3). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Offset Motor 2 between J207-1 (COM) and each point of J207-2/3/4/5 (BSD 10.7 Flag 3). The resistance is approx. 1000hm.
Y N
Replace the Offset Motor 2 (PL 8.4).
Measure the voltage between the Exit PWB P421-1 (+) and GND (-) (BSD 10.7 Flag 3). The voltage is approx. +24VDC.
$\mathbf{Y} \quad \mathbf{N}$
Go to BSD 1.2 and troubleshoot the +24 VDC circuit.
Replace the Offset Motor 2 (PL 8.4) If the problem persists, replace the MCU PWB (PL 11.1).

Replace the MCUPWB (PL 11.1)

047-214 MCU Duplex Module RAP

BSD-ON:1.2/3.2

Communication error occurred between the MCU PWB and the Duplex Module.

Initial Actions

Power OFF the machine. Disconnect the Tray Module and the Finisher (if the machine has one). Power ON the machine. If the problem is resolved, go to RAP 077-131 or 077-307 and troubleshoot the Duplex Module.

Procedure

Check the connection of each MCU PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the connection of each Duplex Module PWB connector. The connectors are securely connected.
Y $\quad \mathbf{N}$
Connect the connectors.
Check the wire between J417 and J540 for an open circuit or a short circuit (BSD 1.2 Flag 2 / BSD 3.3 Flag 3/Flag 4). The wire between J 417 and J 540 is conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P417-A1 (+) and GND (-) (BSD 1.2 Flag 2). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
Replace the Duplex PWB (PL 10.1) If the problem persists, replace the MCU PWB (PL 11.1).

047-216 MCU Finisher Communication RAP

BSD-ON:3. 4
A communication error occurred between the MCU PWB and the Finisher.

Initial Actions

Check the Finisher harness connections to the IOT

Procedure

Check the connection of each MCU PWB connector. The connectors are securely connected.
Y N

```
Connect the connectors.
```

Check the connection of each Finisher PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the wire between J416 and J8843 for an open circuit or a short circuit (BSD 3.4 Flag 1/ Flag 2). The wire between J 416 and J 8843 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

061-320 ROS Motor RAP

BSD-ON: 6.4/6.5

- The ROS Motor rotation speed does not reach the specified value within the specified time after the ROS Motor started rotating.
- The light intensity of the LD1 does not reach the specified value.

Procedure

Check the connections of P/J401 on the MCU PWB and P/J140 on the ROS Unit. Connections are connected correctly.
Y \mathbf{N}
Connect P/J401 and P/J140.
Check the connections of P/J219 and P/J618. P/J219 and P/J618 are connected correctly.
$Y \quad N$

```
Connect P/J219 and P/J618
```

Check the wire between J401 and J140 for an open circuit or a short circuit (BSD 6.4 Flag 1 Flag 2). The wire between J401 and J140 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Check the wire between J401 and J130 for an open circuit or a short circuit (BSD 6.5 Flag 1). The wire between J401 and J130 is conducting without an open circuit or a short circuit. Y \mathbf{N}

Repair the open circuit or short circuit.
Execute Component Control[061-200 ROS MOTOR ON]. The ROS Motor can be heard.
Y N
Measure the voltage between the MCU PWB P401-B7 (+) and GND (-) (BSD 6.5 Flag 2). The voltage is +24 VDC .
$Y \quad \mathbf{N}$
Measure the voltage between the MCU PWB P400-1 (+) and GND (-) (BSD 1.2 Flag
1). The voltage is +24 VDC .
Y^{N}
Measure the voltage between the Power Unit P526-4 (+) and GND (-) (BSD 1.2 Flag 1). The voltage is $\mathbf{+ 2 4 V D C}$.
Y \mathbf{N}
Replace the Power Unit (PL 11.1).
Repair the open circuit between J526 and J400.
Replace the MCU PWB (PL 11.1).
Replace the ROS Unit (PL 3.1) If the problem persists, replace the MCU PWB (PL 11.1).
Install the Xero/Developer Cartridge securely.
Measure the voltage between the MCU PWB P401-B2 (+) and GND (-) (BSD 6.4). The voltage is +5 VDC .

Y N
Replace the MCU PWB (PL 11.1).
Replace the ROS Unit (PL 3.1) If the problem persists, replace the MCU PWB (PL 11.1).

061-325 SOS RAP

BSD-ON: 6.4

The light intensity of the LD2 does not reach the specified value.

Procedure

Check the connections of P/J401 on the MCU PWB and P/J140 on the ROS Unit. Connections are connected correctly.
Y N
Connect P/J401 and P/J140.
Check the wires between J401 and J140 for an open circuit or a short circuit (BSD 6.4 Flag 1/ Flag 2). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the ROS Unit (PL 3.1)
If the problem persists, replace the MCU PWB (PL 11.1).

061-333 ROS Fan defect RAP

BSD-ON: 6.5

ROS Fan rotation failure.

Initial Actions

Clean the fan.

Procedure

Execute Component Control[061-002 ROS FAN ON].Check for noise in the rotation of the ROS Fan (PL 3.1). The ROS Fan is rotating.
Y N
Measure the voltage between the MCU PWB J401-A9 (+) and GND (-) (BSD 6.5 Flag 3). The voltage is approx. +24VDC.
$Y \quad N$
Replace the MCU PWB (PL 11.1).
Check the wire between J401 and J219 for an open circuit or a short circuit (BSD 6.5 Flag 3/Flag 4). The wire between J401 and J219 is conducting without an open circuit or a short circuit.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Replace the ROS Fan (PL 3.1).
Replace the MCU PWB (PL 11.1).

061-344 Video Processor RAP

BSD-ON:6.4

There is a failure in the video processor.

Procedure

Replace the ROS (PL 3.1).

061-345 +5 VDC Interlock RAP
BSD-ON:1.3/1.4
There is a failure in the +5 VDC interlock circuit.

Procedure

Go to BSDs 1.3 and/or 1.4 to troubleshoot the +5VDC Interlock circuit. Repair as required.

062-210 IIT Hot Line RAP

 BSD-ON: 3.1There is an open circuit in the cable between the IIT/IPS PWB and the ESS PWB.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the connection of each ESS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the wire between J720 and J320 for an open circuit or a short circuit (BSD 3.1 Flag 3/ Flag 4). The wire between J 720 and J 320 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the IIT/IPS PWB (PL 13.3)
If the problem persists, replace the ESS PWB (PL 11.2).

062-211 IIT/IPS PWB EEPROM RAP

BSD-ON: 3.1

The IPS EEPROM failed during the Read/Write operation.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Switch on the power. The problem persists.
N
Return to Service Call Procedures
Replace the IIT/IPS PWB (PL 13.3).

062-220 IIT/IPS PWB to ESS PWB RAP

BSD-ON:

Communication between the IIT/IPS PWB and ESS PWB failed.

Procedure

Switch off the power. Access the IIT/IPS PWB (PL 13.3) Disconnect and reconnect the ESS PWB (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).
If the problem persists replace the IIT/IPS PWB (PL 13.3),

062-277 IIT/IPS PWB DADF PWB Communication RAP

 BSD-ON: 3.5Transmission error occurred between the IIT/IPS PWB and the DADF PWB.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the connection of each DADF PWB connector. The connectors are securely connected.
Y \mathbf{N}
Connect the connectors.
Check the wire between J751 and J750, and between J752 and J750 for an open circuit or a short circuit (BSD 3.5 Flag 1). The wires between J751 and J750, and between J752 and J750 are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

Replace the IIT/IPS PWB (PL 13.3).
If the problem persists, replace the DADF PWB (PL 16.3).

062-278 IIT/IPS PWB RAP

BSD-ON: 6.2

Communication between the IIT/IPS PWB and ESS PWB failed.

Procedure

Switch off the power. Access the IIT/IPS PWB (PL 13.3) Disconnect and reconnect the IIT/IPS PWB.
If the problem persists replace the ESS PWB (PL 11.2).

062-300 Platen Interlock Open RAP

BSD-ON: 6.1

The Platen Interlock is open.

Procedure

Check opening/closing of the Platen Cover. The Platen Cover can be opened/closed.
Y N
Reinstall the Platen Cover correctly.
Check the installation of the Platen Angle Sensor. The Platen Angle Sensor is installed correctly.

N
Install the Platen Angle Sensor correctly
Execute Component Control[062-301]. Open and close the Platen Cover. The display changes.
Y N
Check the connections of P/J725 and P/J722. P/J725 and P/J722 are connected correctly.
Y N
Connect P/J725 and P/J722.
Check the wire between J725 and J722 for an open circuit or a short circuit (BSD 6.1 Flag 3/Flag 6). The wire between J725 and J722 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the IIT/IPS PWB P722-B1 (+) and GND (-) (BSD 6.1 Flag 6). The voltage is approx. +5 VDC .
Y N
Replace the IIT/IPS PWB (PL 13.3).
Measure the voltage between the IIT/IPS PWB P722-B2 (+) and GND (-) (BSD 6.1 Flag 5).

Actuate the Platen Angle Sensor with paper. The voltage changes.
Y N
Replace the Platen Angle Sensor (PL 13.4).
Replace the Platen Angle Sensor (PL 13.4).
Replace the IIT/IPS PWB (PL 13.3).

062-310 IIT/IPS PWB Controller Communication RAP

 BSD-ON: 3.1Transmission error occurred between the IIT/IPS PWB and the ESS PWB.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the connection of each ESS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Check the wire between J720 and J320 for an open circuit or a short circuit (BSD 3.1 Flag 3/ Flag 4). The wire between J720 and J320 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the IIT/IPS PWB (PL 13.3).
If the problem persists, replace the ESS PWB (PL 11.2).

062-311 IIT/IPS Software RAP

BSD-ON: 6.2

A software error was detected by the IIT/IPS PWB.

Procedure

Perform GP 8 Firmware version. The firmware is the latest version.
Y N
Reload Software (ADJ 9.3.1)
Replace the IIT/IPS PWB (PL 13.3),

062-345 IIT/IPS Subsystem RAP

 BSD-ON: 3.1The IPS EEPROM failed during a read/write operation.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Switch on the power. The problem persists.
Y \mathbf{N}
Return to Service Call Procedures.
Replace the IIT/IPS PWB (PL 13.3).

062-357 CCD Fan Failure RAP

CCD Fan Failure

Initial Actions

- Check the vent has no foreign object and is not clogged.
- Check there is no dust on the Fan Blade.

Procedure

Remove the Platen Glass. Execute Component Control [062-017 CCD Fan]. The CCD Fan operates.
Y N
Replace the CCD FAn (PL 8.4).
Check CCD Fan connections and wiring for damage.

062-360 Carriage Position RAP

BSD-ON: 6.3

- An error occurred while counting the pulses of the Carriage Motor.
- After the Carriage Motor turned On, the IIT Registration Sensor did not turn On within the specified time.

Procedure

Check the Carriage Rail for dirt or contamination or distortion. Dirt or contamination or distortion is found in the Carriage Rail.
Y N
Clean the rails or correct the distortion (PL 11.4)
Execute Component Control [062-212 IIT Registration Sensor]. Actuate the IIT Registration Sensor with paper. The display changes.
Y $\quad \mathbf{N}$
Check the connections of P/J728 and P/J722. P/J728 and P/J722 are connected correctly.
Y N
Connect P/J728 and P/J722.
Check the wire between J728 and J722 for an open circuit or a short circuit (BSD 6.3 Flag 2/Flag 3). The wire between J728 and J722 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the IIT/IPS PWB P722-A7 (+) and GND (-) (BSD 6.3 Flag 2/ Flag 3). The voltage is approx. +5VDC.
Y N
Replace the IIT/IPS PWB (PL 13.3).
Measure the voltage between the IIT/IPS PWB P722-A9 (+) and GND (-) (BSD 6.3 Flag 2).

Actuate the IIT Registration Sensor (PL 13.4) with paper. The voltage changes.
Y N
Replace the IIT Registration Sensor (PL 13.4).
Replace the IIT/IPS PWB (PL 13.3).
Alternately execute Component Control[062-005 Carriage Motor SCAN ON] and Component Control[062-006 Carriage Motor RETURN ON]. The Carriage Motor starts up.
Y N
Check the connections of $P / J 722$ and $P / J 721$. P/J722 and P/J721 are connected correctly.
Y $\quad \mathbf{N}$
Connect P/J722 and P/J721.
Check the wire between J722 and J721 for an open circuit or a short circuit (BSD 6.3 Flag 1). The wire between J722 and J721 is conducting without an open circuit or a short circuit.

Y N
Repair the open circuit or short circuit.
Measure the resistance of the Carriage Motor (PL 13.5). The resistance between J721$5 / 6$ and $\mathrm{J} 721-1 / 2 / 3 / 4$ is approx. 10 hm .
Y N
Replace the Carriage Motor (PL 13.5).
Measure the voltage between the IIT/IPS PWB (PL 13.3) P722-B10 (+) and GND (-), and between P722-B11 (+) and GND (-) (BSD 6.3 Flag 1). The voltage is approx. +24VDC. Y N

Replace the IIT/IPS PWB (PL 13.3).
Replace the Carriage Motor (PL 13.5)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).
Replace the IIT/IPS PWB (PL 13.3),

062-362 IIT/IPS PWB RAP

BSD-ON:6.3

Control Logic detected a failure in the IIT/IPS PWB.

Procedure

Switch off the power. Access the IIT/IPS PWB (PL 13.3) Disconnect and reconnect the IIT/IPS PWB connectors
If the problem persists reload Software (ADJ 9.3.1)
If the problem persists replace the IIT/IPS PWB (PL 13.3).

062-371 Lamp Illumination RAP

BSD-ON: 6.3

The amount of light from Exposure Lamp is inadequate which gets incident on CCD at the start of scan or at the initialization of IIT after power on.

Procedure

Check the lamp, lens, mirror and the white correcting plate for abnormalities such as contamination and deterioration. Abnormality such as contamination or deterioration of the lamp, lens, mirror or the white correcting plate is found.
Y N
Replace the lamp, lens, mirror or the white correcting plate.
Ex
Execute Component Control [062-002 IIT Exposure Lamp]. The Exposure Lamp lights up.
Y N
Check the connections of P/J703, P/J702 and P/J723. P/J703, P/J702 and P/J723 are connected correctly.
Y N
Connect P/J703, P/J702 and P/J723.
Check the wire between J702 and J723 for an open circuit or a short circuit. The wire between J702 and J723 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Replace the Lamp Wire Harness (PL 13.6).
Measure the voltage between the IIT/IPS PWB (PL 13.3) P723-1 (+) and GND (-), and between P723-2 (+) and GND (-) (BSD 6.3 Flag 4). The voltage is approx. +24VDC.
Y N
Replace the IIT/IPS PWB (PL 13.3).
Replace the Exposure Lamp (PL 13.6)
If the problem persists, replace the Lamp Ballast PWB (PL 13.6)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).
Check the connections of P/J700 and P/J710. P/J700 and P/J710 are connected correctly.
Y N
Connect P/J700 and P/J710.
Replace the Lens Kit Assembly (PL 11.4)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

062-380 Platen AGC CH1 RAP

BSD-ON: 6.3

At the adjustment of CCD output after power on, CCD does not make a correct output which it should when it receives a specified amount of light.

Procedure

Check the lamp, lens, mirror and the white correcting plate for abnormalities such as contamination and deterioration. Abnormality such as contamination or deterioration of the lamp, lens, mirror or the white correcting plate is found.
Y N
Replace the lamp, lens, mirror or the white correcting plate.
Execute Component Control[062-002 IIT Exposure Lamp]. The Exposure Lamp lights up. $\mathbf{Y} \quad \mathbf{N}$

Check the connections of P/J703, P/J702 and P/J723. P/J703, P/J702 and P/J723 are connected correctly.
Y \mathbf{N}
Connect P/J703, P/J702 and P/J723.
Check the wire between J702 and J723 for an open circuit or a short circuit (BSD 6.3 Flag 4). The wire between $J 702$ and $J 723$ is conducting without an open circuit or a short circuit.
Y N
Replace the Lamp Wire Harness (PL 13.6).
Measure the voltage between the IIT/IPS PWB (PL 13.3) P723-1 (+) and GND (-), and between P723-2 (+) and GND (-) (BSD 6.3 Flag 4). The voltage is approx. +24VDC. $\mathbf{Y} \quad \mathbf{N}$

Replace the IIT/IPS PWB (PL 13.3).
Replace the Exposure Lamp (PL 13.6)
If the problem persists, replace the Lamp Ballast PWB (PL 13.6) If the problem persists, replace the IIT/IPS PWB (PL 13.3).

Check the connections of $P / J 700$ and $P / J 710$. $P / J 700$ and $P / J 710$ are connected correctly.

N
Connect P/J700 and P/J710
Replace the Lens Kit Assembly (PL 13.4)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

062-386 Platen AOC CH1 RAP

BSD-PN: 6.2
At the adjustment of CCD output after power on, CCD does not make a correct output which it should when no light is incident on it.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Switch
Switch on the power. The problem persists.
$Y \quad N$
Return to Service Call Procedures
Replace the Lens Kit Assembly (PL 13.4)
If the problem persists, replace the IIT/IPS PWB (PL 13.3).

062-389 Carriage Over Run RAP

BSD-ON: 3.1

The carriage scanned beyond safe limits.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y $\quad \mathbf{N}$
Connect the connectors.
Switch on the power. The problem persists.
Y $\quad \mathbf{N}$
Return to Service Call Procedures
Replace the IIT/IPS PWB (PL 13.3).

062-392 IIT/IPS PWB Memory Failure-1 RAP

BSD-ON: 3.1

- The IIT/IPS PWB RAM failed during the Read/Write operation.
- The Shading Memory failed during the Read/Write operation.
- The Gap Memory failed during the Read/Write operation.
- The ASIC (Application Specific Integrated Circuit) failed.

Procedure

Check the connection of each IIT/IPS PWB connector. The connectors are securely connected.
Y N
Connect the connectors
Switch on the power. The problem persists.
Y \mathbf{N}
Return to Service Call Procedures
Replace the IIT/IPS PWB (PL 13.3).

062-393 IIT/IPS PWB RAM RAP

BSD-ON: 6.2

An internal processing error occurred in the IIT/IPS PWB.

Procedure

Check the connection of each IIT/IPS PWB (PL 13.3) connector. The securely connected.
Y \mathbf{N}
Connect the connectors.

\$witch on the power.

If the problem persists replace the IIT/IPS PWB (PL 13.3).
If the problem persists, replace the Lens Kit Assembly (PL 13.4).

062-500 IISS ROM RAP

BSD-ON: 6.2

IISS ROM Failure.

Procedure

Check the connections on the IIT/IPS PWS (PL 13.3).
Check that the prom on the IIT/IPS PWB is seated properly
If the above checks are OK, replace the IIT/IPS PWB (PL 13.3).
Perform Max Setup (ADJ 9.1.2) if the IIT/IPS PWB was replaced.
Perform DADF Registration Setup (ADJ 15.1.4).

062-790 Prohibited Document Detection RAP

BSD-ON: 6.2

Control logic detects a prohibited document.

Procedure

Ask the customer to verify that the document is not a prohibited document. Refer to Prohibited Documents in SGS 12.

If the document is not prohibited, replace the IIT/IPS PWB (PL 13.3).

063-210 Extension EPROM RAP

There is a failure in the EPROM on the Extension PWB.

Procedure

Replace the Extension PWB (PL 9.2),

063-220 IIT/IPS PWB Extension PWB Sync RAP

The IIT/IPS PWB failed to synchronize with the Extension PWB.

Procedure

Disconnect and reconnect the Extension PWB.
If the problem persists, replace the Extension PWB (PL 9.2).
If the problem persists, replace the IIT/IPS PWB (PL 11.3).

063-230 Extension PWB DIMM RAP

The DIMM failed on the Extension PWB.

Procedure

Disconnect and reconnect the DIMM on the Extension PWB
If the problem persists, replace the DIMM (PL 11.3).
If the problem persists, replace the Extension PWB (PL 9.2).

063-240 Extension PWB Processing RAP

The Extension PWB failed to process image parameters.

Procedure

Disconnect and reconnect the Extension PWB.
If the problem persists, replace the Extension PWB (PL 9.2).

063-500 IISS Extension ROM RAP

IISS Extension ROM Failure.

Procedure

Check the connections on the IIT/IPS PWS (PL 13.3).
Check that the prom on the IIT/IPS PWB is seated properly.
If the above checks are OK, replace the IIT/IPS PWB (PL 13.3).
Perform Max Setup (ADJ 9.1.2) if the IIT/IPS PWB was replaced
Perform DADF Registration Setup (ADJ 15.1.4).

065-210 Extension PWB DIMM RAP

The DIMM failed on the Extension PWB.

Procedure

Check the connections on the IIT/IPS PWS (PL 13.3).
Check that the prom on the IIT/IPS PWB is seated properly.
If the above checks are OK, replace the ITT/IPS PWB (PL 13.3).
Perform Max Setup (ADJ 9.1.2) if the IIT/IPS PWB was replaced.
Perform DADF Registration Setup (ADJ 15.1.4).

065-212 CIS Shading RAP
BSD-ON:
There is a shading failure on the CIS.

Procedure

Clean the white reference strip.

065-213 CIS Light RAP

BSD-ON:

There is a light level failure in the CIS.

Procedure

Clean the white reference strip.
If the problem persists check electrical connections between IIT and DADF.

065-215 Extension PWB DIMM 2 RAP

 BSD-ON:The DIMM 2 failed on the Extension PWB.

Procedure

Disconnect and reconnect the DIMM 2 on the Extension PWB.

065-216 Extension PWB DIMM 3 RAP

 BSD-ON:The DIMM 3 failed on the Extension PWB.

Procedure

Disconnect and reconnect the DIMM 3 on the Extension PWB.

065-219 CIS Black/White RAP

There is a black/white level failure on the CIS.

Procedure

Check electrical connections between IIT and DADF. Disconnect and reconnect CIS and Extension PWB.

071-100 Tray 1 Pre Feed RAP

BSD-ON:7.7, 8.1
A sheet did not actuate the Tray 1 Pre Feed Sensor in time.

Initial Actions

Check that the paper path is free of foreign substances and sensors are free of paper dust.

Procedure

Run the machine to create the fault. Check if paper is partially fed from the tray. Paper is partially fed from the tray (top sheet is shingled or moved slightly from stack).
Y N
There is a drives problem. Enter Component Control [071-001 Tray 1 Feed/Lift Motor ON]. The Tray 1 Feed/Lift Motor (PL 2.3) energizes).
Y N
Check the connections of P/J201, P/J611 and P/J424. P/J201, P/J611 and P/ J424 are connected correctly.
Y N
Connect P/J201, P/J611 and P/J424.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/ PL 15.6).
Replace the Tray 1 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [071-002 Tray 1 Feed/Lift Motor ON]. The Tray 1 (2) Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J201 and P/J424 for an open circuit or a short circuit (BSD 7.7 Flag 1). The circuit between J201 and J409 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 1 Feed/Lift Motor (PL 2.3).
Repeat the code and check that the Feed Rolls are rotating. Repair the drives as required (PL 2.3, PL 2.4).

There is a sensing problem. Enter Component Control [071-100 Tray 1 Pre Feed Sensor]. Actuate the Tray 1 Pre Feed Sensor (PL 2.3) with paper. The display changes.
\mathbf{N}
Check the Connection of P/J133, P/J611 and P/J424. P/J133, P/J611 and P/J424 are connected correctly.

Y N

Connect P/J133, P/J611 and P/J424.

A B
Check the wires between P/J133 and P/J424 for open circuit (BSD 8.1 Flag 2/Flag 3). The circuit between P/J133 and P/J424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between MCU PWB P/J424-A15 (+) and P/J424-A13(-) (BSD 8.1 Flag 3). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between MCU PWB P/J424-A14 (+) and GND (-) (BSD 8.1 Flag 2). Actuate the Tray 1 Pre Feed Sensor with paper. The voltage changes.
Y N
Replace the Tray 1 Pre Feed Sensor (PL 2.3).
Replace the MCU PWB (PL 11.1).
Check the installation of the sensor and associated components (PL 2.3, PL 2.4)

071-101 Tray 1 Misfeed RAP

bsD-on:8. 2
A sheet did not actuate the Tray 1 Feed Out Sensor in time.

Initial Actions

Check that the paper path is free of foreign substances and sensors are free of paper dust.

Procedure

Execute Component Control [077-101 Takeaway Roll Clutch ON]. The Takeaway Roll Clutch (PL 2.4) energizes.
$Y \mathrm{~N}$
Check the connections of P/J218 and P/J424. Connectors are connected correctly. N Connect P/J218 and P/J424.

Measure the resistance of the Takeaway Roll Clutch (PL 2.4 BSD 8.2 Flag 3). (Between $\mathrm{P} / \mathrm{J} 218-1$ and $\mathrm{P} / \mathrm{J} 218-2$) The resistance is approx. 250~1000hm.
Y N
Replace the Takeaway Roll Clutch (PL 2.4).
Check the wires between P/J218 and P/J424 for an open circuit or a short circuit (BSD 8.2 Flag 4). The circuit between P/J218 and P/J424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Enter Component Control [071-100 Takeaway Sensor]. Actuate the Tray 1 Pre Feed Sensor (PL 2.3) with paper. The display changes.
Y N
Check the Connection of P/J133, P/J611 and P/J424. P/J133, P/J611 and P/J424 are connected correctly.
Y N
Connect P/J133, P/J611 and P/J424.
Check the wires between P/J133 and P/J424 for open circuit (BSD 8.1 Flag 2/Flag 3). The circuit between P/J133 and P/J424 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between MCU PWB P/J424-A15 (+) and P/J424-A13(-) (BSD 8.1 Flag 3). The voltage is approx. +5VDC. Y N

Replace the MCU PWB (PL 11.1).
Measure the voltage between MCU PWB P/J424-A14 (+) and GND (-) (BSD 8.1 Flag 2). Actuate the Tray 1 Pre Feed Sensor with paper. The voltage changes.

071-105 Registration Sensor RAP

BSD-ON: 8.7

A sheet did not actuate the Registration Sensor in time.

Procedure

Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
Y N
Check the wires between P/J106 and P/J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The circuit between P/J106 and P/J405 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P/J405-8A (+) and P/J405-6A (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.
$\boldsymbol{Y} \quad \mathbf{N}$
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J405-A7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.

N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Check the paper transport drives and repair as required (PL 1.1, PL 2.5).

071-211 Tray 1 RAP

BSD-ON:7.1
The Tray 1 Paper Size Switch failed.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Remove Tray 1. Check the condition of the Tray 1 Paper Size Switch and actuators. The Tray 1 Paper Size Switch and actuators appear to be free of damage.
Y N

Replace the Tray 1 Paper Size Switch (PL 2.1).

Check the Tray 1 actuator on the back of Tray 1. The actuator is good.
N
Repair as required (PL 2.1)
Go to the OF 2 Size Switch Assy RAP.

071-212 Tray 1 Ready RAP

BSD-ON:7.7

There is a Tray 1 ready failure.

Procedure

Switch the power off then on. If the problem continues disconnect and reconnect P/J424 on the MCU PWB.

071-210 Tray 1 Lift Up RAP

BSD-ON:7.7

The Tray 1 Level Sensor did not actuate in time after the Tray 1 Feed/Lift Motor energized.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Enter Component Control [071-002 Tray 1 Feed/Lift Motor ON]. The Tray 1 Feed/Lift Motor (PL 2.3) can be heard (the lifted paper plate drops when the tray is opened).
$Y \quad N$
Check the connections of P/J201, P/J611 and P/J424. P/J201, P/J611 and P/J424 are connected correctly.
Y \mathbf{N}
Connect P/J201, P/J611 and P/J424.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Replace the Tray 1 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [071-002 Tray 1 Feed/Lift Motor ON]. The Tray 1 (2) Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).

$Y \quad N$

Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J201 and P/J424 for an open circuit or a short circuit (BSD 7.7 Flag 1). The circuit between J201 and J409 is conducting without an open circuit or a short circuit.
Y $\quad N$
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 1 Feed/Lift Motor (PL 2.3).
Check the installation of the Tray 1 Level Sensor (PL 2.3 and the operation of the actuator. The Tray 1 Level Sensor is installed correctly and the actuator works.
Y \mathbf{N}
Repair the Tray 1 Level Sensor (PL 2.3).
Enter Component Control [071-102 Tray 1 Level Sensor]. Manually activate the Tray 1 Level Sensor (PL 2.3). The display changes.
Y \mathbf{N}
Check the connections of P/J100, P/J611 and P/J424. P/J100, P/J611 and P/J424 are connected correctly.
Y N
Connect P/J100, P/J611 and P/J424.

A B
Check the wires between P/J100 and P/J424 for an open circuit or a short circuit (BSD 7.7 Flag 2/Flag 3). The circuit between J100 and J409 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit
Measure the voltage between the MCU PWB P/J424-A7 (+) and P/J424-A8 (-) (BSD 7.7 Flag 3). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J424-A9 (+) and GND (-) (BSD 7.7 Flag 2).

Activate the actuator of the Tray 1 Level Sensor (PL 2.3). The voltage changes.
Y N
Replace the Tray 1 Level Sensor (PL 2.3).
Replace the MCU PWB (PL 11.1).
Repair the tray lift drives as required (PL 2.3).

071-401 Tray 1 Feed Roll Life RAP

BSD-ON:8. 1

The Tray 1 Feed Rolls are near end of life.

Procedure

NOTE: Replace the feed rolls now if the next service call is likely to occur after the rolls reach end of life (PL 2.4).

071-402 Tray 1 Feed Roll Replacement RAP

BSD-ON:8.1
The Tray 1 Feed Rolls reached end of life.

Procedure

Replace the Tray 1 Feed Rolls (PL 2.4).

071-900 Tray 1 Feed Out Sensor RAP

Paper remains on the Tray 1 Feed Out Sensor.

Procedure

Check the following:

- Check that no paper is at the Tray 1 Feed Out Sensor (PL 14.3 Reflection Sensor)
- Check that the sensor is clean and free of paper dust.
- Check that the wires between the Tray 1 Feed Out Sensor and P/J548

071-940 Tray 1 Lift Up RAP

BSD-ON:7.7

The Tray 1 Level Sensor did not actuate in time after the Tray 1 Feed/Lift Motor energized.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Enter Component Control [071-002 Tray 1 Feed/Lift Motor ON]. The Tray 1 Feed/Lift Motor (PL 2.3) can be heard (the lifted paper plate drops when the tray is opened).
$Y \quad N$
Check the connections of P/J201, P/J611 and P/J424. P/J201, P/J611 and P/J424 are connected correctly.
Y N
Connect P/J201, P/J611 and P/J424.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Replace the Tray 1 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [071-002 Tray 1 Feed/Lift Motor ON]. The Tray 1 (2) Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).

Y N

Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J201 and P/J424 for an open circuit or a short circuit (BSD 7.7 Flag 1). The circuit between J201 and J409 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 1 Feed/Lift Motor (PL 2.3).
Check the installation of the Tray 1 Level Sensor (PL 2.3 and the operation of the actuator. The Tray 1 Level Sensor is installed correctly and the actuator works.
Y \mathbf{N}
Repair the Tray 1 Level Sensor (PL 2.3).
Enter Component Control [071-102 Tray 1 Level Sensor]. Manually activate the Tray 1 Level Sensor (PL 2.3). The display changes.
Y \mathbf{N}
Check the connections of P/J100, P/J611 and P/J424. P/J100, P/J611 and P/J424 are connected correctly.
Y N
Connect P/J100, P/J611 and P/J424.

A B
Check the wires between P/J100 and P/J424 for an open circuit or a short circuit (BSD 7.7 Flag 2/Flag 3). The circuit between J100 and J409 is conducting without an open circuit or a short circuit.
Y $\quad \mathrm{N}$
Repair the open circuit or short circuit
Measure the voltage between the MCU PWB P/J424-A7 (+) and P/J424-A8 (-) (BSD 7.7 Flag 3). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J424-A9 (+) and GND (-) (BSD 7.7 Flag 2).

Activate the actuator of the Tray 1 Level Sensor (PL 2.3). The voltage changes.
Y N
Replace the Tray 1 Level Sensor (PL 2.3).
Replace the MCU PWB (PL 11.1).
Repair the tray lift drives as required (PL 2.3).

072-100 Tray 2 Pre Feed RAP

BSD-ON:7.9, 7.11, 8.1

A sheet did not actuate the Tray 2 Pre Feed Sensor in time.

Initial Actions

Check that the paper path is free of foreign substances and sensors are free of paper dust.

Procedure

Run the machine to create the fault. Check if paper is partially fed from the tray. Paper is partially fed from the tray (top sheet is shingled or moved slightly from stack).
Y N
There is a drives problem.
Enter Component Control [072-002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor (PL 2.3) can be heard (the lifted paper plate drops when the tray is opened). Y \mathbf{N}

Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/J549 are connected correctly.

Y $\quad \mathbf{N}$

Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/ PL 15.6).
Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor.
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y \mathbf{N}
Return the Tray 1 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 1/7.11 Flag 1). The circuit between P/J220B and P/ J 549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 1 Feed/Lift Motor to its original position.
Replace the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).
Repeat the code and check that the Feed Rolls are rotating. Repair the drives as required (PL 14.1, PL 14.2, PL 15.6 PL 15.7).

There is a sensing problem. Enter Component Control [072-100 Tray 2 Pre Feed Sensor]. Actuate the Tray 2 Pre Feed Sensor (PL 14.3/PL 15.6) with paper. The display changes.
Y N
Check the Connection of P/J103B, and P/J549. P/J103B, and P/J549 are connected correctly.
Y N
Connect P/J103B, and P/J549.
A B-

Return the Tray 1 Feed/Lift Motor to its original position
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 1/7.11 Flag 1). The circuit between P/J220B and P/J549 is conducting without an open circuit or a short circuit.
Y^{N}
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 1 Feed/Lift Motor to its original position.
Replace the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).
Enter Component Control [072-100 Tray 2 Pre Feed Sensor]. Actuate the Tray 2 Pre Feed Sensor (PL 14.3/PL 15.6) with paper. The display changes.
Y N
Check the Connection of P/J103B, and P/J549. P/J103B, and P/J549 are connected correctly.
Y N
Connect P/J103B, and P/J549.
Check the wires between P/J103B and P/J549 for open circuit (BSD 8.1 Flag 7/Flag 6). The circuit between P/J103B and P/J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between Tray Module PWB P/J549-30 (+) and P/J549-28 (-) (BSD 8.1 Flag 7). The voltage is approx. +5 VDC .

Y N
Replace the Tray Module PWB (PL 14.3/PL 15.6).
Measure the voltage between Tray Module PWB P/J549-29 (+) and GND (-) (BSD 8.1 Flag 6). Actuate the Tray 2 Pre Feed Sensor (PL 14.3/PL 15.6) with paper. The voltage changes.
Y N
Replace the Tray 2 Pre Feed Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.3/PL 15.6)
Enter Component Control [072-002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor (PL 2.3) can be heard (the lifted paper plate drops when the tray is opened).
$Y \quad N$
Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/ J549 are connected correctly.
Y N
Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor.
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/ Lift Motor can be heard (the lifted paper plate drops when the tray is opened).

072-102 Tray 2 Feed Out Sensor On Jam (Tray 3 Feed) RAP BSD-ON:8.3/8.4
The Tray 2 Feed Out Sensor did not actuate in time after the Tray 3 Feed Out Sensor actuated

Initial Actions

Check that the paper path is free of foreign material and paper dust.

Procedure

Enter Component Control [072-103 Tray 2 Feed Out Sensor]. Actuate the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The display changes.
$Y \quad N$
Check the connections of P/J821, P/J841 and P/J548. P/J821, P/J841 and P/J548 are connected correctly.
Y N
Connect P/J821, P/J841 and P/J548.
Check the wires between P/J821 and P/J548 for an open circuit or a short circuit (BSD 8.3 Flag 1/Flag 2/Flag 3). The wires between P/J821 and P/J548 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J548-8 (+) and P/J548-9 (-) (BSD 8.3 Flag $2 /$ Flag 3). The voltage is approx. +5 VDC .

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J548-10 (+) and GND (-) (BSD 8.2 Flag 1). Actuate the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The voltage changes. $Y \quad \mathrm{~N}$

Replace the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Enter Component Control [077-022 2TM/TTM Takeaway Motor ON]. The 2TM/TTM Takeaway
Motor (PL 14.7/PL 15.9) can be heard.
$Y^{\mathbf{Y}} \quad \mathbf{N}$
Check the connections of P/J826 and P/J552. P/J826 and P/J552 are connected correctly.
$Y \quad N$
Connect P/J826 and P/J552.
Check the wires between P/J826 and P/J552 for an open circuit or a short circuit (BSD 8.4 Flag 1 / BSD 8.6 Flag 1). The wires between J826 and J552 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.

A B

072-105 Tray 2 Registration Sensor On Jam RAP BSD-ON:8.7/8.2

The Registration Sensor did not actuate in time after the Tray 2 Feed Out Sensor actuated.

Initial Actions

Check that the paper path is free of foreign material and paper dust.

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll (PL 15.5).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
Y \mathbf{N}
Check the wires between P/J106 and P/J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The circuit between P/J106 and P/J405 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P/J405-8A (+) and P/J405-6A (-) (BSD 8.7 Flag 2). The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J405-A7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.

Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Execute Component Control [077-001 Takeaway Roll Clutch ON]. The Takeaway Roll Clutch (PL 2.4) energizes.
Y N
Check the connections of P/J218 and P/J424. Connections are connected correctly. \mathbf{Y}^{N}

Connect P/J218 and P/J424.
Measure the resistance of the Takeaway Roll Clutch (PL 2.4 BSD 8.2 Flag 3). (Between P/J218-1 and P/J218-2) The resistance is approx. 250~1000hm.

Y N

Replace the Takeaway Roll Clutch (PL 2.4).
Check the wires between P/J218 and P/J424 for an open circuit or a short circuit (BSD 8.2 Flag 4). The circuit between P/J218 and P/J424 is conducting without an open circuit or a short circuit.

Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Enter Component Control [077-022 Takeaway Motor ON]. Takeaway Motor (PL 14.7/PL 15.9) can be heard.

Y N
Check the Connection of P/J552 and P/J826. P/J826 and P/J552 are connected correctly.
Y N
Connect P/J552 and P/J826.
Measure the voltage between Tray Module PWB P/J552-2 (+) and GND (-), and P/J552$5(+)$ and GND(-) (BSD 8.2 Flag 1). The voltage is approx. +24VDC.
Y \mathbf{N}
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Replace the Takeaway Motor (PL 14.7/PL 15.9).
Check the paper transport drives and repair as required (PL 2.4, PL 14.7, PL 15.9).

072-210 Tray 2 Lift Up RAP

BSD-ON:7.9/7.11

The Tray 2 Level Sensor did not actuate in time after the Tray 2 Feed/Lift Motor energized.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Remove the tray and reinstall. The Tray 2 Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y N
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/ Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y \mathbf{N}
Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/J549 are connected correctly.

Y \mathbf{N}

Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3) PL 15.6).
Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y \mathbf{N}
Return the Tray 1 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 1/7.11 Flag 1). The circuit between P/J220B and P/ J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.

Replace the Tray Module PWB (PL 14.7/PL 15.9)
Return the Tray 1 Feed/Lift Motor to its original position. Replace the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Go to the OF 2 (SIZE SWITCH ASSY RAP).
Check the installation of the Tray 2 Level Sensor (PL 14.3/PL 15.6) and the operation of the actuator. The Tray 2 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 2 Level Sensor (PL 14.3/PL 15.6).
Execute Component Control [072-102 Tray 2 Level Sensor]. Manually activate the Tray 2 Level Sensor (PL 14.3/PL 15.6). The display changes.

Y N
Check the connections of P/J101B, P/J661B and P/J549. Connectors are connected correctly.
Y N
Connect P/J101B, P/J661B and P/J549.
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 2 Flag 3/7.11 Flag 2 Flag 3). The wires between P/J101B and P/J549 are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-22 (+) and P/J549-23 (-) (BSD 7.9 Flag 3/7.11 Flag 3). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-24 (+) and GND (-) (BSD 7.9 Flag 2/7.11 Flag 2).
Activate the actuator of the Tray 2 Level Sensor (PL 2.3). The voltage changes.
Y N
Replace the Tray 2 Level Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Check the paper transport drives and repair as required (PL 2.3, PL 14.7, PL 15.9).

072-211 Tray 2 RAP

BSD-ON:7.2
The Tray 2 Paper Size Switch failed.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Remove Tray 2. Check the condition of the Tray 2 Paper Size Switch and actuators. The Tray 2 Paper Size Switch and actuators appear to be free of damage.
Y N
Replace the Tray 2 Paper Size Switch (PL 14.1).
Check the Tray 2 actuator on the back of Tray 2. The actuator is good.
N
Repair as required (PL 14.1)
Go to the OF 2 Size Switch Assy RAP.

072-212 Tray 2 Ready RAP

BSD-ON:3.3

There is a Tray 2 ready failure.

Procedure

Check the circuits between P/J413 on the MCU PWB and P/J541 (2TM) or P/J541 (TTM) on the Tray Module PWB (Flag 5, Flag 6) for an open circuit or short circuit failure. Repair as required.

If the problem persists disconnect and reconnect P/J541 on the Tray Module PWB.

072-401 Tray 2 Feed Roll Life RAP

BSD-ON:8. 1

The Tray 2 Feed Rolls are near end of life.

Procedure

NOTE: Replace the feed rolls now if the next service call is likely to occur after the rolls reach end of life (PL 14.4/PL 15.3).

072-402 Tray 2 Feed Roll Replacement RAP

BSD-ON:8.1
The Tray 2 Feed Rolls reached end of life.

Procedure

Replace the Tray 2 Feed Rolls (PL 14.4/PL 15.6).

072-900 Tray 2 Feed Out Sensor Jam RAP

BSD-ON:8.3/8.4

IOT Static Jam at Tray 2 Feed Out Sensor.

Initial Actions

Check that the paper path is free of foreign material and paper dust.

Procedure

Enter Component Control [072-103 Tray 2 Feed Out Sensor]. Actuate the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The display changes.
Y \mathbf{N}
Check the connections of P/J821, P/J841 and P/J548. P/J821, P/J841 and P/J548 are connected correctly.
Y N
Connect P/J821, P/J841 and P/J548.
Check the wires between P/J821 and P/J548 for an open circuit or a short circuit (BSD 8.3 Flag 1/Flag 2/Flag 3). The wires between P/J821 and P/J548 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J548-8 (+) and P/J548-9 (-) (BSD 8.3 Flag $2 /$ Flag 3). The voltage is approx. +5 VDC .

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J548-10 (+) and GND (-) (BSD 8.2 Flag 1). Actuate the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The voltage changes.
$\mathbf{Y} \quad \mathbf{N}$
Replace the Tray 2 Feed Out Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Enter Component Control [077-022 2TM/TTM Takeaway Motor ON]. The 2TM/TTM Takeaway
Motor (PL 14.7/PL 15.9) can be heard.
Y \mathbf{N}
Check the connections of P/J826 and P/J552. P/J826 and P/J552 are connected correctly. Y $\quad \mathbf{N}$

Connect P/J826 and P/J552.
Check the wires between P/J826 and P/J552 for an open circuit or a short circuit (BSD 8.4 Flag 1 / BSD 8.6 Flag 1). The wires between J826 and J552 is conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.

Check the paper transport drives and repair as required (PL 14.5, PL 14.7/PL 15.8, PL 15.9).

072-940 Tray 2/TTM 2 Lift Up RAP

BSD-ON:7.9/7.11

The Tray 2/TTM 2 Level Sensor did not actuate in time after the Tray 2 Feed/Lift Motor energized.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Remove the tray and reinstall. The Tray 2 Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y N
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/ Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/J549 are connected correctly.

Y N

Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3 and the Tray 2 Feed/Lift Motor (PL 14.3/ PL 15.6).
Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor.
Execute Component Control [071-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y N
Return the Tray 1 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 1/7.11 Flag 1). The circuit between P/J220B and P/ J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 1 Feed/Lift Motor to its original position.
Replace the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).
Go to the OF 2 (SIZE SWITCH ASSY RAP).
Check the installation of the Tray 2 Level Sensor (PL 14.3/PL 15.6) and the operation of the actuator. The Tray 2 Level Sensor is installed correctly and the actuator works.
Y \mathbf{N}
Reinstall the Tray 2 Level Sensor (PL 14.3/PL 15.6).
Execute Component Control [072-102 Tray 2 Level Sensor]. Manually activate the Tray 2 Level Sensor (PL 14.3/PL 15.6). The display changes.

Y N
Check the connections of P/J101B, P/J661B and P/J549. Connectors are connected correctly.
Y N
Connect P/J101B, P/J661B and P/J549.
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.9 Flag 2 Flag 3/7.11 Flag 2 Flag 3). The wires between P/J101B and P/J549 are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-22 (+) and P/J549-23 (-) (BSD 7.9 Flag 3/7.11 Flag 3). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-24 (+) and GND (-) (BSD 7.9 Flag 2/7.11 Flag 2).
Activate the actuator of the Tray 2 Level Sensor (PL 2.3). The voltage changes.
Y N
Replace the Tray 2 Level Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Check the paper transport drives and repair as required (PL 2.3, PL 14.7, PL 15.9).

073-100 Tray 3 Pre Feed RAP

BSD-ON:7.9, 7.11, 8.1

A sheet did not actuate the Tray 2 Pre Feed Sensor in time.

Initial Actions

Check that the paper path is free of foreign substances and sensors are free of paper dust.

Procedure

Run the machine to create the fault. Check if paper is partially fed from the tray. Paper is partially fed from the tray (top sheet is shingled or moved slightly from stack).
Y N
There is a drives problem.
Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Check the connections of P/J220B, P/J661B, P/J549. P/J220B, P/J661B, P/ J549 are connected correctly.

Y N

Connect P/J220B, P/J661B, P/J549
Remove the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).
Replace the Tray 3 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 (2) Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.10 Flag 1 / BSD 7.12 Flag 1). The circuit between J220B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6).
Repeat the code and check that the Feed Rolls are rotating. Repair the drives as required (PL 14.1, PL 14.2, PL 15.6 PL 15.7).

Enter Component Control [073-100 Tray 3 Pre Feed Sensor]. Actuate the Tray 3 Pre Feed Sensor (PL 14.3/PL 15.6) with paper. The display changes.

N
Check the Connection of P/J103B, P/J661B and P/J549. P/J103B, P/J661B and P/ J549 are connected correctly.

N
Connect P/J103B, P/J661B and P/J549.
Check the wires between P/J103B and P/J549 for open circuit (BSD8.1 Flag 6/Flag 7). The circuit between P/J103B and P/J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between Tray Module PWB P/J549-30 (+) and P/J549-28 (-) (BSD8.1 Flag 7). The voltage is approx. +5 VDC .
Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between Tray Module PWB P/J549-29 (+) and GND(-) (BSD8. 1 Flag 6). Actuate the Tray 3 Pre Feed Sensor (PL 14.3/PL 15.6) with paper. The voltage changes.
Y N
Replace the Tray 3 Pre Feed Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9)
Check the installation of the sensor and associated components (PL 14.1, PL 14.2, PL 15.6 PL 15.7)

073-101 Tray 3 Misfeed Jam RAP

BSD-ON:3.3/7.10/8.3

The Tray 3 Feed Out Sensor did not actuate in time after the Tray 3 Feed/Lift Motor energized.

Initial Actions

Check that the paper path is free of foreign material and paper dust.

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is good.
Y \mathbf{N}
Replace the Transport Roll (PL 15.5).
Enter Component Control [073-103 Tray 3 Feed Out Sensor]. Actuate the Tray 3 Feed Out Sensor (PL 14.6/PL 15.5) with paper. The display changes.
Y N
Check the connections of P/J821, P/J841, P/J548. P/J821, P/J841 P/J548 are connected correctly.

Y N

Connect P/J821, P/J841, P/J548.

Check the wires between J821 and J548 for an open circuit or a short circuit (BSD 8.3 Flag 1/Flag 2/Flag 3 / BSD 8.5 Flag 1/Flag 2/Flag 3). The circuit between J821 and J548 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J548-8 (+) and P/J548-9 (-) (BSD 8.3 Flag 2 / BSD 8.5 Flag 2). The voltage is approx. +5 VDC .

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P548-10 (+) and GND (-) (BSD 8.3 Flag 1 / BSD 8.5 Flag 1).
Actuate the Tray 3 Feed Out Sensor (PL 14.6/PL 15.5) with paper. The voltage changes.
Y N
Replace the Tray 3 Feed Out Sensor (PL 14.6/PL 15.5).
Check the wires between J541-10 and J413-B4 for an open circuit or a short circuit (BSD 3.3 Flag 1). The circuit between J541-10 and J413-B4 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P413-B4 (+) and GND (-) (BSD 3.3 Flag 1). Actuate the Tray 3 Feed Out Sensor (PL 14.3/PL 13.5) with paper. The voltage changes.
Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
A B

Replace the Tray 3 Pre Feed Sensor (PL 14.3/PL 15.6).

Replace the Tray Module PWB (PL 14.7/PL 15.9).
Check the paper transport drives and repair as required (PL 14.3, PL 14.6/PL 15.4, PL 15.5,
PL 15.6)

073-102 Tray 3 Feed Out Sensor On Jam RAP

BSD-ON:8.3/8.4/8.5/8.6

The Tray 3 Feed Out Sensor did not actuate in the specified time.

Initial Actions

- If a grinding noise was reported or is heard with the 073-102 code, there may be incorrect gear mesh between TTM Takeaway Clutch (PL 2.6) and it's drive gear, located to the right. Loosen the bracket fixing screws and reposition bracket for best gear mesh without binding.
- Check that the paper path is free of foreign material and paper dust.

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll (PL 15.5).
Enter Component Control [073-103 Tray 3 Feed Out Sensor]. Actuate the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The display changes.

N
Check the connections of P/J825, P/J842 and P/J548. P/J825, P/J842 and P/J548 are connected correctly.

```
Connect P/J825, P/J842 and P/J548.
```

Check the wires between P/J825 and P/J548 for an open circuit or a short circuit (BSD 8.5 Flag 4/Flag 5/Flag 6). The wires between P/J825 and P/J548 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J548-1 (+) and P/J548-2 (-) (BSD 8.5 Flag 5/Flag 6). The voltage is approx. +5VDC.

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J548-3 (+) and GND (-) (BSD 8.5 Flag 4. Actuate the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The voltage changes.
Y N
Replace the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Enter Component Control [077-022 2TM/TTM Takeaway Motor ON]. The 2TM/TTM Takeaway

Motor (PL 14.7/PL 15.9) can be heard.

Y $\quad \mathbf{N}$
Check the connections of P/J826 and P/J552. P/J826 and P/J552 are connected correctly.

```
Connect P/J826 and P/J552.
```

Check the wires between P/J826 and P/J552 for an open circuit or a short circuit (BSD 8.4 Flag 1 / BSD 8.6 Flag 1). The wires between J826 and J552 is conducting without an open circuit or a short circuit.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9)
Check the paper transport drives and repair as required (PL 14.7/PL 15.9).

073-105 Tray 3 Registration Sensor On Jam RAP

 BSD-ON:8.7/8.2/8.4The Registration Sensor did not actuate in time after the Tray 3 Feed Out Sensor actuated.

Initial Actions

Check that the paper path is free of foreign material and paper dust.

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y N
Replace the Transport Roll (PL 15.5).
Enter Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
Y \mathbf{N}
Check the wires between P/J106 and P/J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wires between P/J106 and P/J405 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P/J405-8A (+) and P/J405-6A (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J405-A7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.

Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Enter Component Control [077-001 Takeaway Roll Clutch ON]. The Takeaway Roll Clutch (PL 2.4) actuates.
Y N
Check the connections of P/J218 and P/J424. P/J218 and P/J424 are connected correctly.
Y N
Connect P/J218 and P/J424.
Measure the resistance of the Takeaway Roll Clutch (PL 2.6) (BSD 8.2 Flag 3). (Between P218-1 and P218-4) The resistance is approx. 250~1000hm.
Y \mathbf{N}
Replace the Takeaway Roll Clutch (PL 2.4).
Check the wires between P/J218 and P/J424 for an open circuit or a short circuit (BSD 8.2 Flag 4). The circuit between $\mathrm{P} / \mathrm{J} 218$ and $\mathrm{P} / \mathrm{J} 424$ is conducting without an open circuit or a short circuit.

Enter Component Control [077-022 2TM/TTM Takeaway Motor ON]. The 2TM/TTM Takeaway Motor (PL 14.7/PL 15.9) energizes.
Y \mathbf{N}
Check the connections of P/J826 and P/J552. P/J826 and P/J552 are connected correctly.
Y N
Connect P/J826 and P/J552.
Check the wires between P/J826 and P/J552 for an open circuit or a short circuit (BSD 8.4 Flag 1/ BSD 8.6 Flag 1). The circuit between J826 and J552 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1)
Check the paper transport drives and repair as required (PL 2.4, PL 2.5, PL 14.7, PL 15.5, PL 15.9).

073-210 Tray 3 Lift Up RAP

BSD-ON:7.10/7.12

- The 2TM-Tray 3 Level Sensor did not actuate in time after the 2TM-Tray 3 Feed/Lift Motor energized.
- The TTM-Tray 3 Level Sensor did not actuate in time after the TTM-Tray 3 Feed/Lift Motor energized.

Initial Actions

- Reload paper in the tray correctly.
- Remove foreign substances in the tray.

Procedure

Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
$Y \quad N$
Check the connections of P/J220B, P/J661B, P/J549. P/J220B, P/J661B, P/J549 are connected correctly.
Y N
Connect P/J220B, P/J661B, P/J549
Remove the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Replace the Tray 3 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 (2) Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).

N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.10 Flag 1 / BSD 7.12 Flag 1). The circuit between J220B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6).
Check the installation of the Tray 3 Level Sensor (PL 14.3/PL 15.6and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor.
Enter Component Control [073-102 Tray 3 Level Sensor]. Manually activate the Tray 3 Level Sensor (PL 14.3/PL 15.6). The display changes.

N
Check the connections of P/J101B, P/J661B and P/J549. P/J101B, P/J661B and P/ J549 are connected correctly.

N
Connect P/J101B, P/J661B and P/J549
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.10 Flag 2/Flag 3 / BSD 7.12 Flag 2/Flag 3). The circuit between J101B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-7 (+) and P/J549-8 (-) (BSD 7.10 Flag 3 / BSD 7.12 Flag 3). The voltage is approx. +5VDC.

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-9 (+) and GND (-) (BSD 7.10 Flag 2 / BSD 7.12 Flag 2).

Activate the actuator of the Tray 3 Level Sensor (PL 14.3/PL 15.6). The

changes.

Y N
Replace the Tray 3 Level Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9),
Check the paper transport drives and repair as required (PL 14.3, PL 14.7/PL 15.9).

073-211 Tray 3 RAP

BSD-ON:7.4/7.6

The Tray 3 Paper Size Switch failed.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Remove Tray 3. Check the condition of the Tray 3 Paper Size Switch and actuators. The Tray 3 Paper Size Switch and actuators appear to be free of damage.
Y N
Replace the Tray 3 Paper Size Switch (PL 14.1)
Check the Tray 3 actuator on the back of Tray 3. The actuator is good.
N
Repair as required (PL 14.1)
Go to the OF 2 Size Switch Assy RAP.

073-212 Tray 3 Ready RAP

BSD-ON:3.3

There is a Tray 3 ready failure.

Procedure

Check the circuits between P/J413 on the MCU PWB and P/J541 (2TM) or P/J541 (TTM) on the Tray Module PWB (Flag 5, Flag 6) for an open circuit or short circuit failure. Repair as required.

If the problem persists disconnect and reconnect P/J541 on the Tray Module PWB.

073-401 Tray 3 Feed Roll Life RAP

BSD-ON:8.1

The Tray 3 Feed Rolls are near end of life.

Procedure

NOTE: Replace the feed rolls now if the next service call is likely to occur after the rolls reach end of life (PL 14.4/PL 15.3).

073-402 Tray 3 Feed Roll Replacement RAP

BSD-ON:8.1
The Tray 3 Feed Rolls reached end of life.

Procedure

Replace the Tray 3 Feed Rolls (PL 14.4/PL 15.6).

073-900 Tray 3 Feed Out Sensor On Jam RAP

BSD-ON:8.3/8.4/8.5/8.6

IOT Static Jam at Tray 3 Feed Out Sensor.

Initial Actions

- If a grinding noise was reported or is heard with the 073-102 code, there may be incorrect gear mesh between TTM Takeaway Clutch (PL 2.6) and it's drive gear, located to the right. Loosen the bracket fixing screws and reposition bracket for best gear mesh without binding.
- Check that the paper path is free of foreign material and paper dust.

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y N
Replace the Transport Roll (PL 15.5).
Enter Component Control [073-103 Tray 3 Feed Out Sensor]. Actuate the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The display changes.
N
Check the connections of P/J825, P/J842 and P/J548. P/J825, P/J842 and P/J548 are connected correctly.

```
Connect P/J825, P/J842 and P/J548.
```

Check the wires between P/J825 and P/J548 for an open circuit or a short circuit (BSD 8.5 Flag 4/Flag 5/Flag 6). The wires between P/J825 and P/J548 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J548-1 (+) and P/J548-2 (-) (BSD 8.5 Flag $5 /$ Flag 6). The voltage is approx. +5 VDC.

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J548-3 (+) and GND (-) (BSD 8.5 Flag 4. Actuate the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6) with paper. The voltage changes.
Y N
Replace the Tray 3 Feed Out Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Enter Component Control [077-022 2TM/TTM Takeaway Motor ON]. The 2TM/TTM Takeaway

Motor (PL 14.7/PL 15.9) can be heard

$Y \quad N$
Check the connections of P/J826 and P/J552. P/J826 and P/J552 are connected correctly.

```
Connect P/J826 and P/J552.
```

Check the wires between P/J826 and P/J552 for an open circuit or a short circuit (BSD 8.4 Flag 1 / BSD 8.6 Flag 1). The wires between J826 and J552 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9)
Check the paper transport drives and repair as required (PL 14.7/PL 15.9).

073-940 Tray 3/TTM 3 Lift Up RAP

BSD-ON:7.10/7.12

- The 2TM-Tray 3 Level Sensor did not actuate in time after the 2TM-Tray 3 Feed/Lift Motor energized.
- The TTM-Tray 3 Level Sensor did not actuate in time after the TTM-Tray 3 Feed/Lift Motor energized.

Initial Actions

- Reload paper in the tray correctly.
- Remove foreign substances in the tray.

Procedure

Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
${ }^{Y} \quad \mathrm{~N}$
Check the connections of P/J220B, P/J661B, P/J549. P/J220B, P/J661B, P/J549 are connected correctly.
Y \mathbf{N}
Connect P/J220B, P/J661B, P/J549.
Remove the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6 and the Tray 2 Feed/Lift Motor (PL 14.3/PL 15.6).

Replace the Tray 3 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [073-002 Tray 3 Feed/Lift Motor ON]. The Tray 3 (2) Feed/Lift Motor (PL 14.3/PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).

N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.10 Flag 1 / BSD 7.12 Flag 1). The circuit between J220B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 3 Feed/Lift Motor (PL 14.3/PL 15.6).
Check the installation of the Tray 3 Level Sensor (PL 14.3/PL 15.6and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor.
Enter Component Control [073-102 Tray 3 Level Sensor]. Manually activate the Tray 3 Level Sensor (PL 14.3/PL 15.6). The display changes.
N
Check the connections of P/J101B, P/J661B and P/J549. P/J101B, P/J661B and P/ J549 are connected correctly.

N
Connect P/J101B, P/J661B and P/J549
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.10 Flag 2/Flag 3 / BSD 7.12 Flag 2/Flag 3). The circuit between J101B and J549 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-7 (+) and P/J549-8 (-) (BSD 7.10 Flag 3 / BSD 7.12 Flag 3). The voltage is approx. +5VDC.

Y N
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-9 (+) and GND (-) (BSD 7.10 Flag 2 / BSD 7.12 Flag 2).

Activate the actuator of the Tray 3 Level Sensor (PL 14.3/PL 15.6). The

changes.

Y N
Replace the Tray 3 Level Sensor (PL 14.3/PL 15.6).
Replace the Tray Module PWB (PL 14.7/PL 15.9),
Check the paper transport drives and repair as required (PL 14.3, PL 14.7/PL 15.9).

075-135 MSI Registration Sensor On Jam RAP

 BSD-ON:8.1, 8.7The Registration Sensor did not actuate in time after the MSI Feed Solenoid energized.

Initial Actions

Ensure the tray guides are correctly adjusted.
Check that the MSI paper path is free of foreign substances and sensors are free of paper dust

Procedure

Check the installation of the MSI (REP 7.1.1). The MSI is installed correctly.
Y N
Install the MPT correctly.
Enter Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.5). The display changes.
$Y^{\mathbf{N}}$
Check the wires between P/J106 and P/J405 for an open circuit or a short circuit (BSD 8.7 Flag $1 /$ Flag 2). The circuit between P/J106 and P/J405 is conducting without an open circuit or a short circuit.
$\mathbf{Y} \quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P/J405-8A (+) and P/J405-6A (-) (BSD 8.7 Flag 2). The voltage is approx. +5 VDC .

$Y \quad N$

Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J405-A7 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.
Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Execute Component Control [042-001 Main Motor On]. The Main Motor in the Main Drive Assembly starts rotating and the Fuser starts up.

Y N

Go to the OF 3 Main Drive Assembly RAP.
Execute Component Control [075-001 MSI Feed Solenoid ON]. The MSI Feed Solenoid (PL 9.2) actuates.

Y
Check the connections of P/J205, P/J610, and P/J424. P/J205, P/J610, and P/J424 are connected correctly.
Y N
Connect P/J205, P/J610, and P/J424.

A B
Measure the resistance of the MSI Feed Solenoid (PL 9.2) (BSD 8.1 Flag 1). (Between P205-1 and P205-2). The resistance is approx. 900hm.
Y N
Replace the MSI Feed Solenoid (PL 7.2).
Check the wire between P205 and J411 for an open circuit or a short circuit (BSD 8.1 Flag 1). The wire between P205 and J411 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Check the paper transport drives and repair as required (PL 2.5, PL 9.1).

075-401 MSI Feed Roll Life RAP

BSD-ON:8.1
The MSI Feed Rolls are near end of life.

Procedure

NOTE: On the next service call it may be time to replace the Feed Rolls (PL 9.1)

075-402 MSI Feed Roll Replacement RAP

BSD-ON:8.1
The MSI Feed Rolls must be replaced.

Procedure

Replace the MSI Feed Rolls (PL 9.1).

077-101 Registration Sensor Off Jam RAP

 BSD-ON:8.7After the Registration Clutch turned On, the Registration Sensor did not turn Off within the specified time.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path. circuit.

Y N
 Repair the open circuit or short circuit

Replace the MCU PWB (PL 11.1).
Check the paper transport drives and repair as required (PL 2.5).

Procedure

Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y N
Replace the Transport Roll (PL 15.5).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.4). The display changes.
Y \mathbf{N}
Check the connection of P/J605. P/J605 is connected correctly.
Y N
Connect P/J605.
Check the wire between J104 and J403 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wire between J104 and J403 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P403-B13 (+) and GND (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.

Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P403-B8 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.
$Y \quad \mathrm{~N}$
Replace the Registration Sensor (PL 2.4).
Replace the MCU PWB (PL 11.1).
Execute Component Control [089-002 Registration Clutch ON]. The Registration Clutch (PL 2.5) energized.

Y N
Check the connection of P/J215. P/J215 is connected correctly.
Y N
Connect P/J215.
Measure the resistance of the Registration Clutch (PL 2.5) between P215-1 and P215-2 (BSD 8.7 Flag 3). The resistance is approx. 240 Ohm.
Y N
Replace the Registration Clutch (PL 2.5).
A B

077-103 Exit Sensor 1 Off Jam (too long) RAP BSD-ON:10.3

After the Fuser Exit Sensor turned On, the Fuser Exit Sensor did not turn Off within the specified time.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path.

Procedure

Check the installation of the Fuser. The Fuser is installed correctly.
Y N
Install the Fuser correctly.
Open Left Upper Cover Assembly and verify that Exit 1 Gate (PL 8.4) is free to move. Exit 1 Gate is free to move.
Y N
Repair as required (PL 8.4).
Execute Component Control [077-105 Fuser Exit Sensor]. Manually activate the actuator of the Fuser Exit Sensor (PL 7.1). The display changes.
$Y \quad N$
Check the connections of P/J120 and P/J422. Connections are connected correctly. Y \mathbf{N}

Connect P/J120 and P/J422.
Check the wire between P/J120 and P/J422 for an open circuit or a short circuit (BSD 10.2 Flag 5/Flag 6). The wire are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P422-9 (+) and GND (-) (BSD 10.2 Flag 6). The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P422-11 (+) and GND (-) (BSD 10.2 Flag 5). Actuate the Fuser Exit Sensor with paper. The voltage changes.

Y N
Replace the Fuser Exit Sensor (PL 7.1).
Replace the MCU PWB (PL 11.1).
Execute Component Control [042-001 Main Motor ON]. The Main Motor in the Main Drive Assembly starts rotating and the Fuser starts up.

Y N
 Go to the OF 3 (MAIN DRIVE ASSY RAP).

Check the paper transport drives and repair as required (PL 11.1).

077-104 Exit Sensor 1 Off Jam (too short) RAP BSD-ON:10.3

After the Fuser Exit Sensor turned On, the Fuser Exit Sensor turns Off before the specified time.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path.

Procedure

Check the installation of the Fuser. The Fuser is installed correctly.
Y N
Install the Fuser correctly.
Open Left Upper Cover Assembly and verify that Exit 1 Gate (PL 8.4) is free to move. Exit 1 Gate is free to move.
Y N
Repair as required (PL 8.4).
Execute Component Control [077-105 Fuser Exit Sensor]. Manually activate the actuator of the Fuser Exit Sensor (PL 7.1). The display changes.
Y N
Check the connections of P/J120 and P/J422. Connections are connected correctly. Y N

Connect P/J120 and P/J422.
Check the wire between P/J120 and P/J422 for an open circuit or a short circuit (BSD 10.2 Flag 5/Flag 6). The wire are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P422-9 (+) and GND (-) (BSD 10.2 Flag 6).
The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P422-11 (+) and GND (-) (BSD 10.2 Flag 5).Actuate the Fuser Exit Sensor with paper. The voltage changes.

Y N
Replace the Fuser Exit Sensor (PL 7.1).
Replace the MCU PWB (PL 11.1).
Execute Component Control [042-001 Main Motor ON]. The Main Motor in the Main Drive Assembly starts rotating and the Fuser starts up.
$\mathrm{Y} \quad \mathrm{N}$
Go to the OF 3 (MAIN DRIVE ASSY RAP).
Check the paper transport drives and repair as required (PL 11.1).

077-105 Exit Sensor 2 Off Jam RAP

BSD-ON:10.4, 10.5
The paper did not deactuate the Exit Sensor 2 sensor after actuating the sensor

Procedure

Check the paper transport drives for interference, components out of position, or faulty drives and repair as required (PL 8.4).

077-106 Exit Sensor 1 On Jam RAP BSD-ON:9.410.2

After the Registration Clutch turned On, the Fuser Exit Sensor did not turn On within the specified time.

Initial Actions

Check for torn paper, components out of position or paper dust in the paper transport path.

Procedure

Check the installation of the Fuser. The Fuser is installed correctly.
Y N
Install the Fuser correctly.
Execute Component Control [077-105 Fuser Exit Sensor]. Manually activate the actuator of the Fuser Exit Sensor (PL 7.1). The display changes.
Y N
Check the connections of P/J120 and P/J422. Connections are connected correctly. Y N

Connect P/J120 and P/J422.
Check the wire between P/J120 and P/J422 for an open circuit or a short circuit (BSD 10.2 Flag 5/Flag 6). The wire are conducting without an open circuit or a short circuit.
\mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P422-9 (+) and GND (-) (BSD 10.2 Flag 6). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P422-11 (+) and GND (-) (BSD 10.2 Flag 5).Actuate the Fuser Exit Sensor with paper. The voltage changes.
\boldsymbol{Y}
Replace the Fuser Exit Sensor (PL 7.1).
Replace the MCU PWB (PL 11.1).
Execute Component Control [042-001 Main Motor ON]. The Main Motor in the Main Drive Assembly starts rotating and the Fuser starts up.
Y N
Go to the OF 3 (MAIN DRIVE ASSY RAP).
Check the paper transport drives and repair as required (PL 8.1, PL 8.2, PL 17.11, PL 1.1).

077-108 Exit Gate Jam RAP

bSD-ON:10.4, 10.5

A sheet jammed at the Exit Gate

Procedure

Check the paper transport drives and repair as required (PL 8.3, PL 8.4).

077-109 IOT Exit Sensor 2 On Jam RAP

BSD-ON:10.3/10.4

After the Fuser Exit Sensor turned On, the Exit 2 Sensor did not turn On within the specified time.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path.

Procedure

Check the installation of the Exit 2 Module. The Exit 2 Module is installed correctly.
Y N
Install the Exit 2 Module correctly.
Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll (PL 15.5).
Open Left Upper Cover Assembly and verify that Exit 1 Gate (PL 8.2) is free to move. Exit 1 Gate is free to move.
Y $\quad N$
Repair as required.
Check the clearance between the Diverter Gate and the Fixed Guide on the left hand door. PL
8.3) Operation is satisfactory.
$\mathbf{Y} \quad \mathbf{N}$
Repair as required (PL 8.3)
Execute Component Control [071-102 Exit 2 Sensor]. Actuate the Exit 2 Sensor (PL 8.4) with paper. The display changes.
Y N
Check the wire between J 112 and J 434 for an open circuit or a short circuit (BSD 10.3 Flag 1/Flag 2). The wire between J 112 and J 434 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Exit 2 Sensor (PL 8.4).
Execute Component Control [047-023 Exit 2 Motor ON]. The Exit 2 Motor (PL 8.4) ener-
gized.
$\mathbf{Y} \quad \mathrm{N}$
Check the wire between J208 and J433 for an open circuit or a short circuit (BSD 10.4 Flag 1). The wire between J208 and J433 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Exit 2 Motor (PL 8.4) between J208-1 (COM) and each point of $\mathrm{J} 208-2 / 3 / 4 / 5$ (BSD 10.4 Flag 2). The resistance is approx. 100hm.

Execute Component Control [047-024 Exit Gate Solenoid ON]. The Exit Gate Solenoid (PL 8.4) starts up and the gates start switching.

Y N
Check the wire between J209 and J433 for an open circuit or a short circuit (BSD 10.4 Flag 3). The wire between J209 and J433 is conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Measure the resistance of the Exit Gate Solenoid (PL 8.4) between J209-1 and J209-2 (BSD 10.4 Flag 4). The resistance is approx. 1600hm.
Y N
Replace the Exit 2 Motor (PL 8.4).
Replace the Exit Gate Solenoid (PL 8.4).
Replace the Exit PWB (PL 11.1).

077-110 POB Sensor On Jam RAP

BSD-ON:10.1

The POB sensor senses paper at the wrong time.

Procedure

Check the condition of the POB Sensor (PL 10.1) (BSD 10.1).
Check the condition of the Registration Clutch (PL 2.5) (BSD 8.7).

077-123 Registration Sensor On Jam RAP

BSD-ON:8.7, 10.4, 10.6
Paper is late to the Registration Sensor during a Duplex job.

Procedure

Check the paper transport sensors and drives and repair as required (PL 2.5, PL 10.1).

077-130 Duplex Out Sensor On Jam RAP

BSD-ON:8.7/9.3/10.5

In the case where there is non-stop Duplex feed, the Registration Sensor did not turn On within the specified time after the Duplex Sensor turned On.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path.

Procedure

Check the installation of the DUP Module. The DUP Module is installed correctly.
Y N
Install the DUP Module correctly.
Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y \mathbf{N}
Replace the Transport Roll (PL 15.5).
Execute Component Control [089-100 Registration Sensor]. Manually activate the actuator of the Registration Sensor (PL 2.4). The display changes.
Y N
Check the connection of P/J605. P/J605 is connected correctly.
Y N
Connect P/J605.
Check the wire between J104 and J403 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The wire between J 104 and J 403 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P403-B13 (+) and GND (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.
\boldsymbol{N}
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P403-B8 (+) and GND (-) (BSD 8.7 Flag 1). Actuate the Registration Sensor with paper. The voltage changes.
Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Execute Component Control [071-105 Duplex Sensor]. Actuate the Duplex Sensor (PL 10.1) with paper. The display changes.
Y \mathbf{N}
Check the wire between J 123 and J 541 for an open circuit or a short circuit (BSD 10.5 Flag 1/Flag 2). The wire between J123 and J541 is conducting without an open circuit or a short circuit.

Repair the open circuit or short circuit.
Replace the Duplex Sensor (PL 10.1) If the problem persists, replace the Duplex PWB (PL 10.1).

Execute Component Control [077-006 Duplex Motor ON]. The Duplex Motor energized.
Y \mathbf{N}
Check the wire between J 212 and J 542 for an open circuit or a short circuit (BSD 10.5 Flag 3). The wire between J212 and J542 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Duplex Motor (PL 10.1) If the problem persists, replace the Duplex PWB (PL 10.1).

Replace the Duplex PWB (PL 10.1).

077-131 Duplex Wait Sensor On Jam RAP

BSD-ON:10.4/10.5

After the Exit 2 Motor turned On, the Duplex Sensor does not turn On within the specified time.

Initial Actions

Check for torn paper, components out of position, or paper dust in the paper transport path.

Procedure

Check the installation of the Duplex Module. The Duplex Module is installed correctly.
Y N
Install the Duplex Module correctly.
Check the Transport Roll for wear and paper dust. The Transport Roll is ok.
Y N
Replace the Transport Roll (PL 15.5).
Execute Component Control [077-106 Duplex Sensor]. Actuate the Duplex Sensor (PL 10.1) with paper. The display changes.
Y $\quad \mathbf{N}$
Check the wire between J 123 and J 541 for an open circuit or a short circuit (BSD 10.5 Flag 1/Flag 2). The wire between J 123 and J 541 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Duplex Sensor (PL 10.1) If the problem persists, replace the Duplex PWB (PL 8.1).

Execute Component Control [077-006 Duplex Motor ON]. The Duplex Motor energized.
Y N
Check the wire between J212 and J542 for an open circuit or a short circuit (BSD 10.5 Flag 3). The wire between J212 and J542 is conducting without an open circuit or a short circuit.
Y $\quad N$
Repair the open circuit or short circuit.
Replace the Duplex Motor (PL 10.1) If the problem persists, replace the Duplex PWB (PL 8.1).

Execute Component Control [077-007 Exit 2 Motor ON]. The Exit 2 Motor energized.
Y $\quad \mathbf{N}$
Check the wire between J 208 and J 433 for an open circuit or a short circuit (BSD 10.4 Flag 1). The wire between J208 and J433 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the resistance of the Exit 2 Motor (PL 8.4) between J208-1 (COM) and each point of $\mathrm{J} 208-2 / 3 / 4 / 5$ (BSD 10.4 Flag 2). The resistance is approx. 100hm.

077-215 Tray Module Communication RAP

BSD-ON:3.3
There is a Tray Module communication failure.

Procedure

Check the circuits between P/J413 on the MCU PWB and P/J541 (2TM) or P/J541 (TTM) on the Tray Module PWB (Flag 5, Flag 6) for an open circuit or short circuit failure. Repair as required.

077-300 IOT Front Cover Open RAP
 \section*{BSD-ON:1.3}

The IOT Front Cover is open.

Procedure

Check the opening/closing of the IOT Front Cover. The Front Cover can be opened/closed.
Y N
Reinstall the Front Cover.
Check the installation of the Front Cover Interlock Switch. The Front Cover Interlock Switch is installed correctly.
$Y \quad N$
Install the Front Cover Interlock Switch correctly.
Execute Component Control [077-303 Front Cover Interlock Switch]. Open/close the IOT Front Cover. The display changes.
Y \mathbf{N}
Check the connections between the Front Cover, Relay PWB, and the MCU PWB (BSD 1.3). Connections are connected correctly.
\mathbf{Y}^{N}
Connect the connectors.
Check the wire between the Front Cover, Relay PWB, and the MCU PWB (BSD 1.3 for an open circuit or a short circuit (BSD 1.3 Flag 5/Flag 6). The wire are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the Front Cover Interlock Switch (PL 12.1) between J141 and J410 (BSD 1.3). The wire are connecting successfully when the Front Cover is closed.

N
Replace the Front Cover Interlock Switch (PL 12.1).
Replace the MCU PWB (PL 11.1).
Check the paper transport drives and repair as required.

077-301 Left Hand Interlock Open RAP

BSD-ON:1.3/1.4

The L/H Cover Assembly is open.

Procedure

Check opening/closing of the L/H Cover Assembly. The L/H Cover Assembly can be opened/closed.
Y^{N}
Reinstall the L/H Cover Assembly (PL 2.6).
Check the installation of the L/H Cover Interlock Switch. The L/H Cover Interlock Switch is installed correctly.

Y N

Install the L/H Cover Interlock Switch correctly.
Execute Component Control [077-300 L/H Cover Interlock Switch]. Open and close the L/H Cover Assembly. The display changes.
Y N
Check the connections between the MCU PWB and the L.H. Cover Interlock (BSD 1.3), Connectors are connected correctly.

Y N

Connect the connectors
Check the wire between P/J420 on the MCU PWB and the P/J135 on the L.H. Cover Interlock for an open circuit or a short circuit (BSD 1.3). The wire are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the L/H Cover Interlock Switch (PL 2.7) between P/J135 and P/J420 (BSD 1.3). The wire are connecting successfully when the L/H Cover Assembly is closed.

Replace the L/H Cover Interlock Switch (PL 2.7).
Measure the voltage between the MCU PWB P/J420-1 (+) and GND (-) (BSD 1.3). The voltage is approx. +24VDC.
$Y \quad N$
Replace the MCU PWB (PL 11.1).
Measure the voltage between the L/H Cover Interlock Switch P/J135-A2 (+) and GND (-) (BSD 1.3). The voltage is approx. +24VDC.
Y N
Check the wire between P/J135 and P/J420 for an open circuit or a short circuit (BSD 1.3). Repair or replace as required.

Measure the voltage between the L/H Cover Interlock Switch P/J135-B2 (+) and GND (-) (BSD 1.3). The voltage is approx. +24VDC.

Check the wire between P/J135 and P/J420 for an open circuit or a short circuit (BSD 1.3). Repair or replace as required.

Replace the L/H Cover Interlock Switch (PL 2.7).
Check the paper transport drives and repair as required.

077-305 Tray Module Left Hand Cover Interlock Open RAP BSD-ON:1.4

- The 2TM Cover is open.
- The TTM Cover is open.

Procedure

Check opening/closing of the Left Cover of the 2TM or TTM. The Left Cover of the 2TM or TTM can be opened/closed.
Y N
Reinstall the Left Cover of the 2TM or TTM (PL 14.5/PL 15.8).

Check the installation of the Tray Module Left Cover Interlock Switch. The Tray Module Left Cover Interlock Switch is installed correctly.
$Y \quad N$
Install the Tray Module Left Cover Interlock Switch correctly (PL 14.5/PL 15.8).
Execute Component Control [077-306 Tray Module Left Cover Interlock Switch]. Open and close the Left Cover of the 2TM or TTM. The display changes.
Y N
Check the connections between the Tray Module PWB and the Tray Module Interlock (BSD 1.4). Connectors are connected correctly.
Y N
Connect the connectors
Check the wire between J554 on the Tray Module PWB and the FS812 on the Tray Module Interlock for an open circuit or a short circuit (BSD 1.4). The wire are conducting without an open circuit or a short circuit.

Y N

Repair the open circuit or short circuit.
Check the conductivity of the Tray Module Switch between J554 and FS812 (BSD 1.4) The wire are connecting successfully when the Tray Module is closed.
Y N
Replace the Tray Module Switch (PL 14.5/PL 15.8).
Measure the voltage between the Tray Module PWB J554-2 (+) and GND (-) (BSD 1.4) The voltage is approx. +24VDC.
$Y \quad \mathbf{N}$
Replace the Tray Module PWB (PL 14.7/PL 15.9).
Measure the voltage between the Tray Module SwitchFS812 (+) and GND (-) (BSD 1.4), The voltage is approx. +24VDC.
Y N
Check the wire between J554 and FS812 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Measure the voltage between the Tray Module SwitchFS813-B2 (+) and GND (-) (BSD 1.4). The voltage is approx. +24 VDC .

Check the wire between FS813 and J554 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Replace the Tray Module Interlock Switch (PL 14.5/PL 15.8).
Replace the Tray Module PWB (PL 14.7/PL 15.9).

077-307 DUP Cover Open RAP

BSD-ON:1.4
The DUP Cover is open.

Procedure

Check opening/closing of the DUP Cover. The DUP Cover can be opened/closed.
Y N
Reinstall the DUP Cover.
Check the installation of the Duplex Open Switch (PL 10.1). The Duplex Open Switch is installed correctly.
Y N
Install the Duplex Open Switch correctly.
Execute Component Control [077-305 Duplex Open Switch]. Open and close the DUP Cover. The display changes.
Y \mathbf{N}
Check the connections between the Duplex PWB and the Duplex Open Interlock (BSD 1.4). Connectors are connected correctly.
$\mathrm{Y} \quad \mathrm{N}$
Connect the connectors
Check the wire between J541 on the Duplex PWB and the J124 on the Duplex Open Switch for an open circuit or a short circuit (BSD 1.4). The wire are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Check the conductivity of the Duplex Open Switch between J124 and J541 (BSD 1.4). The wire are connecting successfully when the Duplex Module is closed.
Y N
Replace the Duplex Open Switch (PL 10.1).
Measure the voltage between the Duplex PWB J541-5 (+) and GND (-) (BSD 1.4). The voltage is approx. +24VDC.
$Y \quad \mathrm{~N}$
Replace the Duplex PWB (PL 10.1).
Measure the voltage between the Duplex Open Switch J124-1 (+) and GND (-) (BSD 1.4). The voltage is approx. +24 VDC .
$\mathrm{Y} \quad \mathrm{N}$
Check the wire between J541 and J124 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Measure the voltage between the Duplex Open Switch J124-2 (+) and GND (-) (BSD 1.4). The voltage is approx. +24 VDC .

Y N

Check the wire between J124 and J541 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

077-308 Left Hand High Interlock Open RAP

BSD-ON:1.4

The L/H-H Cover is open.

Procedure

Check opening/closing of the IOT L/H-H Cover. The IOT L/H-H Cover can be opened/ closed.
Y N
Reinstall the IOT L/H-H Cover.
Check the installation of the Exit 2 Interlock Switch. The Exit 2 Interlock Switch is installed correctly
Y N
Install the Exit 2 Interlock Switch correctly.
Execute Component Control [077-302 LHH Interlock Switch]. Open/close the IOT L/H-H Cover. The display changes.
Y N
Check the connections between the MCU PWB and the LHH Interlock (BSD 1.4). Con nectors are connected correctly.
Y N
Connect the connectors
Check the wire between J422B on the MCU PWB and the J116 on the LHH Interlock Switch for an open circuit or a short circuit (BSD 1.4). The wire are conducting without an open circuit or a short circuit.
Y $\quad \mathbf{N}$
Repair the open circuit or short circuit.
Check the conductivity of the LHH Interlock Switch (PL 8.4) between J116 and J442B (BSD 1.4). The wire are connecting successfully when the LHH Interlock Switch is closed.
Y N
Replace the LHH Interlock Switch (PL 8.4)
Measure the voltage between the MCU PWBJ422B-8 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
Measure the voltage between the LHH Interlock Switch J116-1 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.

Y N
Check the wire between J422B and J116 Terminal Block P/J606 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Measure the voltage between the LHH Interlock Switch J116-2 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.

Y N
Replace the LHH Interlock Switch (PL 8.4)

A B
Measure the voltage between the DET Face Up Tray Switch J115-2 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.

Y \mathbf{N}
Check the wire between J115 and J116 and the Terminal Block for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Measure the voltage between the DET Face Up Tray Switch J115-1 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.

Y \mathbf{N}
Replace the DET Face Up Tray Switch (PL 8.4).
Measure the voltage between the MCU PWB J422B-6 (+) and GND (-) (BSD 1.4). The voltage is approx. +5VDC.
Y $\quad \mathbf{N}$
Check the wire between J116 and J422B-6 and the Terminal Block for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Check for an intermittent Interlock Switch (BSD 1.4)
Check the paper transport drives and repair as required.

077-309 Left Hand Low Interlock Open RAP BSD-ON:1.4

The L/H Lower Cover is open.

Procedure

Check opening/closing of the Left Lower Back Cover. The Cover can be opened/closed.
Y N
Reinstall the Left Lower Back Cover (PL 2.6).
Check the installation of the LHL Switch. The LHL Lower Cover Interlock Switch is installed correctly.
Y N
Install the LHL Lower Cover Interlock Switch correctly.
Execute Component Control [077-301 LHL Lower Cover Interlock Switch]. Open/close the L/H Lower Cover. The display changes.
Y N
Check the connections between the MCU PWB and the LHL Interlock Switch (BSD 1.4), Connectors are connected correctly.
Y N
Connect the connectors
Check the wire between J424B on the MCU PWB and the J119 on the LHL Interlock Switch for an open circuit or a short circuit (BSD 1.4). The wire are conducting without an open circuit or a short circuit.
$Y \quad N$
Repair the open circuit or short circuit.
Check the conductivity of the LHL Interlock Switch (PL 2.6) between J119 and J424B (BSD 1.4). The wire are connecting successfully when the LHH Interlock Switch is closed.
N
Replace the LHH Interlock Switch (PL 8.4).
Measure the voltage between the MCU PWBJ422B-10 (+) and GND (-) (BSD 1.4). The voltage is approx. +24VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the LHL Interlock Switch J119-2 (+) and GND (-) (BSD 1.4). The voltage is approx. +24 VDC .
$Y \mathrm{~N}$
Check the wire between J422B and J119 Terminal Block P/J606 for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Measure the voltage between the LHL Interlock Switch J119-1 (+) and GND (-) (BSD 1.4). The voltage is approx. +24VDC.

Y N
Replace the LHL Interlock Switch (PL 8.4).

A B
Measure the voltage between the MCU PWB J422B-9 (+) and GND (-) (BSD 1.4). The voltage is approx. +24VDC.
Y N
Check the wire between J119 and J422B and the Terminal Block for an open circuit or a short circuit (BSD 1.4). Repair or replace as required.

Check for an intermittent Interlock Switch (BSD 1.4).
Check the paper transport drives and repair as required.

077-314 Tray Module Logic RAP

 BSD-ON:3.3There is a Tray Module logic failure.

Procedure

Perform the following

- Switch the power off, disconnect and reconnect P/J541 on the Tray Module PWB, then on the power.
- Check the circuits between P/J125 on the MCU PWB and P/J541 (2TM) or P/J541 (TTM) on the Tray Module PWB (Flag 5, Flag 6) for an open circuit or short circuit failure. Repair as required.
- Perform ADJ 9.3.1 Software Loading and Upgrading.

077-602 OHP Sensor RAP

BSD-ON:8.7
A description is not available at time of publication

Procedure

A procedure is not available at time of publication.

077-900 Tray/Registration Sensor Jam RAP

BSD-ON:8.3, 8.7
Paper remains on the Registration Sensor.

Procedure

Enter Component Control [077-100 Registration Sensor]. Actuate the Registration Sensor (PL 2.5). The display changes.

Y N
Check the wires between P/J106 and P/J405 for an open circuit or a short circuit (BSD 8.7 Flag 1/Flag 2). The circuit between P/J106 and P/J405 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P/J405-8A (+) and P/J405-6A (-) (BSD 8.7 Flag 2). The voltage is approx. +5VDC.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P/J405-A7 (+) and GND (-) (BSD 8.7 Flag 1).

Actuate the Registration Sensor with paper. The voltage changes.
Y N
Replace the Registration Sensor (PL 2.5).
Replace the MCU PWB (PL 11.1).
Replace the MCU PWB (PL 11.1)

077-901 Fuser Exit Sensor Jam RAP

BSD-ON:10.2

Paper remains on the Fuser Exit Sensor.

Procedure

Execute Component Control [077-105 Fuser Exit Sensor]. Manually activate the actuator of the Fuser Exit Sensor (PL 7.1). The display changes.
Y N
Check the connections of P/J125 and P/J410. Connectors are connected correctly.
Y N
Connect P/J125 and P/J410.
Check the wire between J125 and J410 for an open circuit or a short circuit (BSD 10.2 Flag $5 /$ Flag 6). The wire is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB P410-7 (+) and GND (-) (BSD 10.2 Flag 6). The voltage is approx. +5VDC.
Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
Measure the voltage between the MCU PWB P410-9 (+) and GND (-) (BSD 10.2 Flag 5). Actuate the Fuser Exit Sensor with paper. The voltage changes.
Y $\quad \mathrm{N}$
Replace the Fuser Exit Sensor (PL 7.1).
Replace the MCU PWB (PL 11.1).
Replace the MCU PWB (PL 11.1).

077-902 Exit Sensor 2 On Jam RAP

BSD-ON:10.3

Paper remains on the Exit 2 Sensor.

Procedure

Execute Component Control [077-102 Exit 2 Sensor]. Actuate the Exit 2 Sensor (PL 8.4) with paper. The display changes to L.
$\boldsymbol{Y} \quad \mathbf{N}$
Check the wire between J112 and J434 for an open circuit or a short circuit (BSD 10.3 Flag 1/Flag 2). The wire between J112 and J434 is conducting without an open circuit or a short circuit
Y N
Repair the open circuit or short circuit.
Replace the Exit 2 Sensor (PL 8.4) (PL 9.1).
Replace the Exit PWB (PL 9.1).

077-903 POB Sensor JAM RAP

BSD-ON:10.1

The POB Sensor is actuated.

Procedure

Check the circuit of the POB Sensor (BSD 10.1) and repair as required (PL 7.2).

077-907 Duplex Wait Sensor RAP

BSD-ON:10.6

Paper remains on the Duplex Sensor.

Procedure

Execute Component Control [077-104 Duplex Sensor]. Actuate the Duplex Sensor (PL 10.1) with paper. The display changes to L .
$Y \quad \mathbf{N}$
Check the wire between J123 and J541 for an open circuit or a short circuit (BSD 10.6 Flag 1/Flag 2). The wire between J123 and J541 is conducting without an open circuit or a short circuit.

Y $\quad \mathrm{N}$

Repair the open circuit or short circuit.
Replace the Duplex Sensor (PL 10.1) If the problem persists, replace the Duplex PWB (PL 10.1).

Replace the Duplex PWB (PL 10.1).

077-967 Paper Kind Mismatch RAP

The specified paper type and the paper type being used are different.

Initial Actions

Perform the following:

- Switch the power off then on.
- Check if the Regi Sensor actuator is operating properly.
- Check the paper type.
- Check the paper type settings.

Procedure

Load the paper type selected. If problem still exists, replace the MCU PWB (PL 11.1).

077-968 Paper Type Changed RAP

The type of paper in the tray was changed.
Initial Actions
Perform the following:

- Switch the power off then on.
- Check if the Regi Sensor actuator is operating properly
- Check the paper type.
- Check the paper type settings.

Procedure

Load the paper type selected. If problem still exists, replace the MCU PWB (PL 11.1),

078-210 TTM Tray 2 Lift RAP

BSD-ON:7.11

The Tray 2 Level Sensor did not actuate in time after the Tray 2 Feed/Lift Motor energized.

Initial Actions

Ensure the tray is set up and loaded correctly.

Procedure

Execute Component Control [072-001 or 002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/ Lift Motor /PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/ J549 are connected correctly.

Y \mathbf{N}

Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3) and the Tray 2 Feed/Lift Motor (PL 15.6). Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor. Execute Component Control [072-001/002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/ Lift Motor can be heard (the lifted paper plate drops when the tray is opened).

Y N

Return the Tray 1 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.11 Flag 1). The circuit between $P / J 220 B$ and $P / J 549$ is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 15.9)
Return the Tray 1 Feed/Lift Motor to its original position.
Replace the Tray 2 Feed/Lift Motor (PL 15.6).
Check the installation of the Tray 2 Level Sensor (PL 15.6) and the operation of the actuator. The Tray 2 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 2 Level Sensor (PL 15.6).
Execute Component Control [072-103 Tray 2 Level Sensor]. Manually activate the Tray 2 Level Sensor (PL 15.6). The display changes.

N
Check the connections of P/J101B, P/J611 and P/J549. P/J102A, P/J611 and P/J409 are connected correctly.
Y N
Connect P/J101B, P/J611 and P/J549.
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.11 Flag 2 Flag 3). The wires between $\mathrm{P} / \mathrm{J} 101 \mathrm{~B}$ and $\mathrm{P} / \mathrm{J} 549$ are conducting without an open circuit or a short circuit.
\mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-22 (+) and P/J549-23 (-) (BSD 7.11 Flag 3). The voltage is approx. +5VDC.
Y $\quad \mathrm{N}$
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-24 (+) and GND (-) (BSD 7.11 Flag 2).

Activate the actuator of the Tray 2 Level Sensor (PL 2.3). The voltage changes.
Y N
Replace the Tray 2 Level Sensor (PL 15.6).
Replace the Tray Module PWB (PL 15.9).
Check the paper transport drives and repair as required (PL 2.3, PL 15.9).

078-211 TTM Tray 3 Lift RAP

BSD-ON:7.12

The TTM-Tray 3 Level Sensor did not actuate in time after the TTM-Tray 3 Feed/Lift Motor energized.

Initial Actions

Reload paper in the tray correctly.

Procedure

Enter Component Control [073-001 or 002 Tray 3 Feed/Lift Motor ON]. The Tray 3 Feed/Lift Motor (PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
$\mathbf{Y} \quad \mathbf{N}$
Check the connections of P/J220B, P/J661B, P/J549. P/J220B, P/J661B, P/J549 are connected correctly.
Y N
Connect P/J220B, P/J661B, P/J549.
Remove the Tray 3 Feed/Lift Motor (PL 15.6) and the Tray 2 Feed/Lift Motor (PL 15.6). Replace the Tray 3 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [073-001 or 002 Tray 3 Feed/Lift Motor ON]. The Tray 3 (2) Feed/Lift Motor (PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.12 Flag 1). The circuit between J220B and J549 is conducting without an open circuit or a short circuit.

Y N

Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 15.9).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 3 Feed/Lift Motor (PL 15.6).
Check the installation of the Tray 3 Level Sensor (PL 15.6) and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor.
Enter Component Control [073-102 Tray 3 Level Sensor]. Manually activate the Tray 3 Level Sensor (PL 15.6). The display changes.
$Y \quad \mathbf{N}$
Check the connections of P/J101B, P/J661B and P/J549. P/J101B, P/J661B and P/ J549 are connected correctly.
N
Connect P/J101B, P/J661B and P/J549.

A B
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD BSD 7.12 Flag 2/Flag 3). The circuit between J101B and J549 is conducting without an open circuit or a short circuit.
$\mathrm{Y} \quad \mathrm{N}$
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-7 (+) and P/J549-8 (-) (BSD BSD 7.12 Flag 3). The voltage is approx. +5 VDC .
Y N
Replace the Tray Module PWB (PL 15.9)
Measure the voltage between the Tray Module PWB P/J549-9 (+) and GND (-) (BSD 7.12 Flag 2).

Activate the actuator of the Tray 3 Level Sensor (PL 15.6). The voltage changes.
Y N
Replace the Tray 3 Level Sensor (PL 15.6).
Replace the Tray Module PWB (PL 15.9).
Check the paper transport drives and repair as required (PL 14.3, PL 15.9).

078-500 Write to HCF-ROM error detection (During DLD method)

An error has occurred during the process of writing data to the HCF-ROM. (During DLD method)

Procedure

Retry job. If retry failed, replace the HCF-ROM and perform VerUP operation on the DLD method again.

078-940 Tray Lift RAP

BSD-ON:7.11
There is a problem with one of the following:

- TTM Tray 2 Lift
- 2TM Tray 1, Tray 2, or Tray 3 Lift

Procedure

The machine is equipped with a TTM tray module.
Y N
Tray 1 is the problem.
Y N
Tray 2 is the problem
N
Go to the 073-210 Tray 3 Lift Up RAP.
Go to the 072-210 Tray 2 Lift Up RAP
Go to the 071-210 Tray 1 Lift Up RAP.
Enter Component Control [072-001 or 002 Tray 2 Feed/Lift Motor ON]. The Tray 2 Feed/Lift Motor (PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
Y N
Check the connections of P/J220B, P/J661B and P/J549. P/J220B, P/J661B and P/ J549 are connected correctly.
Y N
Connect P/J220B, P/J661B and P/J549.
Remove the Tray 1 Feed/Lift Motor (PL 2.3) and the Tray 2 Feed/Lift Motor (PL 15.6).
Replace the Tray 2 Feed/Lift Motor with the Tray 1 Feed/Lift Motor.
Execute Component Control [072-001 or 002 Tray 2 Feed/Lift Motor ON]. The Tray 2
Feed/Lift Motor can be heard (the lifted paper plate drops when the tray is opened).
Y N
Return the Tray 1 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.11 Flag 1). The circuit between $P / J 220 B$ and $P / J 549$ is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 15.9).
Return the Tray 1 Feed/Lift Motor to its original position.
Replace the Tray 2 Feed/Lift Motor (PL 15.6).
Execute Component Control [072-103 Tray 2 Level Sensor]. Manually activate the Tray 2 Level Sensor (PL 15.6). The display changes.

N

Check the connections of P/J101B, P/J661B and P/J549. P/J102A, P/J661B and P/ J409 are connected correctly.

```
N
Connect P/J101B, P/J661B and P/J549.
```

Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.11 Flag 2 Flag 3). The wires between P/J101B and P/J549 are conducting without an open circuit or a short circuit.
$Y \quad \mathrm{~N}$
Repair the open circuit or short circuit.
Measure the voltage between the Tray Module PWB P/J549-22 (+) and P/J549-23 (-) (BSD 7.11 Flag 3). The voltage is approx. +5 VDC.

N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-24 (+) and GND (-) (BSD 7.9 Flag 2/7.11 Flag 2).
Activate the actuator of the Tray 2 Level Sensor (PL 2.3). The voltage changes.
N
Replace the Tray 2 Level Sensor (PL 15.6).
Replace the Tray Module PWB (PL 15.9).
Check the TTM paper lift components and repair as required (PL 15.3, PL 15.6, PL 15.9).

078-941 TTM Tray 3 Lift RAP

BSD-ON:7.11

There is a problem with the TTM Tray 3 Lift.

Procedure

Enter Component Control [073-001 or 002 Tray 3 Feed/Lift Motor ON]. The Tray 3 Feed/Lift Motor (PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).
$Y \quad \mathbf{N}$
Check the connections of P/J220B, P/J661B, P/J549. P/J220B, P/J661B, P/J549 are connected correctly.
Y N
Connect P/J220B, P/J661B, P/J549.
Remove the Tray 3 Feed/Lift Motor (PL 15.6) and the Tray 2 Feed/Lift Motor (PL 15.6).
Replace the Tray 3 Feed/Lift Motor with the Tray 2 Feed/Lift Motor.
Enter Component Control [073-001 or 002 Tray 3 Feed/Lift Motor ON]. The Tray 3 (2) Feed/Lift Motor (PL 15.6) can be heard (the lifted paper plate drops when the tray is opened).

N
Return the Tray 2 Feed/Lift Motor to its original position.
Check the wires between P/J220B and P/J549 for an open circuit or a short circuit (BSD 7.12 Flag 1). The circuit between J220B and J549 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Replace the Tray Module PWB (PL 15.9).
Return the Tray 2 Feed/Lift Motor to its original position.
Replace the Tray 3 Feed/Lift Motor (PL 15.6).
Check the installation of the Tray 3 Level Sensor (PL 15.6) and the operation of the actuator. The Tray 3 Level Sensor is installed correctly and the actuator works.
Y N
Reinstall the Tray 3 Level Sensor (PL 15.6).
Enter Component Control [073-102 Tray 3 Level Sensor]. Manually actuate the Tray 3 Level Sensor (PL 15.6). The display changes.
Y N
Check the connections of P/J101B, P/J661B and P/J549. P/J101B, P/J661B and P/ J549 are connected correctly.
Y N
Connect P/J101B, P/J661B and P/J549.
Check the wires between P/J101B and P/J549 for an open circuit or a short circuit (BSD 7.12 Flag 2/Flag 3). The circuit between J101B and J549 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.

A B
Measure the voltage between the Tray Module PWB P/J549-7 (+) and P/J549-8 (-) (BSD 7.12 Flag 3). The voltage is approx. +5 VDC .

Y N
Replace the Tray Module PWB (PL 15.9).
Measure the voltage between the Tray Module PWB P/J549-9 (+) and GND (-) (BSD 7.12 Flag 2).

Activate the actuator of the Tray 3 Level Sensor (PL 15.6). The voltage changes.
Y N
Replace the Tray 3 Level Sensor (PL 15.6).
Replace the Tray Module PWB (PL 15.9).
Check the TTM paper lift components and repair as required (PL 15.3, PL 15.6, PL 15.9).

081-799 Registered Destination RAP

BSD-ON:17.1
The Fax Send destination telephone number is not registered in the Address Book.

Initial Actions

Check the entries in the Address Book.
Check the Send destination telephone number and repeat the operation.

Procedure

Pull out and insert the FCB PWB (PL 9.3) Switch on the power. The problem persists The problem persists.
Y N
Return to Service Call Procedures.
Check the connection of each FCB PWB (PL 9.3connector. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the FCB PWB (PL 9.3).

089-311 IOT Belt Home RAP

BSD-ON:9.2

IBT Belt Home failed too long.

Procedure

Check the IBT Belt Patch for scratches. The Patch is OK.
$\mathbf{Y} \quad \mathbf{N}$
Replace the IBT Belt (PL 6.2)
If the problem continues, replace the IBT Assembly (PL 6.1).

089-312 IOT Belt Home RAP

BSD-ON:9.2
IBT Belt Home failed too short.

Procedure

Check the IBT Belt Patch for contamination. The Patch is OK.
Y N
Clean the Patch. If the problem continues, replace the IBT Belt (PL 6.2)
If the problem continues, replace the IBT Assembly (PL 6.1).

089-630 IOT Belt Speed RAP

IBT Belt speed failure.

Procedure

Check the following for binding:

- Fuser/ Main Drive (BSD 4.1A, 4.1B)
- Drum/IBT Auger Drives (BSD 4.2A, 4.2B)
- Developer Drive (BSD 4.3A)
- Registration (BSD 8.7)
- 1st BTR (BSD 9.5)
- 2BTR (BSD 9.7)
- IBT Belt and Cleaning (BSD 9.8)
- Fuser (BSD 10.3)
- Exit Transportation (BSD 10.4)
- Duplexing (BSD 10.6)

089-631 Belt Slip RAP

BSD-ON:9.8
IBT Belt slippage.

Initial Actions

Ensure that the IBT Belt tensioner is engaged.

Procedure

Execute Component Control [042-001 Main Motor]. Check the IBT Belt for slipping. The IBT Belt is OK.
Y N
Check the IBT Belt Assemblies for contamination, binding, and/or wear. IBT Belt Assembly is OK.
$\mathbf{Y} \quad \mathrm{N}$
Replace the IBT Belt Assembly (PL 6.1).
Replace the IBT Belt (PL 6.2).
If the problem continues, replace the IBT Belt (PL 6.2). If the problem persists, replace the IBT Belt Assembly (PL 6.1).

089-632 IBT Belt Cleaner RAP

BSD-ON:9.8/9.9

IBT Belt Cleaner Impact Failure.

Procedure

Remove the IBT Cleaner Assembly and check the cleaner blade and auger area for impacted toner. The IBT Belt Cleaner is free of toner.
Y $\quad \mathbf{N}$
Clean the IBT Belt Cleaner Assembly. If the problem continues, replace the IBT Belt Cleaner (PL 6.1).

Check the Toner Waste area for impacted toner. The Waste Toner area is free of tone
Y N
Replace the Waste Toner Bottle (PL 4.1).
Check the Front Auger for impacted toner. Clean or replace as required (PL 6.1).

089-633 2nd BTR RAP

BSD-ON:9.7

The 2nd BTR impacted Failure

Procedure

Check the 2nd BTR, Backup Roll, and the Detact Saw for impacted toner. The 2nt BTR area is free of toner.

Y N

Clean and/or replace the 2nd BTR Assembly (PL 2.7).
Check the 2nd BTR area for contamination, binding or wear. Repair or replace the 2nd BTR Assembly (PL 2.7).

091-313 Xero CRUM Communication RAP

 BSD-ON:9.1There is a failure within the Xero CRUM Control Logic on the MCU PWB.

Procedure

Pull out and reinstall all the Drum Cartridge. The problem persists.
Y N
Return to Service Call Procedures
Replace the MCU PWB (PL 11.1).

091-400 Waste Toner Near Full RAP

BSD-ON:9.9
The Waste Toner Bottle is near full.

Procedure

Check the contents level of the Waste Toner Bottle. The Waste Toner Bottle near full indication is correct.

$Y \quad \mathrm{~N}$

Verify the condition of the circuit (BSD9.9) between the Waste Toner Bottle Full Sensor and MCU PWB. The circuit is free of damage.
Y N
Repair the circuit as required.
Ensure the Waste Toner Bottle is installed correctly. Then check Waste Toner Bottle Full Sensor operating voltage and output. The signal level voltage indicates the Waste Toner Bottle is near full.
Y N
Replace the MCU PWB (PL 11.1).
There is a problem with the sensor. Repair or replace the Waste Toner Full Sensor (PL 4.2).

There is no need for service at this time. Return to Service Call Procedures.

091-402 Drum Life Over RAP

The Drum Cartridge must be replaced.

Procedure

Check the HSFI counter. The usage is correct for the life expectancy of the drum.
Y \mathbf{N}
There is no need for service at this time. Return to Service Call Procedures.
Replace the Drum Cartridge (PL 4.1).

091-441 Drum Life Near End of Life RAP

The Drum Cartridge must be replaced soon.

Procedure

Check the HSFI counter. The usage is correct for the life expectancy of the drum.
Y N
There is no need for service at this time. Return to Service Call Procedures.
Replace the Drum Cartridge (PL 4.1).

091-910 Waste Toner Bottle Position RAP

 BSD-ON:9.9The Waste Toner Bottle is not in the correct position.

Procedure

Check the installation of the Waste Toner Bottle. Waste Toner Bottle installation is correct.
Y N
Correct the installation problem by checking for damaged mounting points.
Verify the condition of the circuit, BSD9.9, between the Waste Toner Position Sensor and MCU PWB. The circuit is free of damage.
Y N
Repair the circuit as required.
Ensure the Waste Toner Bottle is installed correctly. Then check Waste Toner Bottle sensor operating voltage and output. The signal level voltage indicates the Waste Toner Bottle is correctly installed.
Y N
There is a problem with the sensor. Repair or replace the Waste Toner Position Sensor (PL 4.2).

Replace the MCU PWB (PL 11.1).

091-911 Waste Toner Full RAP

BSD-ON:9.9

The Waste Toner Bottle is full.

Procedure

Check the contents level of the Waste Toner Bottle. The Waste Toner Bottle is full. Y \mathbf{N}

Verify the condition of the circuit, BSD9.9, between the Waste Toner Bottle Sensor and MCU PWB. The circuit is free of damage.
Y N
Repair the circuit as required.
Ensure the Waste Toner Bottle is installed correctly. Then check Waste Toner Bottle Full Sensor operating voltage and output. The signal level voltage indicates the Waste Toner Bottle is full.
Y N
Replace the MCU PWB (PL 11.1).
There is a problem with the sensor. Repair or replace the Waste Toner Full Sensor (PL 4.2).

Replace the Waste Toner Bottle. If the problem persists, return to the beginning of the RAP.

091-912 Xerographics Drum Module Installation RAP

 BSD-ON:9.1/4.1The Xerographics Drum is not installed.

Procedure

Check the installation of the Drum Cartridge (PL 4.1). The Drum Cartridge installation is correct.
Y N
Correct the installation (PL 4.1).
Verify the condition of the circuit between the Drum Cartridge Position Sensor and MCU PWB. The circuit is free of damage.
Y N
Repair the circuit as required.
Replace the MCU PWB (PL 11.1).

091-914 Xero CRUM Comm RAP

BSD-ON:9.1

There is a failure with communication between the Xero CRUM and MCU PWB.

Procedure

Pull out and reinstall the Xerographics Drum Module. The problem persists.
Y N
Return to Service Call Procedures.
Verify the connections and condition of the circuit between Xero CRUM and MCU PWB. The circuit is free of damage and the connections are good.

Y N

Repair the damage as required
Check CRUM operating voltage. The operating voltage is correct.
Y \mathbf{N}
Check the circuit for damage. If the circuit is free of damage replace the MCU PWB (PL 11.1).

Enter diagnostics and verify NVM value for Xero CRUM data, location [751-010]. If NVM value indicates failure replace Xerographics Drum Module (PL 4.1) If NVM value indicates no failure, replace the MCU PWB (PL 11.1).

091-915 Xero CRUM Data RAP

BSD-ON:9.1
The Control Logic detected incorrect data on the Xero CRUM.

Initial Actions

Check NVM location 740-047, for Geographic area:

- $\mathrm{NA} / \mathrm{EU}=3$
- DMO-E/W = 12
- All the World $=512$

Check NVM location 740-049, for Contact Type:

- \quad Metered $=3$
- Sold = 2
- Neutral = 31

Procedure

Pull out and reinstall the Xerographics Drum Module. The problem persists.
Y N
Return to Service Call Procedures.
An incorrect Xerographics Drum Module was just installed. Install the correct Xerographics Drum Module.

091-916 Xero CRUM Match RAP

BSD-ON:9.1

The Control Logic detected mismatched data on the Xero CRUM.

Initial Actions

Check NVM location 740-047, for Geographic area:

- $\mathrm{NA} / E \mathrm{E}=3$
- DMO-E/W = 12
- All the World = 512

Check NVM location 740-049, for Contact Type:

- Metered $=3$
- Sold = 2
- Neutral = 31

Procedure

Pull out and reinstall the Xerographics Drum Module. The problem persists.
Y N
Return to Service Call Procedures.
An incorrect Xerographics Drum Module was installed. Verify the position of the Xerographics Drum Module. Install the correct Xerographics Drum Module.

091-921 Xerographics Drum Module Installation RAP BSD-ON:9.1/1.4

The Xerographics Drum Module is not correctly installed.

Procedure

Check the installation of the Xerographics Drum Module (PL 4.1). The Xerographics Drum Module installation is correct.
Y N
Correct the installation problem by checking for damaged mounting points or similar problems (PL 4.1)

Verify the condition of the circuit between the Xero Interlock Switch and MCU PWB. The circuit is free of damage
Y N
Repair the circuit as required.

Replace the MCU PWB (PL 11.1).

091-935 Xero Drum Cartridge End of Life RAP

 BSD-ON:9.1It is time to replace the Xero Drum Cartridge.

Initial Actions

- Power Off/On
- Reload the Xero Drum Cartridge.

Procedure

Check the Xero Drum Cartridge for failure or foreign substances. There are no foreign substances and nothing has failed.

Y N

Repair the failure and remove the foreign substances
Check the installation of the XERO CRUM PWB. The XERO CRUM PWB is installed correctly.
Y N
Install the XERO CRUM PWB correctly (PL 4.1).
Check the connection of the MCU PWB P/J407. P/J407 is connected correctly.
Y N
Connect P/J407.
Check the connection of the XERO CRUM PWB P/J142. P/J142 is connected correctly. Y N

Connect P/J142.
Check the wire between J407 and P142 for an open circuit or a short circuit (BSD 9.1). The wire is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the MCU PWB J407-1 (+) and GND (-) (BSD 9.1). The voltage is approx. +5 VDC .
Y N
Replace the MCU PWB (PL 11.1).
Replace the Xero Drum Cartridge (PL 4.1) If the problem persists, replace the XERO CRUM PWB (PL 4.1) If the problem persists, replace the MCU PWB (PL 11.1).

092-310 ADC Sensor RAP

BSD-ON:9.4B

There is a failure in the ADC Sensor circuit.

Initial Actions

Replace the Black (K), Yellow (Y), Magenta (M), and/or Cyan (C) toner if empty (PL 5.2).
When NVM 752-094 is set to " 1 ", the NVM 752-121 needs to be cleared to " 0 ". When, NVM $752-121$ is cleared to " 0 ", NVM $752-094$ will be automatically cleared to " 0 ". Then, the fault code 092-310 can be cleared. For more information, go to GP 15.

Procedure

Check for an Image Quality Defect. An Image Quality Defect is present.
Y N
Verify the condition of the circuit between the ADC Sensor and MCU PWB. The circuit is free of damage.
$Y \quad N$
Repair the circuit as required
Check the operating voltages between the ADC Sensor and the MCU PWB. The voltages are correct.
$Y \quad N$
Replace the MCU PWB (PL 11.1).
Replace the Sensor Bar Assembly (PL 11.1).
The defect is Low Image Density or Uneven Density.
Y N
The defect is Background
Y N
Verify the condition of the circuit between the ADC Sensor and MCU PWB. The circuit is free of damage.
Y \mathbf{N}
Repair the circuit as required.
Check the operating voltages between the ADC Sensor and the MCU PWB. The voltages are correct.
Y N
Replace the MCU PWB (PL 11.1).
Replace the Sensor Bar Assembly (PL 11.1).
Go to IQ 6 to troubleshoot IOT background.
Go to IQ 3 to troubleshoot Low Image Density or Uneven Density.

092-934 Print Count RAP

A run control error occurred counting prints.

Procedure

If several 092-934 faults are logged, replace the MCU PWB (PL 11.1).

092-649 ADC Shutter Open RAP

BSD-ON:9.4A
The ADC Shutter failed to open.

Procedure

Remove the Sensor Bar Assembly (PL 11.1). Check the operation of the shutter. If the shutter cannot be repaired, replace the Sensor Bar Assembly (PL 11.1).

092-650 ADC Shutter Close RAP
BSD-ON:9.4A
The ADC Shutter failed to close.

Procedure

Remove the Sensor Bar Assembly (PL 11.1). Check the operation of the shutter. If the shutter cannot be repaired, replace the Sensor Bar Assembly (PL 11.1).

092-651 ADC Shutter Clean RAP

BSD-ON:9.4A

There is an ADC Sensor Voltage level failure.

Procedure

Remove the Sensor Bar Assembly (PL 11.1). Check the condition of the Sensor Bar Assembly. The ADC Assembly is free of damage.
Y N
Replace the Sensor Bar Assembly (PL 11.1).
Check the operating voltages between the ADC Sensor and the MCU PWB. The voltages are correct.
$\mathbf{Y} \quad \mathbf{N}$
Replace the MCU PWB (PL 11.1).
Replace the Sensor Bar Assembly (PL 11.1).

092-661 Temperature Sensor RAP

BSD-ON:9.4A

There is a temperature sensor failure.

Procedure

Check the operating voltages between the Temperature/Humidity Sensor and the MCU PWB. The voltages are correct.
Y N
Verify that the circuit is not damaged. If no damage is found, replace the MCU PWB (PL 11.1).

Replace the Temperature/Humidity Sensor (PL 11.1).

092-662 Humidity Sensor RAP

BSD-ON:9.4A
There is a humidity sensor failure.

Procedure

Check the operating voltages between the Temperature/Humidity Sensor and the MCU PWB The voltages are correct.
Y^{N}
Verify that the circuit is not damaged. If no damage is found, replace the MCU PWB (PL 11.1).

Replace the Temperature/Humidity Sensor (PL 11.1).

093-310 Rotary Position Failure

BSD-ON: 9.3

The Rotary Assembly failed to stop at the predetermined position.

Initial Actions

- Power OFF/ON

Procedure

Manually move the Rotary Assembly (PL 5.1). Open the Front Cover (PL 12.1). Open the Toner Cartridge Door (PL 5.1). Engage the Rotary Shaft Lock (PL 5.1) manually move the Rotary Assembly in a clockwise direction. The Rotary Assembly moves in the clockwise direction.
Y N
Check the Rotary Assembly area for binding.
Enter Component Control [093-200] Rotary Home Position Sensor. Manually move the Rotary Assembly in a clockwise direction. The Display changes.
Y N
Measure the voltage between $\mathrm{P} / \mathrm{J} 409$ pins A 3 and A 1 . The voltage is approx. +5 VDC . Y N

Go to BSD 1.2A and troubleshoot the +5 VDC circuit.
Check the wiring of the Rotary Home Position Sensor. If the wiring is OK, replace the Rotary Home Position Sensor (PL 5.1). If the problem continues, replace the MCU PWB (PL 11.1).

Measure the voltage between the MCU PWB P/J411-5 (+) and GND (-) (BSD 9.3). The voltage is approx. +24VDC.
$Y \quad N$
Verify that fuse F3 on the MCU PWB is good (BSD 1.2A). Fuse F3 is good.
Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
Measure the voltage between the Power Unit P/J510-2 $(+)$ and GND (-) (BSD 1.2A). The voltage is approx. +24VDC.
$Y \quad \mathrm{~N}$
Replace the Power Unit (PL 11.1).
Check the +24 V wiring between P/J510 on the Power Unit and P/J400 on the MCU PWB for an open circuit or a short circuit. (BSD 1.2A). The wires are conducting without an open circuit or a short circuit.

N

Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Replace the Rotary Motor (PL 5.1).

093-311 Rotary Assembly Failure

BSD-ON: 9.3

The Rotary Assembly failed to start.

Initial Actions

- Power OFF/ON

Procedure

Manually move the Rotary Assembly (PL 5.1). Open the Front Cover (PL 12.1). Open the Toner Cartridge Door (PL 5.1). Engage the Rotary Shaft Lock (PL 5.1) manually move the Rotary Assembly in a clockwise direction. The Rotary Assembly moves in the clockwise direction.
Y N
Check the Rotary Assembly area for binding.
Enter Component Control [093-200] Rotary Home Position Sensor. Manually move the Rotary Assembly in a clockwise direction. The Display changes.
Y \mathbf{N}
Measure the voltage between P/J409 pins A3 and A1. The voltage is approx. +5VDC. Y N

Go to BSD 1.2A and troubleshoot the +5 VDC circuit.
Check the wiring of the Rotary Home Position Sensor. If the wiring is OK, replace the Rotary Home Position Sensor (PL 5.1). If the problem continues, replace the MCU PWB (PL 11.1).

Measure the voltage between the MCU PWB P/J411-5 (+) and GND (-) (BSD 9.3). The voltage is approx. +24VDC.
$\mathbf{Y} \quad \mathbf{N}$
Verify that fuse F3 on the MCU PWB is good (BSD 1.2A). Fuse F3 is good.
Y N
Replace the MCU PWB (PL 11.1).
Measure the voltage between the Power Unit P/J510-2 (+) and GND (-) (BSD 1.2A). The voltage is approx. +24VDC.
Y N
Replace the Power Unit (PL 11.1).
Check the +24 V wiring between P/J510 on the Power Unit and P/J400 on the MCU PWB for an open circuit or a short circuit. (BSD 1.2A). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Replace the MCU PWB (PL 11.1).
Replace the Rotary Motor (PL 5.1).

093-320 Developer Motor Failure RAP

 BSD-ON:4.3AThe Developer Motor is not rotating at the specified speed.

Initial Actions

- Power OFF/ON
- Reload the Xero/Developer Cartridge (PL 4.1)

Procedure

Execute Component Control [042-004 Developer Motor ON]. The Developer Motor can be heard.
$Y \quad N$
Go to the OF 5 (Developer Drive ASSY RAP).
Check the installation of the Developer Drive Assembly (PL 1.1). The Developer Drive Assembly is installed correctly.
Y N
Install the Developer Drive Assembly correctly.
Check the wire between P/J409 and P/J213 for an open circuit or a short circuit (BSD 4.3A). The wires are conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Manually rotate the Developer Motor rotor. It rotates smoothly.
Y N
Check for foreign substances that are interfering with operation or installation failure. Foreign substances or installation failure are found.
$Y \quad \mathrm{~N}$
Replace the Developer Drive Assembly (PL 1.1).
Remove the foreign substances that are interfering with operation and correct the installation failure.

Replace the Developer Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

093-400 Black Toner Near Empty

Black Toner Cartridge is near empty

Procedure

Check the following:

- Replace the Black Toner Cartridge if empty (PL 5.2)
- That the Black Toner Cartridge is inserted properly
- For Black Toner spills in the machine

093-406 Black Toner Pre-Near Empty

Black Toner Cartridge is Pre-near empty

Procedure

Check the following:

- Replace the Black Toner Cartridge if empty (PL 5.2)
- That the Black Toner Cartridge is inserted properly
- For Black Toner spills in the machine

093-407 Y Toner Pre-Near Empty

Yellow Toner Cartridge is Pre-near empty

Procedure

Check the following:

- Replace the Yellow Toner Cartridge if empty (PL 5.2)
- That the Yellow Toner Cartridge is inserted properly
- For Yellow Toner spills in the machine

093-408 M Toner Pre-Near Empty

Magenta Toner Cartridge is Pre-near empty

Procedure

Check the following:

- Replace the Magenta Toner Cartridge if empty (PL 5.2)
- That the Magenta Toner Cartridge is inserted properly
- For Magenta Toner spills in the machine

093-409 C Toner Pre-Near Empty

Cyan Toner Cartridge is Pre-near empty

Procedure

Check the following:

- Replace the Cyan Toner Cartridge if empty (PL 5.2)
- That the Cyan Toner Cartridge is inserted properly
- For Cyan Toner spills in the machine

093-414 Y Developer Housing is near End of Life

Y Developer Housing is near end of life.

Procedure

Replace the Yellow Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Yellow Developer HFSI (954-831).

093-415 M Developer Housing is near End of Life

M Developer Housing is near end of life.

Procedure

Replace the Magenta Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Magenta Developer HFSI (954-832).

093-416 C Developer Housing is near End of Life

C Developer Housing is near end of life.

Procedure

Replace the Cyan Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Cyan Developer HFSI (954-833).

093-417 K Developer Housing is near End of Life

K Developer Housing is near end of life.

Procedure

Replace the Black Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Black Developer HFSI (954-830).

093-418 Y Developer Housing is Over End of Life

Y Developer Housing is over end of life.

Procedure

Replace the Yellow Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Yellow Developer HFSI (954-831).

093-419 M Developer Housing is Over End of Life

M Developer Housing is over end of life.

Procedure

Replace the Magenta Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Magenta Developer HFSI (954-832).

093-420 C Developer Housing is Over End of Life

C Developer Housing is over end of life.

Procedure

Replace the Cyan Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Cyan Developer HFSI (954-833).

093-421 K Developer Housing is Over End of Life

K Developer Housing is over end of life.

Procedure

Replace the Black Developer Housing (PL 5.1) (REP 4.1.1).
Go to Detailed Maintenance Activities and reset the Black Developer HFSI (954-830).

093-423 Y Toner Near Empty

Yellow Toner Cartridge is near empty

Procedure

Check the following:

- Replace the Yellow Toner Cartridge if empty (PL 5.2)
- That the Yellow Toner Cartridge is inserted properly
- For Yellow Toner spills in the machine

093-424 M Toner Near Empty

Magenta Toner Cartridge is near empty

Procedure

Check the following:

- Replace the Magenta Toner Cartridge if empty (PL 5.2)
- That the Magenta Toner Cartridge is inserted properly
- For Magenta Toner spills in the machine

093-425 C Toner Near Empty

Cyan Toner Cartridge is near empty

Procedure

Check the following:

- Replace the Cyan Toner Cartridge if empty (PL 5.2)
- That the Cyan Toner Cartridge is inserted properly
- For Cyan Toner spills in the machine

093-912 Black Toner Empty

Black Toner Cartridge is Empty.

Initial Actions

Check the following:

- Replace the Black Toner Cartridge if empty (PL 5.2)
- Ensure that the Black Toner Cartridge is inserted properly
- For Black Toner spills in the machine

Procedure

Check for Image Quality Defects. An Image Quality Defect is present.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
The Defect is Low Image Density or Uneven Density.
Y N
The Defect is Background.
Y N
Run ProCon On (ADJ 9.1.10) and follow the Corrective Actions.
Go to IQ6 and troubleshoot IOT Background.
Go to IQ3 and troubleshoot Low Image Density or Uneven Density.

093-916 Toner K CRUM not in position Failure

 BSD-ON:9.1K Toner CRUM not in position Failure.

Initial Actions

- Ensure that the Black Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-970 (Y), 093-971 (M), and 093-972 (C) are also present on the UI.
Y N
Replace the Black Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-924 Toner K Crum Communication Failure

BSD-ON:9.1

K Toner CRUM Comm Failure.

Initial Actions

- Ensure that the Black Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-940 (Y), 093-941 (M), and 093-942 (C) are also present on the UI.
Y N
Replace the Black Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-925 Toner K Crum Data Broken Failure

 BSD-ON:9.1
Initial Actions

- Ensure that the Black Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-950 (Y), 093-951 (M), and 093-952 (C) are also present on the UI.
Y N
Replace the Black Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-926 Toner K Crum Data Mismatch Failure

BSD-ON:9.1

Initial Actions

- Ensure a Black Toner Cartridge is installed in the Black position in the Rotary
- Ensure the correct toner cartridge for this product is installed
- Ensure that the Black Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-960 (Y), 093-961 (M), and 093-962 (C) are also present on the UI.
Y N
Replace the Black Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-940 Toner Y CRUM Communication Failure

 BSD-ON:9.1Y Toner CRUM Comm Failure.

Initial Actions

- Ensure that the Yellow Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-924 (K), 093-941 (M), and 093-942 (C) are also present on the UI.
Y N
Replace the Yellow Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-941 Toner M CRUM Communication Failure

 BSD-ON:9.1M Toner CRUM Comm Failure.

Initial Actions

- Ensure that the Magenta Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-924 (K), 093-940 (Y), and 093-942 (C) are also present on the UI. Y N

Replace the Magenta Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-942 Toner C CRUM Communication Failure

 BSD-ON:9.1C Toner CRUM Comm Failure.

Initial Actions

- Ensure that the Cyan Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-924 (K), 093-940 (Y), and 093-941 (M) are also present on the UI.
Y N
Replace the Cyan Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-950 Toner Y CRUM Data Broken Failure

BSD-ON:9.1

Y Toner CRUM Data Broken Failure.

Initial Actions

- Ensure that the Yellow Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-925 (K), 093-951 (M), and 093-952 (C) are also present on the UI. Y N

Replace the Yellow Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-951 Toner M CRUM Data Broken Failure

BSD-ON:9.1
M Toner CRUM Data Broken Failure.

Initial Actions

- Ensure that the Magenta Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-925 (K), 093-950 (Y), and 093-952 (C) are also present on the UI.
Y \mathbf{N}
Replace the Magenta Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-952 Toner C CRUM Data Broken Failure

BSD-ON:9.1

C Toner CRUM Data Broken Failure.

Initial Actions

- Ensure that the Cyan Toner Cartridge is seated correctly
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-925 (K), 093-950 (Y), and 093-951 (M) are also present on the UI.
Y N
Replace the Cyan Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-960 Toner Y CRUM Data Mismatch Failure

 BSD-ON:9.1Y Toner CRUM Data Mismatch Failure.

Initial Actions

- Ensure a Yellow Toner Cartridge is installed in the Yellow position in the Rotary
- Ensure the correct toner cartridge for this product is installed
- Ensure that the Yellow Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-926 (K), 093-961 (M), and 093-962 (C) are also present on the UI.
Y N
Replace the Yellow Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-961 Toner M CRUM Data Mismatch Failure

BSD-ON:9.1

M Toner CRUM Data Mismatch Failure.

Initial Actions

- Ensure a Magenta Toner Cartridge is installed in the Magenta position in the Rotary
- Ensure the correct toner cartridge for this product is installed
- Ensure that the Magenta Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-926 (K), 093-960 (Y), and 093-962 (C) are also present on the UI. Y \mathbf{N}

Replace the Magenta Toner Cartridge (PL 5.2)
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-962 Toner C CRUM Data Mismatch Failure

 BSD-ON:9.1C Toner CRUM Data Mismatch Failure.

Initial Actions

- Ensure a Cyan Toner Cartridge is installed in the Cyan position in the Rotary
- Ensure the correct toner cartridge for this product is installed
- Ensure that the Cyan Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-926 (K), 093-960 (Y), and 093-961 (M) are also present on the UI.
Y N
Replace the Cyan Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-970 Toner Y CRUM not in position Failure

 BSD-ON:9.1Y Toner CRUM not in position Failure.

Initial Actions

- Ensure that the Yellow Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-916 (K), 093-971 (M), and 093-972 (C) are also present on the UI.
Y N
Replace the Yellow Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-971 Toner M CRUM not in position Failure

 BSD-ON:9.1M Toner CRUM not in position Failure.

Initial Actions

- Ensure that the Magenta Toner Cartridge is seated correctly.
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-916 (K), 093-970 (Y), and 093-972 (C) are also present on the UI.
Y N
Replace the Magenta Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1),
If the fault codes are still present, replace the MCU PWB (PL 11.1).

093-972 Toner C CRUM not in position Failure

 BSD-ON:9.1C Toner CRUM not in position Failure.

Initial Actions

- Ensure that the Cyan Toner Cartridge is seated correctly
- Ensure that the Toner Cartridge Door is closed.

Procedure

Fault codes 093-916 (K), 093-970 (Y), and 093-971 (M) are also present on the UI. Y N

Replace the Cyan Toner Cartridge (PL 5.2).
Replace the Toner CRUM (Toner Cartridge Door) (PL 5.1).
If the fault codes are still present, replace the MCU PWB (PL 11.1).

094-320 2nd BTR Retract RAP

BSD-ON:9.7
There is a 2nd BTR retract failure.

Procedure

Open the Left Hand Cover. Check that the Contact Arms (PL 6.2) are in the correct position. Verify the 2nd BTR is free to move (PL 2.7). Repair as required (PL 2.7).

094-321 2nd BTR Contact RAP

BSD-ON:9.7
There is a 2nd BTR contact failure.

Procedure

Open the Left Hand Cover. Check that the Contact Arms (PL 6.2) are in the correct position. Verify the 2nd BTR is free to move (PL 2.7). Repair as required (PL 2.7).

094-322 2nd BTR Retract RAP

BSD-ON:9.7
There is a 2nd BTR retract failure.

Procedure

Open the Left Hand Cover. Check that the Contact Arms (PL 6.2) are in the correct position. Verify the 2nd BTR is free to move (PL 2.7). Repair as required (PL 2.7).
Check the circuit of the 2nd BTR (BSD9.7). Repair as required (PL 2.7).

094-323 2nd BTR Contact RAP

BSD-ON:9.7
There is a 2nd BTR contact failure.

Procedure

Open the Left Hand Cover. Check that the Contact Arms (PL 6.2) are in the correct position. Verify the 2nd BTR is free to move (PL 2.7). Repair as required (PL 2.7).
Check the circuit of the 2nd BTR (BSD9.7). Repair as required (PL 2.7).

094-417 IBT Near End of Life RAP

The IBT is near end of life.

Procedure

Verify that the IBT is near end of life (Detailed Maintenance Activities). The IBT is near end of life.

Replace the MCU PWB (PL 11.1).

There is no need for service at this time. Return to Service Call Procedures.

094-418 IBT Cleaner Near End of Life RAP

The IBT Cleaner is near end of life.

Procedure

Verify that the IBT Cleaner is near end of life (Detailed Maintenance Activities). The

Y N
Replace the MCU PWB (PL 11.1)
There is no need for service at this time. Return to Service Call Procedures

094-419 2nd BTR Near End of Life RAP

The 2nd BTR is near end of life.

Procedure

Verify that the 2nd BTR is near end of life (Detailed Maintenance Activities). The 2nd BTR is near end of life.
Y \mathbf{N}
Replace the MCU PWB (PL 11.1).
There is no need for service at this time. Return to Service Call Procedures.

094-420 IBT End of Life RAP

The IBT reached end of life.

Procedure

Verify that the IBT Belt Assembly is at end of life (Detailed Maintenance Activities). The IBT Belt Assembly is at end of life.
Y N
Replace the MCU PWB (PL 11.1).
Replace the IBT Belt Assembly (PL 6.2).

094-421 IBT Cleaner End of Life RAP

The IBT Cleaner reached end of life.
Initial Actions
Replace the IBT Belt Assembly (PL 6.1)

Procedure

Verify that the IBT Cleaner is at end of life (Detailed Maintenance Activities). The IBT Cleaner is at end of life.
$Y \quad N$
Replace the MCU PWB (PL 11.1).
Replace the IBT Cleaner (PL 6.2).

094-422 2nd BTR End of Life RAP

The 2nd BTR reached end of life.

Initial Actions

Replace the IBT Belt Assembly (PL 6.1)

Procedure

Verify that the 2nd BTR is at end of life (Detailed Maintenance Activities). The 2nd BTR is at end of life.
Y N
Replace the MCU PWB (PL 11.1).
Replace the 2nd BTR (PL 2.7).

102-356 Controller Software RAP

BSD-ON:16.1

An internal Controller error shut down the processor.

Procedure

Check the installation of the P-Kit/HDD-Kit/RAM boards.
Reload Software (ADJ 9.3.1).
Replace the ESS PWB (PL 11.2).

102-380 UI Control RAP

BSD-ON:16.1

An internal UI controller error shut down the processor.
Initial Actions
Power Off/On

Procedure

Reload Software (ADJ 9.3.1)
Replace the ESS PWB (PL 11.2).

102-381 UI Data Link RAP

BSD-ON:16.1
During transmission between the ESS and the UI an initialization send error or a retrieve error for receiving data was detected by the ESS

Initial Actions

Power Off/On

Procedure

Check the connection between the ESS and the UI.
Pull out and insert or replace the DIMM (PL 11.2).
Reload Software (ADJ 9.3.1).
Replace the ESS PWB (PL 11.2) If the problem persists, replace the Control Panel UI PWB (PL 13.2).

102-382 Application Layer Command RAP

 BSD-ON:16.1- The required parameters were not sent by the UI.
- A length error was detected in the variable length parameter.
- A confirmation message was not received within the specified time when a request message was sent to the UI.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
Reload Software (ADJ 9.3.1).
Replace the ESS PWB (PL 11.2).

116-220
A description is not available at time of publication.

Procedure

A procedure is not available at time of publication.

116-310 ESS Font DIMM \#2 RAP

An error is detected in the ESS Font ROM DIMM \#2.

Initial Actions

Power Off/On

Procedure

Pull out and insert the FCB PWB and the DIMM (PL 11.3).
If the problem persists replace the DIMM \#2 (PL 11.2).

116-311 ESS Font DIMM \#3 RAP

An error is detected in the ESS Font ROM DIMM \#3.
Initial Actions
Power Off/On

Procedure

Pull out and insert the FCB PWB and the DIMM (PL 11.3),
If the problem persists replace the DIMM \#2 (PL 11.2).

116-312 HDD Encrypt Key RAP

An error in the HDD encryption key is detected during boot.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-313 HDD Encrypt Setup RAP

The encryption key is set up but the HDD is not encrypted.

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-314 Ethernet Address RAP

An Ethernet address error is detected.

Initial Actions

Power Off/On

Procedure

Check the EPROM on the ESS.
If the problem persists, replace the ESS PWB (PL 11.2).

116-315 ESS DDR DIMM \#1 R/W Check RAP

An error is detected during the Read/Write operation of the ESS DDR DIMM \#1.

Initial Actions

Power Off/On

Procedure

Pull out and insert the ESS DDR DIMM \#1.
If the problem persists, replace the ESS DDR DIMM \#1 (PL 11.2).

116-316 ESS DDR DIMM \#2 R/W Check RAP

An error is detected during the Read/Write operation of the ESS DDR DIMM \#2.

Initial Actions

Power Off/On

Procedure

Pull out and insert the ESS DDR DIMM \#2.
If the problem persists, replace the ESS DDR DIMM \#2 (PL 11.2).

116-317 ESS ROM DIMM \#1 Check RAP
An error is detected when the standard ROM DIMM was checked.
Initial Actions
Power Off/On

Procedure

Pull out and insert DIMM (PL 11.2).
If the problem persists replace the DIMM (PL 11.2).

116-318 ESS ROM DIMM \#2 Check RAP

An error is detected when the option ROM DIMM was checked.

Initial Actions

Power Off/On

Procedure

Pull out and insert the DIMM (PL 11.2).
If the problem persists, replace DIMM (PL 11.2).

116-319 Controller UI Configuration

There is a configuration mismatch between the Controller ROM and the UI.

Procedure

If the Controller or UI was just serviced, check the electrical connections.
If the problem occurred during customer usage, replace the Controller ROM.
If the problem persists, replace the UI PWB (PL 13.2).

116-321 System Software RAP

An internal controller error shut down the processor.

Initial Actions

Power Off/On

Procedure

Check the installation of the DDR DIMM.
Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-322 WebDAV S/W Fail RAP

Due to an error in software processing, subsequent processes cannot be performed.

Procedure

Power Off/On

116-323 ESS NVRAM R/W Check RAP

An error is detected during the ESS PWB NVM Read/Write Check

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-324 System Controller RAP

An exceptional Controller error shut down the processor.

Initial Actions

Power Off/On
116-325 ESS Fan RAP
The ESS fan failed.

Procedure

Replace the ESS fan (PL 11.2).

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2)

116-328 Controller Cache RAP
A cache failure is detected in the Controller.
Initial Actions
Power Off/On

Procedure

Replace the ESS PWB (PL 11.2).

116-329 Serial Software RAP

A system call error is detected.
Initial Actions
Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-330 HDD File System RAP

The HDD Check detected an error during power on or the HDD is not formatted.
Initial Actions
Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-331 Invalid Log Information RAP

A log error is detected.

Initial Actions

Power Off/On

Procedure

Remove the HD , switch off the power, reinstall the HD , and switch on the power.
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-332 ESS ROM RAP
An error is detected in the ESS ROM.
Initial Actions
Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-333 LocalTalk Software RAP

A LocalTalk system call error caused a shutdown.

Initial Actions

Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-334 ESS NVRAM Data Compare Fail RAP

System Cont detects [ESS-NVRAM with factory settings is installed] or [lllegal ESSNVRAM data is occurring].

Initial Actions

Power Off/On

Procedure

As powering OFF then ON after a detection of 116-334 will presumably cause other errors 124 $3 x x$ that indicate various data mismatches between the three locations, resolve one(s) following the corrective actions for the relevant Fault Code(s).

If 116-334 reoccurs despite powering OFF/ON, disconnect and reconnect the NV-RAM Board, then turn ON the power.

If the problem persists, replace the NV-RAM Board.
If the problem still persists, replace the mercury battery

116-335 HDD RAP

The control logic detected that the HDD failed.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-336 HDD Access RAP

A failure is detected during HDD access
Initial Actions
Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-337 SNTP Software RAP

An error in SNTP (Simple Network Transfer Processing) caused in internal shutdown.

Initial Actions

Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-338 JBA RAP

A JBA (Job Based Accounting) processing error caused in internal shutdown.
Initial Actions
Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-340 Memory RAP

The DDR DIMM, Entry Buffer, and Work Area are insufficient.
Initial Actions
Power Off/On

Procedure

Add memory (PL 11.2).
Disable the PostScript option.

116-341 ROM Version RAP

- Multiple incorrect versions of the ROM DIMM are installed.
- An invalid combination of ROM DIMMs are installed.

Initial Actions

Power Off/On

Procedure

NOTE: When installing multiple ROM DIMMs, it is necessary to match both the major versions and the minor versions.

Check the version of the ROM DIMM and if necessary, replace it with the correct version of the DIMM (PL 11.2).

116-342 Network Manager RAP

An internal shutdown occurred due to an error in processing SNMP (Simple Network Management Protocol).

Initial Actions

Power Off/On

Procedure

Reload Software (ADJ 9.3.1).

116-343 Main PWB IC RAP

An error is detected in the IC in the ESS PWB.

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are securely connected.
Y
Connect the connectors.
Switch on the power again. The problem persists.
\mathbf{N}
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2).

116-346 Formatter RAP

Errors are detected by the Formatter.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-348 Redirector RAP

A system function recall error is detected by the Redirector.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists, replace the ESS PWB (PL 11.2).

116-349 SIF RAP

An error occurred using the SIF (Source Input Format) function.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-350 AppleTalk Software RAP

An internal shutdown occurred after an AppleTalk processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-351 Ether Talk Software RAP

An internal shutdown occurred after an Ether Talk processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-352 NetWare Software RAP

An internal shutdown occurred after a NetWare processing error

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-353 HDD Mechanical RAP

A mechanical error occurred in the HDD

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are correctly connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
$\mathbf{Y} \quad \mathbf{N}$
Return to Service Call Procedures.
Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-354 HDD Product RAP

An error occurred in the HDD.

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are correctly connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-355 Agent Software RAP

An internal shutdown occurred after an SNMP (Simple Network Management Protocol) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-356 HDD Format RAP

HDD formatting failed.

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are correctly connected.
$\mathbf{Y}^{\mathbf{N}}$
Connect the connectors.
Turn on the power again. The problem persists.
N
Return to Service Call Procedures.
Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-357 PostScript RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-358 Salutation Software RAP

An internal shutdown occurred after a Salutation processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-359 Software RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-360 SMB Software RAP

An internal shutdown occurred after a SMB (Server Message Block) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-361 Spool HDD RAP

The controller spool detected an error during HDD access.

Initial Actions

Power Off/On

Procedure

Check the HDD electrical connections (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 9.2).

116-362 SSDP Software RAP

An internal shutdown occurred after an SSDP (Simple Service Discovery Protocol) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-363 Print Service Software RAP

An internal shutdown occurred after an SNMP processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-364 Timer RAP

A timer failure is detected in the ESS PWB.

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are correctly connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2).

116-365 Spool RAP

An internal shutdown occurred after an SPL processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-366 Software Report RAP

An internal shutdown occurred after a reporting error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1)
If the problem persists, replace the ESS PWB (PL 11.2).

116-367 Parallel Software RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-368 Dump Print RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1)
If the problem persists, replace the ESS PWB (PL 11.2).

116-370 XJCL RAP

An internal shutdown occurred after a XJCL (X Job Control Language) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-371 PCL Decomposer Software RAP

An internal shutdown occurred after a PCL (Printer Command Language) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-372 Formatter RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-373 Dynamic DNS Software RAP

An internal shutdown occurred after a DDNS (Dynamic Domain Name System) processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2)

116-374 Auto Switch RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-375 Formatter RAP

A response such as system function recall error is detected.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1)
If the problem persists, replace the ESS PWB (PL 11.2).

116-376 Port 9100 Software RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Pull out and insert or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-377 Video DMA RAP

A Video DMA (Direct Memory Access) failure is detected.

Initial Actions

Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-378 Controller Software RAP

An internal shutdown occurred after a processing error.

Initial Actions

Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-379 Controller Software RAP

An internal shutdown occurred after an MCC processing error.

Initial Actions

Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-380 ESS Font ROM DIMM \#1 RAP

An error is detected when the Font ROM DIMM \#1 was checked.

Initial Actions

Power Off/On

Procedure

Pull out and insert the Printer PWB (PL 11.2) and the PS DIMM (PL 11.2) Switch on the power. The problem persists.
Y $\quad \mathbf{N}$
Return to Service Call Procedures.
Check the connection of each ESS PWB connector. The connectors are correctly connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y \mathbf{N}
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists, replace the Printer PWB (PL 11.2)
If the problem persists, replace the PS DIMM (PL 11.2).

116-381 ABL Initialize RAP

Corrupted data is detected in the ABL (Address Book Library).

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are correctly connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
$Y \quad \mathbf{N}$
Return to Service Call Procedures.
Clear the ESS NVM. (Perform this only after explaining to the user the purpose of clearing recipient information.)
If the problem persists replace the ESS PWB (PL 11.2).

116-382 ABL Initialize RAP

HDD access by the ABL (Address Book Library) failed.

Initial Actions

Power Off/On

Procedure

Check the connection of each ESS PWB connector. The connectors are securely connected.
Y N
Connect the connectors.
Switch on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-383 PIT Lib Failure RAP

(1) It was detected that the Image Extension Kit (Ama + toto board) was not installed on the controller board during job execution.
(2) An Ama + toto board failure was detected during job execution.
(3) An HDD access error was detected during job execution.

* Note that although 016-231 is detected during power ON, this fail is a "job execution detection" and has a different timing.

Procedure

(1) (2) After turning the power OFF then ON, check the panel top right display to see whether 016-231 has occurred, without this error $(=116-383)$ occurring.

If 016-231 has occurred, perform the corrective actions for 016-231.
If the error does not occur, proceed to (3) for the HDD access error.

116-385 IDC Software RAP

An internal shutdown occurred after an IDC (scripting language) processing error.

Initial Actions

Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-388 MCC RAP

The control logic detected that the HDD is not installed during an MCC operation (Mail Contents Creator).

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the HDD (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-389 RAM Install RAP

The control logic detected that the required RAM capacity is not installed or available.

Initial Actions

Power Off/On

Procedure

Reinstall or replace the DIMM (PL 11.2).
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-390 ROM NVM Mismatch RAP

Incompatible versions of the standard ROM and NVM are detected.

Procedure

If instructions are listed on the UI perform them.
If no instructions are listed on the UI Follow the LCD display and initialize the NVM.

116-391 Country Code RAP

An illegal country code is set.

Procedure

Perform GP 7 Country Code Setting.

116-395 USB Software RAP

There is an internal shutdown due to a USB (Universal Serial Bus) related error.
Initial Actions
Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-399 Initialization RAP

Initialization exceeded 10 minutes.

Initial Actions

Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists, replace the ESS PWB (PL 11.2).

116-701 Memory Duplex RAP

2 Sided printing requires more memory.
Initial Actions
Power Off/On

Procedure

If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-702 Substitute Font RAP

The print function is using a substitute font.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-703 PostScript Language RAP

There is an error in PostScript grammar interpretation or language interpretation.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

116-710 HP-GL/2 Memory Overflow RAP

There is a memory overflow in the HP-GL/2 (Hewlett Packard printer control language)

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the HDD (PL 11.2).
Ask customer to cancel and rerun the job.

116-711 Size/Orientation Mismatch RAP

In overlay mode the PLW form is different from the size/orientation of the paper.

Procedure

Ask customer to check setups so that the paper is the same size and orientation as the overlay.

116-712 Form Registration RAP

Form/logo data registration is not possible due to insufficient RAM disk or HDD capacity.

Initial Actions

Power Off/On

Procedure

Ask customer to delete unused or unnecessary forms.
Perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-713 HDD Job Full RAP

The job output was split into batches when HDD capacity was reached.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job
Perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-714 HP-GL/2 Command RAP

There is a command error in the HP-GL/2 (Hewlett Packard printer control language)

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists check the electrical connections on the HDD (PL 11.2).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-715 Max Form to PLW Registered RAP

PLW form data registration was not possible because of the restriction on the number of forms
Initial Actions
Power Off/On

Procedure

Ask customer to check the registered forms using the UI utility and delete the forms that are unnecessary.

If the problem persists delete forms that are not required by the print command.

116-718 Selected PLW Form Not Registered RAP

The specified form is not registered.

nitial Actions

Power Off/On

Procedure

Use a registered form or register the required form.

116-720 PCL Memory RAP

The PCL Printer Control Language) Memory capacity is insufficient.
Initial Actions
Power Off/On

Procedure

Do not start up the ports that are unnecessary. Adjust the various Buffer Memory sizes. Add additional memory.

116-725 The log image storage area full RAP

With the system data "Level of Ensuring Log Image Creation" set to "Low," the log image storage area on the disk is full.

Procedure

Rerun the job.
If the situation is the same despite some re-attempts, delete unnecessary documents saved in the device.

116-737 Registration RAP

Registration of user defined data (external characters, patterns, etc.) lacks RAM capacity.

Initial Actions

Power Off/On

116-738 Overlay Size Orientation RAP

The drawing size/orientation of the form is different from the size/orientation of the paper.

Procedure

Ask customer to check setups so that the paper is the same size and orientation as the overlay.

Procedure

Refer customer to User Guide heading Data Encryption. Deleting registered user defined data will make additional memory available.

116-739 Form/Logo Capacity RAP

Form/logo registration was not possible because of insufficient RAM disk or HDD capacity.

Initial Actions

Power Off/On

Procedure

Ask customer to check the registered forms/logos using the Operation Panel utility, delete the forms/logos that are unnecessary.

Refer customer to User Guide heading Data Encryption to check RAM usage.
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the HDD (PL 11.2).

116-740 Arithmetic RAP

The number calculated in the interpreter exceeded the limit value.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

116-741 Maximum Forms Data Register RAP

The large quantity of forms put a limit on form data registration.

Initial Actions

Power Off/On

Procedure

Ask customer to check the registered forms using the UI utility and delete the forms that are unnecessary.

If the problem persists Ask customer to delete forms that are not required by the print command.

116-742 Max Logo Registered RAP

The number of logo data registrations is exceeded.

Procedure

Ask customer to check the registered logos using the UI utility and delete any unused logos.
If the problem persists delete logos that are not required by the print job.

116-743 Form/Logo Size Overflow RAP

The received data (form/logo) exceeds the registered buffer size
Initial Actions
Power Off/On

Procedure

Ask customer to increase the size of the Form Registration Area using the UI.
If the problem persists install the HDD (PL 11.2).

116-745 ART Command RAP

The decompressor detected grammar or other errors when comparing check values.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.

116-746 Selected Form RAP

The selected form is not registered.

Procedure

Ask customer to use a registered form or register the required form.

116-747 Invalid Page Margin RAP

Subtracting the paper margin from the valid coordinate area results in a negative value.

Procedure

Ask customer to reset the margins setup.

116-748 Page Image Data RAP
Drawing data does not exist in the page data.
Initial Actions
Power Off/On

Procedure

Ask customer to cancel and rerun the job.

116-749 PostScript Font RAP

The specified font is not found in the ROM or the HDD.
Initial Actions
Power Off/On

Procedure

The font name specified in JIS is set.

116-752 Print Job Ticket Description Warning RAP
PDF Print Job Ticket description warning.

Procedure

Ask customer to cancel and rerun the job.

116-771 Invalid JBIG Parameter DL Fixed RAP
An incorrect JBIG parameter DL was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-772 Invalid JBIG Parameter D Fixed RAP
An incorrect JBIG parameter D was automatically corrected
Initial Actions
Power Off/On

Procedure

No action necessary.

116-773 Invalid JBIG Parameter P Fixed RAP
An incorrect JBIG parameter P was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-774 Invalid JBIG Parameter YD Fixed RAP
An incorrect JBIG parameter YD was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-775 Invalid JBIG Parameter LO Fixed RAP
An incorrect JBIG parameter LO was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-776 Invalid JBIG Parameter MX Fixed RAP
An incorrect JBIG parameter MX was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-777 Invalid JBIG Parameter MY Fixed RAP
An incorrect JBIG parameter MY was automatically corrected.

Initial Actions

Power Off/On

Procedure

No action necessary.

116-778 Invalid JBIG Par VLength Fixed RAP
An incorrect JBIG parameter VLENGTH was automatically corrected.
Initial Actions
Power Off/On

Procedure

No action necessary.

116-780 Attached Document RAP

There was an error in the document attached to the E-mail to XXX.

Initial Actions

Power Off/On

Procedure

No action necessary.

116-790 Stapling Canceled RAP

BSD-ON:12.6
When Staple was specified, there were no staples.

Initial Actions

Power Off/On

Procedure

Execute Component Control [012-242 Low Staple Sensor]. Install and remove the Staple Pin Cartridge. The display changes.
Y N
Check the Staple Pin Cartridge for failure or foreign substances. There are no foreign substances and nothing has failed.

Y N

Repair the failure and remove the foreign substances.
Check the connections of $P / J 8818$ and $P / J 8852$. $P / J 8818$ and $P / J 8852$ are connected correctly.
Y N
Connect P/J8818 and P/J8852.
Check the wire between J 8818 and J 8852 for an open circuit or a short circuit (BSD 12.6). The wire between J8818 and J8852 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between the Finisher PWB P/J8852-1 (+) and GND (-) (BSD 12.6 Flag 2). The voltage is approx. +5VDC.
$Y \quad N$
Replace the Finisher PWB (PL 17.12).
Measure the voltage between the Finisher PWB P/J8852-4 (+) and GND (-) (BSD 12.6 Flag 3). Install and remove the Staple Pin Cartridge. The voltage changes.
Y \mathbf{N}
Replace the Finisher PWB (PL 17.12).
Replace the Staple Assembly (PL 17.8) If the problem persists, replace the Finisher PWB (PL 17.12).

Replace the Finisher PWB (PL 17.12) If the problem persists, replace the MCU PWB (PL 11.1).

121-310 EPSV-Accessory Communication HDD RAP

Transmission between the EP-SV and the accessories failed.

Initial Actions

Power Off/On

Procedure

Check the electrical connectors on the HDD (PL 11.2)
If the problem persists perform Hard Disk Diagnostic Program If the problem persists replace the EP-SV.
If the problem persists install or replace the EPSV-IF board (PL 11.2).
If the problem persists replace the EP accessory.

121-333 EPSV-EP M/C Communication HDD RAP

Transmission between the EP-SV and the machine failed.

Initial Actions

Power Off/On

Procedure

Check the electrical connectors on the HDD (PL 11.2)
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists reinstall or replace the EPSV-IF board (PL 11.2).
If the problem persists replace the EP accessory.
If the problem persists replace the EP-SV.

121-334 EPSV Login HDD RAP

Verification of the login information in WAKE UP ANSWER resulted in an error.

Initial Actions

Power Off/On

Procedure

Check the electrical connectors on the HDD (PL 11.2)
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists reload Firmware (ADJ 9.3.1).
If the problem persists reinstall or replace the EPSV-IF board (PL 11.2).
If the problem persists pull out and insert or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).
If the problem persists replace the EP-SV.

121-335 EPSV Wake Up Answer HDD RAP

The WAKE UP ANSWER cannot be received.

Initial Actions

Power Off/On

Procedure

Check the electrical connectors on the HDD (PL 11.2)
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists pull out and insert or replace the DDR DIMM (PL 11.2).
If the problem persists reinstall or replace the EPSV-IF board (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).
If the problem persists replace the EP-SV.

121-336 Unknown EP Accessory RAP
The EP related accessory type was unknown in WAKE UP ANSWER
Initial Actions
Power Off/On

Procedure

Replace the EP accessory.

121-337 EP Accessory Self Diagnostic HDD RAP

Self-diagnostic of the EP related accessories in WAKE UP ANSWER resulted in an error.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the HDD (PL 11.2)
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the EP accessory.

121-338 EPSV Answer Time Out RAP

Answers other than wake up answer from the EP-SV cannot be received.

Initial Actions

Power Off/On

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

121-339 Changed Price Table RAP

With the machine turned on, unit price information was changed.

nitial Actions

Power Off/On

Procedure

Ask customer to verify the pricing information.

121-340 EP Accessory Mismatch RAP

The combination of accessories that are installed does not match the specifications.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the HDD (PL 11.2)
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists reinstall or replace the EPSV-IF board (PL 11.2).
If the problem persists pull out and insert or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

121-350 EPSV Logic HDD RAP

A fatal error was detected.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the HDD (PL 11.2) If the problem persists reload Software (ADJ 9.3.1).
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists reinstall or replace the EPSV-IF board (PL 11.2).
If the problem persists pull out and insert or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

121-370 EP-DX RAP
An error was detected.
Initial Actions
Power Off/On

Procedure

Replace the ESS PWB (PL 11.2)

123-203 UI Controller RAP

The send request queue is full.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-207 Communication Manager Target RAP

A mailbox operations value is incorrect.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-209 Controller UI Communication RAP

An incorrect check value is received during Controller UI Communications.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-310 Send Queue RAP

The upper limit of the processing capability for sending data from the UI to the Controller was exceeded.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-311 Receive Queue RAP

The data received from the Controller exceeded the upper limit of the processing capability in the UI.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-317 Receive Message Queue RAP

The data received from the Controller exceeded the upper limit of the processing capability in the UI.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-318 Receive Finish Queue RAP

The data received from the Controller exceeded the upper limit of the processing capability in the UI.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1)
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-322 UI Target RAP

Serial transmission failed.

nitial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-323 UI Address RAP

Serial transmission failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-325 Object Creation RAP

The specified object could not be created due to UI software failure and a setting or specification error.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-326 Memory Overflow RAP

The UI software failed and memory capacity is exceeded.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-327 Button Overflow RAP

The UI software failed and memory requirements exceeded the upper limit.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-328 UI Internal Range RAP

UI software failure and a coordinate value outside the range of the display screen is detected.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-329 UI Coordinates RAP

UI software failure and a coordinate value that cannot be displayed is detected.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2)

123-332 Interface Parameter RAP

The UI software failed and an incorrect parameter was received by the DM-CP driver interface.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-333 Interface Communication RAP

The system detected that transmission with the Control Panel could not be established
The H/W connection in the UI is faulty and the internal connection isn't detected.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-337 Frame Data RAP

The UI software failed and an incorrect data type value is detected.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-341 Event Queue RAP

The UI software failed with a full event queue.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-342 Event Queue RAP

The UI software failed with an empty queue

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-343 Invalid Class RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-344 Invalid Type RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-345 Timer Queue Full RAP

The UI software failed an event timer.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-346 Invalid Timer Number RAP

The UI software failed a timer routine.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-350 Privilege Command RAP

The UI software failed a privilege commend.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-362 Object RAP

The UI software failed with no object definition.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-368 UI Memory RAP

There is insufficient memory or the connection failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-369 Interface Value RAP

The UI software failed with an invalid interface value.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-370 Interface Length RAP

There is an error in the parameter sent from the Controller.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-371 Interface Parameter RAP

There is an error in the parameter sent from the Controller.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the ESS PWB (PL 11.2).

123-372 Interface Sequence RAP

The initialization command from the Controller was not sent within the specified time.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the ESS PWB (PL 11.2).

123-373 Channel RAP

There is an error in the channel sent from the Controller.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the ESS PWB (PL 11.2).

123-374 User Job ID RAP

There is an error in the Job ID parameter sent from the Controller.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the ESS PWB (PL 11.2).

123-375 Internal Resource RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-376 Internal Memory RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-377 UI Timer RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-378 Interface Format RAP

There is an error in the data format sent from the Controller.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the ESS PWB (PL 11.2).

123-379 Dispatch RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-380 Copy Interface RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-381 Fax Interface RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-382 Scanner Interface RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-383 Report Interface RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-384 Server Access RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-385 Service Object RAP

There is an invalid service object overflow failure.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-386 Service Object RAP

There is an invalid service object attribute failure.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-387 Service Object RAP

There is an invalid service object attribute failure.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-388 Attribute RAP

The UI software failed attribute control.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-389 UI Comparator RAP

The UI software failed comparator management.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-390 Job Parameter RAP

The Ul software failed job parameter control.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-391 Job Parameter RAP

The UI software failed job parameter control

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-392 Auditron RAP

The UI software failed auditron control.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-393 UI Compiling RAP

The UI software failed a compiler function.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-394 File Access RAP

The UI software failed a file access routine.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-395 UI NVM RAP

The UI software failed an NVM access routine

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-396 UI Software RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-397 UI Manager RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-398 Release Queue RAP

The UI software failed a full queue release.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-399 UI Internal RAP

The UI software failed.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

123-400 Internal Interface RAP

There is insufficient memory capacity or an internal error or invalid interface sequencing or a corrupt parameter was entered.

Initial Actions

Power Off/On

Procedure

Disconnect and reconnect the electrical connections on the UI PWB (PL 13.2) and P/J388 on the ESS PWB (PL 11.2)

If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the UI PWB (PL 13.2).
If the problem persists replace the ESS PWB (PL 11.2).

124-310 Product Designation RAP

 BSD-ON:3.6There is an error in the product designation nomenclature.

Procedure

Perform GP 4 Replacing Billing PWBs.

124-311 Product Serial Number RAP BSD-ON:3.6

There is an error in the product serial number.

Procedure

Perform GP 4 Replacing Billing PWBs.

124-312 Machine Codes Mismatch RAP BSD-ON:3.6

The machine codes do not match.

Procedure

Perform GP 4 Replacing Billing PWBs.

124-313 Serial Number RAP
BSD-ON:3.6
The serial numbers did not match.

Procedure

Perform GP 4 Replacing Billing PWBs.

124-314 IOT Speed RAP

The IOT is not running at the correct speed.

Procedure

Check the following for binding:

- Fuser/ Main Drive Controls: BSD 4.1, 4.1B
- Registration: BSD 8.7
- Xerographics: BSD 9.3, 9.7, 9.8
- Fusing and Transportation: BSD 10.1, 10.5,10.6

124-315 Serial Number Mismatch RAP

The Serial Numbers are not in sync.

Initial Actions

Power Off/On

Procedure

Go to GP 4.

124-316 Product Mode RAP

BSD-ON:3. 6

There is an error in product mode of operation.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the MCU PWB (PL 11.1)
If the problem persists replace the ESS PWB (PL 11.2).

124-317 All Product Mode RAP

 BSD-ON:3.6There is an error in all modes of product operation.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the MCU PWB (PL 11.1)
If the problem persists replace the ESS PWB (PL 11.2).

124-318 Product Type Software Key RAP

 BSD-ON:3.6There is a mismatch between the software key and the type of product.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the MCU PWB (PL 11.1)
If the problem persists replace the ESS PWB (PL 11.2).

124-319 All Product Types Software Key RAP

 BSD-ON:3.6There is a mismatch between the software key and any type of product.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the MCU PWB (PL 11.1)
If the problem persists replace the ESS PWB (PL 11.2).

124-320 EPROM RAP

BSD-ON:16.1
A write error occurred in the ESS PWB SEEPROM.

Procedure

Replace the ESS PWB (PL 11.2).

124-321 Backup SRAM RAP

BSD-ON:3.6

A failure occurred when setting the M / C serial number.

Procedure

Check the connection of each ESS PWB (PL 11.2) and FCB PWB (PL 11.3) connector. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
$\mathbf{Y} \quad \mathbf{N}$
Return to Service Call Procedures.
Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the ESS PWB (PL 11.2)
If the problem persists replace the FCB PWB (PL 11.3).

124-322 Software Key RAP BSD-ON:16.1

There is a software key mismatch.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the ESS PWB (PL 11.2).

124-323 Software Key Registration RAP BSD-ON:16.1

There is a software key registration failure.

Procedure

Perform GP 4 Replacing Billing PWBs.
If the problem persists replace the ESS PWB (PL 11.2).

124-324 All Billings Mismatch RAP

 BSD-ON:16.1The billing counters in multiple locations are all different.

Procedure

Power OFF/ON. If the problem persists, perform the following:
Replace the MCU PWB (PL 11.1).
If the problem persists replace the ESS PWB (PL 11.2).

124-325 Billing Restoration RAP

BSD-ON:3.6

Billing counter auto repair failed.

Procedure

Execute Serial Number/Billing Meter Data [Billing Data Matching \& Serial No Setting]. Compare the 3 serial numbers The 3 serial numbers match.
Y $\quad \mathbf{N}$
Perform GP 4 Replacing Billing PWBs.
Replace the MCU PWB (PL 11.1)
If the problem persists replace the ESS PWB (PL 11.2).

124-333 ASIC RAP

BSD-ON:16.1

A decompression error occurred in an ESS ASIC (Application Specific Integrated Circuit).

Initial Actions

Power Off/On

Procedure

Pull out and insert the DIMM (PL 11.1) Switch on the power. The problem persists.
Y N
Return to Service Call Procedures.
Check the connection of each ESS PWB connector. The connectors are securely connected.

Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the DDR DIMM (PL 11.2).

124-334 Standard Font ROM RAP BSD-ON:16.1

An error was detected in the standard Built-In Font ROM.

Procedure

Replace the PS DIMM (PL 11.2)

124-335 Font ROM RAP

BSD-ON:16.1

The Font ROM could not be detected.

Initial Actions

Power Off/On

Procedure

Pull out and insert the Printer PWB (PL 11.1) and the DIMM (PL 11.2) Switch on the power. The problem persists.
$Y \mathrm{~N}$
Return to Service Call Procedures.
Check the connection of each ESS PWB connector. The connectors are securely connected.
Y \mathbf{N}
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures
Replace the PS DIMM (PL 11.2).
If the problem persists replace the Printer PWB (PL 11.2)
f the problem persists replace the ESS PWB (PL 11.2)

124-337 ESS Standard RAM RAP

BSD-ON:16.1

An error was detected in the ESS Built-In Standard RAM

Procedure

Reinstall or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

124-338 Duplicate Font ROMs RAP

 BSD-ON:16.1The system detected that a duplicate Font ROM is installed.

Procedure

Pull out and insert or replace the PS DIMM (PL 11.2).

124-339 ROM DIMM Mismatch RAP BSD-ON:16.1

The system detected that an incorrect ROM DIMM is installed.

Procedure

Check that the prescribed DDR DIMM (PL 11.2) is installed.

124-340 CRUM Market RAP

BSD-ON:16.1

There is a general CRUM control failure.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors securely connected.
Y $\quad \mathbf{N}$
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the MCU PWB (PL 11.1)

124-341 CRUM Market MCU RAP

CRUM control failed on the MCU.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors ar securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS1.
If the problem persists, replace the MCU PWB (PL 11.1).

124-342 CRUM Market System 1 RAP

CRUM control failed in system 1.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
$Y \quad \mathbf{N}$
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master MCU.
If the problem persists. replace the ESS PWB (PL 11.2).

124-343 CRUM Market System 2 RAP

CRUM control failed in system 2.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors ar securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS2.
If the problem persists, replace the ESS PWB (PL 11.2).

124-350 CRUM OEM RAP

OEM (Original Equipment Manufacturer) CRUM control failed.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
$Y \quad \mathbf{N}$
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the MCU PWB (PL 11.1).

124-351 CRUM OEM MCU RAP

OEM (Original Equipment Manufacturer) CRUM control failed on the MCU.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS1.
If the problem persists, replace the MCU PWB (PL 11.1).

124-352 CRUM OEM System 1 RAP

OEM (Original Equipment Manufacturer) CRUM control failed in system 1

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures
Perform GP 4, repair the problem by master MCU.
If the problem persists. replace the ESS PWB (PL 11.2).

124-353 CRUM OEM System 2 RAP

OEM (Original Equipment Manufacturer) CRUM control failed in system 2.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors ar securely connected.
Y \mathbf{N}
Connect the connectors
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.

Perform GP 4, repair the problem by master SYS2.
If the problem persists, replace the ESS PWB (PL 11.2).

124-360 CRUM Validation RAP

CRUM control failed validation.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y \mathbf{N}

Connect the connectors.

Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the MCU PWB (PL 11.1).

124-361 CRUM Validation MCU RAP

CRUM control failed validation on the MCU

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS1.
If the problem persists, replace the MCU PWB (PL 11.1).

124-362 CRUM Validation System 1 RAP

CRUM control failed in system 1.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y \mathbf{N}
Return to Service Call Procedures
Perform GP 4, repair the problem by master MCU.
If the problem persists. replace the ESS PWB (PL 11.2)

124-363 CRUM validation System 2 RAP

CRUM control failed in system 2.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.

Y N

Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS2.
If the problem persists, replace the ESS PWB (PL 11.2).

124-372 IOT Controller Software RAP

Due to an error in the software of the IOT Controller, subsequent processes cannot be performed.

Procedure

Reload Software (ADJ 9.3.1).
Reinstall or replace the DDR DIMM (PL 11.2).
Replace the ESS PWB (PL 11.2).

124-373 IOT Manager Software RAP

BSD-ON:16.1

Due to an error in the software of the IOT Manager, subsequent processes cannot be performed.

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists reinstall or replace the DDR DIMM (PL 11.2).
If the problem persists reinstall or replace the ESS PWB (PL 11.2).

124-374 IOT IM Device Driver Software RAP

 BSD-ON:16.1Due to an error in the software of the IOT IM Device Driver, subsequent processes cannot be performed.

Procedure

Reload Software (ADJ 9.3.1).
If the problem persists reinstall or replace the DDR DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

124-380 CRUM Market (2)

There is a general CRUM control failure.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors a securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the MCU PWB (PL 11.1).

124-381 CRUM Market MCU (2)

CRUM control failed on the MCU.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y \mathbf{N}
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS1.
If the problem persists, replace the MCU PWB (PL 11.1).

124-382 CRUM Market System 1 (2)

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master MCU.
If the problem persists. replace the ESS PWB (PL 11.2).

124-383 CRUM Market System 2 (2)

CRUM control failed in system 2.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y \mathbf{N}
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS2.
If the problem persists, replace the ESS PWB (PL 11.2).

124-390 OEM Market (2)

OEM (Original Equipment Manufacturer) CRUM control failed.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors ar securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Replace the ESS PWB (PL 11.2)
If the problem persists replace the MCU PWB (PL 11.1).

124-391 CRU OEM MCU (2)

OEM (Original Equipment Manufacturer) CRUM control failed on the MCU

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y \mathbf{N}

Connect the connectors.

Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.

Perform GP 4, repair the problem by master SYS1.
If the problem persists, replace the MCU PWB (PL 11.1).

124-392 CRU OEM System 1 (2)

OEM (Original Equipment Manufacturer) CRUM control failed in system 1.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The connectors are securely connected.

Y N

Connect the connectors.
Turn on the power again. The problem persists.
Y N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master MCU.
If the problem persists. replace the ESS PWB (PL 11.2).

124-393 CRU OEM System 2 (2)

OEM (Original Equipment Manufacturer) CRUM control failed in system 2.

Procedure

Check the electrical connections on the ESS PWB and MCU PWB. The securely connected.
Y \mathbf{N}
Connect the connectors.
Turn on the power again. The problem persists.
N
Return to Service Call Procedures.
Perform GP 4, repair the problem by master SYS2
If the problem persists, replace the ESS PWB (PL 11.2).

124-702 Finisher Tray to Center Tray RAP

The output destination was changed by the customer from the Finisher Tray to the Center Tray

Procedure

No action necessary.

124-709 Side Tray to Center Tray RAP

The sheets entering the stapler exceeded the maximum.

Procedure

Ask customer to check the job setup.

125-311 PSW Unexpected Fail RAP

PSW Cont Software Failure
Due to an error in software processing, subsequent processes cannot be performed.

Procedure

Power OFF/ON.
Check that the latest version of software is installed.
Check connections on the ESS PWB.
Check the wiring to the ESS PWB.
If the above checks are OK, replace the ESS PWB (PL 11.2).

127-310 ESR Task RAP

BSD-ON:16.1

A fatal error occurred in an ESR (External Server Request) Task.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

127-337 Job Template HDD Write RAP

BSD-ON:16.1

There was a file access failure during internal polling or an error occurred when writing to the HDD Job Template sector.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists perform Hard Disk Diagnostic Program.
If the problem persists replace the DIMM (PL 11.2).
If the problem persists replace the HDD (PL 11.2).
If the problem persists replace the Printer PWB (PL 11.2).

127-342 Job Template Monitor RAP

 BSD-ON:16.1A system function recall error is detected.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the Printer PWB (PL 11.2).

127-353 LPD Software RAP

BSD-ON:16.1

Due to a fatal error that occurred in processing related to the LPD, subsequent processes cannot be performed.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

127-354 FTP Server Software RAP

 BSD-ON:There is a FTP Server software failure.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).

127-396 Mail I/O Software RAP

BSD-ON:16.1

There is an error in Mail I/O processing.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

127-398 IPP Software RAP

BSD-ON:16.1

There is an IPP (Internet Printing Protocol) error.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

127-399 JME Software RAP

BSD-ON:16.1

Due to a fatal error that occurred in processing related to the JME, subsequent processes cannot be performed.

Initial Actions

Power Off/On

Procedure

Ask customer to cancel and rerun the job.
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists pull out and insert or replace the DIMM (PL 11.2).
If the problem persists replace the ESS PWB (PL 11.2).

133-210 Fax Parameter RAP

BSD-ON:17.1
The parameter value is incorrect due to reasons such as excessive length.
The required parameter is not sent.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists replace the FCB PWB (PL 11.3).

133-211 Fax Parameter Value Invalid RAP

BSD-ON:17.1

A parameter value exceeds the range or the required parameter is not sent.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists replace the FCB PWB (PL 11.3).

133-212 Fax Read Error- No Data RAP BSD-ON:17.1

The specified data does not exist (incorrect number or channel).

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists replace the FCB PWB (PL 11.3).

133-213 Fax Read Error- Invalid Data RAP BSD-ON:17.1

Corrupted data interrupted a read on the specified data.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists replace the FCB PWB (PL 11.3).

133-214 Fax USB Initializing RAP BSD-ON:17.1

Fax failed initialization.

Procedure

Check the USB connection. If OK then replace the USB cable (PL 11.3).
If the problem persists replace the FCB PWB (PL 11.3),

133-215 Fax USB Device RAP

BSD-ON:17.1

There is an error in the Fax USB interface.

Procedure

Check the USB connection. If OK then replace the USB cable (PL 11.3).
If the problem persists replace the FCB PWB (PL 11.3)

133-216 Fax USB Host Fatal RAP
BSD-ON:17.1
There is a Fax/USB processing error.

Procedure

Check the USB connection. If OK then replace the USB cable (PL 11.3),
If the problem persists replace the FCB PWB (PL 11.3),

133-217 Fax Manager Short of Memory RAP

There is a Fax/USB processing error.

Procedure

Turn the power Off/On.

133-218 Fax Card Message Library Short of Memory RAP
There is a Fax/USB processing error.

Procedure

Turn the power Off/On.

133-219 Fax Work Memory RAP

Memory capacity reached during Fax processing.

Procedure

Turn the power Off/On.

133-220 Fax Control Task RAP

BSD-ON:17.1
An error during Fax Controller software processing caused a Fax shutdown.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1)

133-221 Fax Card Boot RAP

BSD-ON:17.1

The FCB PWB did not respond within the specified time to boot.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1).

133-222 Fax Card does not respond intervalley RAP BSD-ON:17.1

The FCB PWB did not respond within the specified time.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1).

133-223 Fax Card Reset RAP

BSD-ON:17.1

The controller reset when the FCB PWB did not respond.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1).

133-224 Controller ROM Fax Card ROM RAP BSD-ON:17.1

The Controller detected a version mismatch.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1)

133-280 Fax Option Slot 1 Board RAP

BSD-ON:17.1

Failure was detected on the Fax Option Slot 1 board.

Procedure

Pull out and insert the FCB PWB (PL 11.3) Switch on the power. The problem persists.
Y N
Service Call Procedures.
Check the connection of each FCB PWB (PL 11.3) connector. The connectors are securely connected.
Y $\quad \mathrm{N}$
Connect the connectors.
Turn on the power again. The problem persists.
N
Service Call Procedures.
Replace the FCB PWB (PL 11.3).

133-281 Received unknown message RAP

BSD-ON:17.1

A message not specified in I/F settings was received from the Fax Card.

Procedure

Pull out and insert the FCB PWB (PL 11.3) Switch on the power. The problem persists.
Y N
Service Call Procedures.
Check the connection of each FCB PWB (PL 11.3) connector. The connectors are securely connected.
Y N
Connect the connectors.
Turn on the power again. The problem persists.
Y N
Service Call Procedures.
Replace the FCB PWB (PL 11.3).

133-282 Fax Card Download RAP

BSD-ON:17.1

An FCB PWB download could not be completed when either a FCB PWB or Fax Controller software failure occurred.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1).
If the problem continues, replace the FCB PWB (PL 11.3).

133-283 Fax Report Mailbox RAP

BSD-ON:17.1

The Fax Report mailbox did not open.

Procedure

Check the electrical connections on the FCB PWB (PL 11.3)
If the problem persists reload Software (ADJ 9.3.1).
If the problem persists replace the FCB PWB (PL 11.3).

134-210 Fax Controller Parameter RAP

BSD-ON:17.1

The parameter value is incorrect or the required parameter is not sent.

Initial Actions

Power Off/On

Procedure

Pull out and insert the FCB PWB (PL 11.3). The problem persists.
Y N
Return to Service Call Procedures.
Check the electrical connections on the FCB PWB (PL 11.3). The connectors are securely connected.
N
Connect the connectors.
Switch on the power. The problem persists.
N
Return to Service Call Procedures
Replace the FCB PWB (PL 11.3)

134-211 FCB PWB RAP

BSD-ON:17.1

A failure is detected on the FCB PWB.

Initial Actions

Power Off/On

Procedure

Check the electrical connections on the FCB PWB (PL 11.3).
If the problem persists replace the FCB PWB (PL 11.3).

202-399 Internal Timer RAP

An internal error was detected in the machine timer.
Initial Actions
Power Off/On

Procedure

Reload Software (ADJ 9.3.1).

OF 1 Paper Size Mismatch In Width RAP

The width of the paper size is incorrect.

Initial Actions

- Power OFF/ON
- Reload the tray.

Procedure

Check for foreign substances, distortion and paper powder in the paper transport path. No distortion, foreign substances, or paper powder are found in the paper transport path.
Y N
Clear away the foreign substances and paper powder. Correct the distortion.
Feed paper from another tray. The problem occurs when paper is fed from another tray.
Y N
Check the guide. The guide is set correctly.
Y N
Set the guide correctly.
Check the operation of the Guide Actuator. The Guide Actuator works.
Y N
Set the guide correctly.
Check the installation of the relevant Paper Size Switch. The relevant Paper Size Switch is installed correctly.
Y N
Install the relevant Paper Size Switch correctly.
Go to the OF 2 (SIZE SWITCH ASSY RAP).
Replace the MCU PWB (PL 11.1).

OF 2 Size Switch Assy RAP

Procedure

Manually activate the switches of the relevant Size Sensor. The relevant switches move smoothly.
Y N
Replace the relevant Size Sensor.
Execute the following Diag.: Activate the relevant Size Sensor
Tray 1: Component Control [071-103 Tray 1 Size Switch]
Tray 2: Component Control [072-104 Tray 2 Size Switch]
Tray 3: Component Control [073-104 Tray 3 Size Switch]
The display changes.
$Y \mathrm{~N}$
Check the connections of the following connectors:
Tray 1: P/J127
Tray 2: P/J820
Tray 3: P/J824
The connectors are connected correctly.
Y N
Connect the connectors.
Check the following harnesses for an open circuit or a short circuit.
Tray 1: P/J127, P/J401
Tray 2: P/J820, P/J548
Tray 3: P/J824, P/J548
The relevant harnesses are conducting without an open circuit or a short circuit. Y N

Repair the open circuit or short circuit.
Measure the voltage between the following points (+) and GND (-).
Tray 1: MCU PWB P401-6
Tray 2: TM PWB P548-13
Tray 3: TM PWB P548-8

The voltage is the specified value (MCU PWB: approx. +5 VDC).

Y N
Replace the relevant PWB (MCU PWB (PL 11.1) or Tray Module PWB (PL 14.7).
Measure the voltage between the following points (+) and GND (-).
Tray 1: MCU PWB P412-1
Tray 2: MCU PWB P412-6
Tray 3: TM PWB P548-11
Activate SW5 of the relevant Size Sensor. The voltage changes.
$Y \mathrm{~N}$
Replace the relevant PWB (MCU PWB (PL 11.1or the Tray Module PWB (PL 14.7).
Replace the relevant Size Sensor.

The connectors are connected correctly.

Connect the connectors.
Check the following harnesses for an open circuit or a short circuit
Tray 1: Between J109 and J412
Tray 2: Between J110 and J412
Tray 3: Between J820 and J548
The relevant harnesses are conducting without an open circuit or a short circuit.
Repair the open circuit or short circuit.
Measure the voltage between the following points (+) and GND (-).
Tray 1: MCU PWB P412-4
Tray 2: MCU PWB P412-9
Tray 3: TM PWB P548-14
The voltage is the specified value (MCU PWB: approx. +5 VDC).
Y N
Replace the relevant PWB (MCU PWB (PL 11.1) or Tray Module PWB (PL 14.7).
Measure the voltage between the following points (+) and GND (-)
Tray 1: MCU PWB P412-3
Tray 2: MCU PWB P412-8
Tray 3: TM PWB P548-13
Activate SW1 to SW4 of the relevant Size Sensor in sequence. The voltage changes. N
Replace the relevant Size Sensor.

Replace the relevant PWB (MCU PWB (PL 11.1) or Tray Module PWB (PL 14.7).

Check the connections of the following connectors:
Tray 1: P/J127, P/J401
Tray 2: P/J820, P/J548
Tray 3: P/J824, P/J548

OF 3 Main Drive Assy RAP

Procedure

Execute Component Control [042-001 Main Motor ON]. The Main Motor can be heard.
Y $\quad \mathbf{N}$
Check the connections of P/J410 and P/J214. P/J410 and P/J214 are connected correctly.

Y N

Connect P/J410 and P/J214.
Check the wire between J 410 and J 214 for an open circuit or a short circuit (BSD 4.1B) The wire between J 410 and J 214 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between P/J214-1 and P/J214-2 on the Main Motor. The voltage is approx. +24VDC.
Y N
Measure the voltage between the Relay PWB P/J451-5 (+) and P/J451-6 (-) (BSD 4.1B). The voltage is approx. +24 VDC .

Y N
Measure the voltage between the P/J450-4 (+) and P/J450-2 (-) on the Relay PWB, (BSD 1.2B). The voltage is approx. +24VDC.
Y \mathbf{N}
Go to 7.3.27 Wire Net +24VDC-6. Troubleshoot the circuit between P/ J510-3 and P/J450-4 for +24VDC.

Replace the Relay PWB (PL 11.1).
Check the wiring connectors between P/J451 pins 5 and 6 and P/J214 pins 1 and 2 for an open or short circuit. The wiring and connectors are OK.
Y N
Repair or replace as required.
Replace the Main Motor (PL 1.1).
Measure the voltage between the MCU PWB P/J410-A5 (+) and GND (-) (BSD 4.1B). The voltage is approx. +5VDC.
Y N
Go to BSDs 1.2A and 1.2B and check the +5VDC distribution. +5VDC distribution is OK.
Y N
Repair or replace as required.
Replace the MCU PWB (PL 11.1).
Replace the Main Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

Check the following wires for an intermittent circuit:

- Between J410-A1 and J214-10 (BSD 4.1B)

OF 4 Fuser Drive Assy RAP

Procedure

Execute Component Control [010-001 Fuser Motor ON]. The Fuser Motor can be heard.
Y N
Check the connections of P/J412 and P/J226. P/J412 and P/J226 are connected correctly.
Y N
Connect P/J412 and P/J226.
Check the wire between J412 and J226 for an open circuit or a short circuit (BSD 4.1A) The wire between J412 and J226 is conducting without an open circuit or a short circuit.
Y N
Repair the open circuit or short circuit.
Measure the voltage between P/J226-1 (+) and P/J226-2 (-) on the Fuser Motor. (BSD4.1A) The voltage is approx. +24VDC.
Y N
Measure the voltage between P/J425-1 (+) and P/J425-2 (-) on the MCU PWB (BSD $4.1 \mathrm{~A})$. The voltage is approx. +24VDC.
Y N
Measure the voltage between P/J426-1 (+) and P/J426-2 (-) on the MCU PWB (BSD 1.2A). The voltage is approx. +24VDC.

N
Measure the voltage between the P/J510-3 (+) and P/J510-7 (-) at the Power Unit, (BSD 1.2A). The voltage is approx. +24VDC.
Y N
Replace the Power Unit (PL 11.1).
Measure the voltage between P/J450-1 and P/J450-3 on the Relay PWB. The voltage is approx. +24VDC.
Y \mathbf{N}
Measure the voltage between P/J450-6 and P/J450-2 on the Relay PWB. The voltage is approx. +24VDC.
$\mathbf{Y} \quad \mathbf{N}$
Check the wires and connectors between J510 and J450 for an open or short circuit.

Replace the Relay PWB (PL 11.1).
Check the wires and connectors between J426 on the MCU PWB and J450 on the Relay PWB.

Replace the MCU PWB (PL 11.1).
Check the wires and connectors between J425 and J226 for an open or short circuit.
Measure the voltage between the MCU PWB P/J412-2 (+) and GND (-) (BSD 4.1A). The voltage is approx. +5 VDC .
$Y \quad N$
Go to BSDs 1.1A and 1.2A and check the +5VDC distribution. +5VDC distribution is OK .
\mathbf{N}
Repair or replace as required.
Replace the MCU PWB (PL 11.1).
Replace the Fuser Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

Check the following wires for an intermittent circuit:

- Between J412-7 and J226-10 (BSD 4.1A)
- Between J412-6 and J226-9 (BSD 4.1A)
- Between J412-5 and J226-8 (BSD 4.1A)
- Between J412-4 and J226-7 (BSD 4.1A)
- Between J412-3 and J226-5 (BSD 4.1A)

If the problem continues, replace the Fuser Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

OF 5 Developer Motor RAP

Initial Actions

Ensure that the Front Interlock 1 Switch is actuated

Procedure

Execute Component Control [042-004 Developer Motor ON]. The Developer Motor can be heard.
Y N
Check the connections of P/J409 and P/J213. P/J409 and P/J213 are connected correctly.

Connect P/J409 and P/J213.
Check the wire between P/J409 and P/J213 for an open circuit or a short circuit (BSD 4.3A) The wire between J 409 and J 213 is conducting without an open circuit or a short circuit.
Y \mathbf{N}
Repair the open circuit or short circuit.
Measure the voltage between $\mathrm{P} / \mathrm{J} 213-1(+)$ and $\mathrm{P} / \mathrm{J} 213-2(-)$ on the Developer Motor (BSD 4.3A). The voltage is approx. +24VDC.
Y $\quad \mathrm{N}$
Measure the voltage between P/J451-3 (+) and P/J451-4 (-) on the Relay PWB (BSD 1.2A). The voltage is approx. +24VDC.
Y N
Measure the voltage between the P/J450-4 (+) and P/J450-2 (-) on the Relay PWB, (BSD 1.2B). The voltage is approx. +24VDC.
Y $\quad \mathrm{N}$
Go to 7.3.27 Wire Net +24VDC-6. Troubleshoot the circuit between P J510-3 and P/J450-4 for +24VDC.

Replace the Relay PWB (PL 11.1).
Check the wiring connectors between P/J451 pins 3 and 4 and P/J213 pins 1 and 2 for an open or short circuit. The wiring and connectors are OK.
Y \mathbf{N}
Repair or replace as required.
Replace the Developer Motor (PL 1.1)
Measure the voltage between the MCU PWB P/J409-B12 (+) and GND (-) (BSD 4.3A). The voltage is approx. +5VDC.
Y $\quad \mathrm{N}$
Go to BSDs 1.1A and 1.2A and check the +5VDC distribution. +5VDC distribution is OK.
Y N
Repair or replace as required.
Replace the MCU PWB (PL 11.1).

A B
Replace the Developer Motor (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

Check the following wires an intermittent circuit.

- Between J409-B9 and J213-10 (BSD 4.3A)
- Between J409-B10 and J213-9 (BSD 4.3A)
- Between J409-B11 and J213-8 (BSD 4.3A)

If the problem continues, replace the Fuser Drive Assembly (PL 1.1) If the problem persists, replace the MCU PWB (PL 11.1).

OF 6 Dark / Blank Display RAP

Touch Screen is dark with minimal legibility, or no text or graphics are visible, or text or graphics are distorted, or indicator LED's are not lit.

Initial Actions

Ensure all external cables and power cords are connected.

Procedure

NOTE: If a Status Code is displayed, go to the appropriate status code RAP.

There is some luminance in the UI display.

Y N
Switch off the power. Listen to the cooling fans on the right side and at the rear of the machine and switch on the power. Cooling fans are audible either momentarily or continuously.
Y N
There is a +5 VDC failure. Go to BSD 1.1 and check 5VDC standby voltages.
+24 VDC is measured between P/J1 pin 40 and ground on Control Panel (BSD 2.3).
Y N
+24 VDC is measured between P/J388 pin 40 and pins 25 , 26 on the ESS (BSD 2.3).
Y^{N}
+24 VDC is measured between P/J387 pin 5 and ground on the ESS (BSD 1.1).
Y N
+24 VDC is measured between P/J510 pin 1 and ground on Power Unit (BSD 1.1).
Y $\quad \mathrm{N}$
AC voltage is measured between J11 pin 1 and J12 pin 1 on the Power unit (BSD 1.1).
Y \mathbf{N}
AC voltage is measured at wall outlet.
Y N
Contact key operator to resolve power problem.
GFI Breaker is tripped.
Y N
Replace GFI Breaker (PL 11.1).
Reset GFI Breaker.
AC voltage is measured at J 1 pin 3 and ground (BSD 1.1).
Y N
Replace Main Power Switch (PL 11.1).
Replace Power Unit (PL 11.1)
Go to BSD 1.1 and check circuit between P/J510 on Power Unit and P/ J387 on ESS PWB.

A
C
C'heck Fuse 2 on the ESS PWB. If OK then replace ESS PWB (PL 11.2).
Go to BSD 2.3 and check circuit between P/J1 on Control Panel and P/J388 on ESS PWB.

Replace Control Panel (PL 13.1).
Check the Touch screen for one of the following:

- Distortion
- Misplaced characters
- Lines or spots
- Non-responsive icons
- Some illumination in the Touch Screen

The Touch Screen exhibits one of the above characteristics.
Y N
Characters are visible when shining flashlight onto display.
Y $\quad \mathrm{N}$
Replace Display PWB (PL 13.2). If problem persists replace Control Panel (PL 13.1) Replace UI PWB (PL 13.2).

Replace Display PWB (PL 13.2). If problem persists replace Control Panel (PL 13.1).
Image Quality RAPs
IQ1 IOT Image Quality Entry RAP 3-3
IQ2 IIT Image Quality Entry RAP 3-5
IQ3 Low Image Density/Nearly Blank/Uneven Density RAP. 3-6
IQ4 Wrinkled Image RAP 3-7
IQ5 Residual Image (Ghosting) RAP 3-8
IQ6 IOT Background RAP 3-8
IQ7 Deletions RAP 3-9
IQ8 Color-to-Color Misregistration RAP 3-9
IQ9 Skew/Misregistration RAP 3-10
IQ12 Process Direction Bands, Streaks, and Smears RAP 3-11
IQ13 Unfused Copy/Toner Offset RAP 3-12
IQ14 Repeating Bands, Streaks, Spots, and Smears RAP. 3-13
IQ15 Mottle RAP 3-14
QQ16 Spots RAP 3-15
IQ17 Missing Colors RAP 3-16
IQ21 Developer Bias/1st BTR RAP 3-16
Image Quality Specifications. 3-18
Defect Samples
Image Defect Samples 3-21
Background 3-21
Color Misregistration 3-22
Debris-Centered Deletions. 3-22
Deletions. 3-23
High Frequency Bands 3-23
Irregular Process Direction Streak 3-24
Low Image Density. 3-24 3-25
Moire.
Moire. Mottle 3-25
Newton Rings.. 3-26
Regular (Repeating) Bands, Streaks, Spots, or Smears. 3-26
Residual Image 3-27
Streak Deletion in Process Direction 3-27
Wrinkled Image 3-28
Worm Defect. 3-28
Auger Marks Defect (Black) 3-29
Auger Marks Defect (Magenta) 3-30
59 mm Pitch Density Non-Uniformity Defect 3-31
201 mm Streaks from the lead edge Defect. 3-32
M, C, K Banding Defect 3-33
103 mm Streaks from the lead edge Defect. 3-34
Scratches on Transparency Defect 3-35
Toner Soft Blocking Defect 3-35
Toner Dam Ghosting Defect 3-36

IQ1 IOT Image Quality Entry RAP

The purpose of this RAP is to serve as the entrance vehicle into the Image Quality RAPs sec tion. All Image Quality RAPs must be accessed through this RAP.

The RAP will have you evaluate the copies made during the Call Flow procedure for image quality defects. It will refer you to the Image Quality Analysis RAPs, the Image Quality Defec section in order to diagnose and repair any image quality problems

Initial Actions

Check for the presence of the defect in Copy mode and in Print mode. If the problem occurs in Copy mode only, go to the IQ2 RAP.

NOTE: MAX setup (ADJ 9.1.2), (refer to User Guide) is a color calibration for the copier and printer. A Calibration Adjustment compensates for differences between the actual and the expected (target) toner densities for each color. A Calibration Adjustment should be performed whenever there is a noticeable change in the appearance (quality) of the output, particularly changes in color tones or densities. Performing a Calibration Adjustment on a regular basis will help to maintain consistent color quality over time. Since a Calibration Adjustment can affect all jobs for all users, it is recommended that this procedure be performed only by the Machine Administrator
Perform the Calibration Adjustment if any of the following problems are reported:

- Incorrect colors
- Poor gray balance
- Colors have shifted over time
- Color densities too high or low

Continue with the procedure if the problem remains.

Procedure

Go to Table 1. Examine the prints for any of the listed defects. Perform the corrective action that is listed.

Table 1 Image Quality Defects

Defect - green indicates hotlink to image samples	Description	Corrective Action
Background	Undesirable toner deposits on the copy or print. The toner deposits can be localized or may cover the entire copy or print. Depending on the density of the background, it is referred to as low, medium, high, or very high background. It may occur in all colors, single colors, or any combination of single colors.	Go to the IQ6 RAP
Color Misregistration	Multi-colored images that should be superimposed are offset. This offset may be in the process direction or perpendicular to process direction.	Go to the IQ8 RAP
Deletions - Debris-Centered Deletions - Streak Deletion in Process Direction	The undesirable absence of toner from the copy or print. May show as white, light, or untrue colored areas. The most common causes are "tenting" of paper from mishandling or moisture, or defects in the Transfer Belt. - Debris-Centered: Deletions in the areas surrounding toner agglomerates. - Process Direction Streak: A deletion in the form of a single streak that runs from the lead edge to the trail edge of the copy.	Go to the IQ7 RAP (for process direction streak deletion, go to the IQ12 RAP
Fuser Offset	Areas of poorly-fused toner are lifted from one area of a print and deposited on a different area, or onto a subsequent print.	Go to the IQ13 RAP
High Frequency Bands	Repeating interval bands that are most noticeable in low density (20-30\%) halftone areas of the copy. These bands run perpendicular to process direction.	Go to the IQ14 RAP
Irregular Process Direction Streak	Streaks: Usually medium-width streaks of (or shifts in) color most noticeable in low density 20-30\%) halftone areas of the copy. A deletion in the form of a single streak that runs from the lead edge to the trail edge of the copy.	Go to the IQ12 RAP
Lead Edge Toner Smear (fused)	Smears of fused toner on the lead edge of prints	Go to the IQ12 RAP
Lead Edge Toner Smear (unfused)	Smears of unfused toner on the lead edge of prints	Go to the IQ13 RAP
Low Image Density	A condition that results when too little toner of a single color or combination of colors is developed on the copy or print. This results in lighter copies or prints for the single-color toner or the color that results from the combination of color toners.	Go to the IQ3 RAP
Misregistration/Skew	The position and/or alignment of the image relative to the top edge and side edge of the paper is not within specification.	Go to the IQ9 RAP

Table 1 Image Quality Defects

Defect - green indicates hotlink to image samples		Description	Corrective Action
Missing Colors	One or more of the primary colors are missing from the image.	Go to the IQ17 RAP	
Mottle	Areas of solid, or high density coverage that are reproduced with a blotchy, non-uniform appearance.	Go to the IQ15 RAP	
Regular (Repeating) Bands, Streaks, Spots, or Smears	A defect that repeats at an interval from14 to 264 mm, is most noticeable in low density (20-40\%) halftone areas of the copy, and runs perpendicular to process direction. Lines and bands are generally uniform in shape from one end to the other. Streaks are generally shorter than lines and are of nonuniform width along their length. They may have a more ragged or fuzzy appearance than lines.	Go to the IQ14 RAP	
Residual Image	A toner image that remains on the photoreceptor or Transfer Belt after cleaning. The next image is placed on top of the residual image and both images are transferred to the next copy.	Go to the IQ5 RAP	
Spots	Generally circular in shape, these defects can be caused by an absence of toner in a desired area, or a deposit of toner in in an undesired area	Go to the IQ16 RAP	
Unfused prints	Image can be rubbed off with little or no pressure	Go to the IQ13 RAP	
Wrinkled Image	Areas of 11x17 in./A3 prints have distinctive "worm track" patterns, and/or wrinkles in the paper itself	Go to the IQ4 RAP	

IQ2 IIT Image Quality Entry RAP

This RAP is for troubleshooting IIT (Scanner/ADF) problems only. Before proceeding, verify that the defect is present in Copy mode only. If the defect is present in Print mode, go to the IQ1 RAP.

Initial Actions

Clean the Lens, the top and bottom surface of the Platen Glass, and all Mirrors with Lens and Mirror Cleaner and a soft, lint-free cloth.

Procedure

Compare the defective copies with the descriptions listed in Table 1. Perform the corrective action listed for that defect.

Table 1

Defect	
Background	Clean the Platen Belt. Calibrate the IIT (ADJ 9.1.8).
Blurred or Streaked Copy	Ensure that the Platen Glass is installed correctly. Check/adjust the carriage alignment (ADJ 11.6.1).
Deletions	Clean the Lens, the top and bottom surface of the Platen Glass, and all Mirrors with Lens and Mirror Cleaner and a soft, lint-free cloth. If the problem persists, replace the Lens Kit (PL 13.4).
Misregistration/Skew	Go to the IQ9 RAP.
Moire Patterns in the image areas of the print that have the appearance of a screen or grid overlaying the image. The pattern may be uniform or nonuniform in area or shape.	- Switch between photo modes and, if necessary, original types, to determine which mode minimizes the defect. Decrease the Sharpness level. Reduce or enlarge the copy slightly. Rotate the original on the platen by 90 degrees.
Newton Rings Repetitive, irregular-shaped marks that occur when making copies of glossy photographs. These marks are most noticeable in large low-density or highlight areas.	Clean the Document Glass Place a transparency between the document and the glass

IQ3 Low Image Density/Nearly Blank/Uneven Density RAP

This RAP troubleshoots the causes of output images are completely blank or has extremely low density

Initial Actions

- Clean the ROS window
- Replace the paper in use with fresh, dry paper of the correct specification
- Determine if the Drum Cartridge or any of the Toner Cartridges are approaching end-oflife. Replace if necessary.
- Check the Contact Arms are in the proper position (PL 6.2).
- Perform Max Setup (ADJ 9.1.2). If this does not resolve the problem, continue with this RAP.

Procedure

Print Test pattern 59 for each color (C,M, Y, K) at 40\%. The defect involves a single color.
Y N
Panic stop the machine by removing the IBT Cleaner Assembly (PL 6.1). Print Test pattern 59 using Cyan 40%. Open the Front Door in the middle of the print job (approximately 7 seconds after selecting Start). Remove the Fuser. Remove the paper. There is a good toner image on the Transfer Belt at the 2nd BTR/Back Up Roll nip.
Y $\quad \mathrm{N}$
Go to the IQ21 RAP to check the Developer 1st BTR. If this does not resolve the problem, go to BSD 9.5 and check the circuit.
If the problem continues, check the ROS for contamination of the window
Check the Contact Arms (PL 6.2) are in the proper position.
Check the 2nd BTR for damage or incorrect installation. If the problem continues, replace 2nd BTR Assembly (PL 2.7). If this does not resolve the problem, replace the IBT Belt (PL 6.2).

Replace the Developer Housing (PL 5.2) and material for the problem color.

IQ4 Wrinkled Image RAP

Areas of $11 \times 17 \mathrm{in}$./A3 prints have distinctive "worm track" patterns in the image, and/or wrinkles
in the paper itself.

Initial Actions

NOTE: The following factors will increase the likelihood of this problem:

- Lighter weight papers.
- Larger papers.
- Short-grain 11x17 in / A3 papers.
- Old (not freshly opened) paper.
- 2 sided printing
- Fuser with 1100 or more hours of operating life.

Make the following modifications to the copy/print jobs if possible:

- Ensure that the paper is dry and fresh.
- Use heavier weight paper
- Use long-grain paper.

Procedure

If the problem persists after performing the Initial Actions, replace the Fuser (PL 7.1).

IQ5 Residual Image (Ghosting) RAP

Initial Actions

- Check the end-of-life counter for the Drum Cartridge. If the unit is at or near end-of-life, replace the Drum Cartridge (PL 4.1).
NOTE: Some ghosting on transparencies is unavoidable.
- If the problem occurs only with certain types of media, ensure that the media in use is within specification, and that the customer is aware of correct operation of print driver.
- If the distance between the intended image and the residual image has a fixed rate of repetition, go to the IQ14 RAP. Return to this procedure if the problem persists.

Procedure

The Erase lamp is lit.
Y N
Go to BSD 9.6. Check for an open circuit. If the wires are OK, replace the Erase Lamp (PL 4.1). If the problem continues, replace the MCU PWB (PL 11.1).

Remove the Fuser. Examine the Heat Roll and Pressure Roll for evidence of toner offsetting. There is Toner adhering to the Heat Roll.
Y N
Check for a residual image on the Transfer Belt. Repair or replace the IBT Cleaner (PL 6.1).

Check the 2nd BTR for contamination. Clean/replace as required
Clean the Heat Roll. If the problem continues, replace the Fuser (PL 7.1). If the problem persists, go to the IQ21 RAP. Check for a short circuit in the Developer bias circuit of the affected color.

IQ6 IOT Background RAP

This RAP is used when the output image shows background greater than the specification.

Initial Actions

NOTE: Some background is unavoidable on certain media, such as heavyweight paper and transparencies. Ensure that the customer selects the correct settings on the UI and print driver. Check access mode to make sure all density settings are set to normal settings.
Perform Max Setup (ADJ 9.1.2). If this does not resolve the problem, continue with this RAP.
NOTE: After replacing the developer material, clean the ADC Sensor and reset the Developer NVM's (REP 4.2.7).

Procedure

Print Test Pattern 54 or 53. Background is present.
Y N
Go to Final Actions.
Background is present in all four colors.
Y N
Replace the Developer Material for the faulty color. If the problem continues, replace the Developer Housing for the faulty color.

Go to IQ21 Developer Bias/1st BTR RAP. The RAP fixes the problem.
Y N
Replace the Developer HVPS (PL 11.1)
Go to Final Actions.

IQ7 Deletions RAP

Initial Actions

Reload with fresh, dry paper of the correct specifications. If the problem occurs with heavyweight paper, ensure that the correct selections are being made on the print driver and/or UI. If the problem is not resolved, continue with this RAP.

NOTE: Small white deletions with a sharp edge are usually caused by Fuser offsetting. Go to the IQ16 Spots RAP.

Procedure

The problem is Debris-Centered Deletions.
Y N
Print Test Pattern 59 at 50% coverage for each color. The defect is present for all colors.
Y N
Make several prints of the Test Pattern in the affected color. The defect is present in approximately the same location on all letter-size prints. Y $\quad \mathrm{N}$

Remove the Drum cartridge. Check for light from the Erase Lamp along the mounting left side The Erase lamp is lit.
Y $\quad \mathbf{N}$
Replace the Drum Cartridge.
Go to BSD 9.6. Check for an open circuit. If the wires are OK, replace the Erase Lamp (PL 4.1). If the problem continues, replace the MCU PWB (PL 11.1).

Remove the ROS. Examine the ROS windows for dirt or damage. Clean or replace as required (PL 3.1).

Examine the surface of the Drum Cartridge. Check for dents, scratches, or contamination such as fingerprints, etc. The drum is free from damage.
Y N
Clean or replace the Drum Cartridge.
Check the IBT Belt (PL 6.2) for dirt, damage, or contamination. Clean/replace as required. Check the 2nd BTR (PL 2.7) for damage or wear. Clean or replace if required.

Examine the spot in the center of the DCD. Replace the Developer (PL 5.1) and Toner Cartridge for the affected color. If the problem persists, replace the Developer Housing for the affected color (PL 5.2).

IQ8 Color-to-Color Misregistration RAP

Procedure

The problem involves a single color.

Y N
Check that the ROS is securely mounted and that the ROS window is not dirty or damaged. If the problem persists, replace the ROS (PL 3.1).

Check the mounting of the Developer Housing for the affected color. Ensure that it is installed correctly and that it is free from damage. Repair or replace as required (PL 5.2).

IQ9 Skew/Misregistration RAP

This RAP is used when Skew, System Registration, or Magnification are out of specification. For Color-to-Color-Misregistration, go to the IQ8 RAP

Initial Actions

Load some new, dry 24 lb . 11X17/A3 Xerox COLOR Xpressions (USSG), or 90 GSM Colortech + (ESG) into each paper tray (use 8.5X11/A4 in Tray 1). Make 3 full color copies from each paper tray. Mark the appropriate paper tray on these copies.

Procedure

The problem is still present when using the proper paper.
Y N
Explain to the customer that new, dry, 24 lb . Xerox COLOR Xpressions (USSG), or 90 GSM Colortech + (ESG) paper is specified for is machine.

The problem occurs only in the printer mode.

Y N
The defect occurs when the document is manually registered on the platen glass.
Y $\quad \mathbf{N}$
Ensure that the Document Transport Belt is clean. Check the Document Handler Adjustments (ADJ 15.1.1 through ADJ 15.1.6). If the problem continues, check the DADF drive rolls and pinch rolls for wear or glossing.

The problem is Skew

Y $\quad \mathbf{N}$
The problem is Misregistration
Y N
Adjust the IIT Lead Edge/Side Edge Registration (ADJ 11.1.1) and the IOT Lead Edge/Side Edge Registration (ADJ 9.1.1).

Print Pattern 58. Misregistration is present on the copy

Y N
Adjust the IOT Lead Edge/Side Edge Registration (ADJ 9.1.1), then the IIT
Lead Edge and Side Edge Registration (ADJ 11.1.1).

The defect occurred on copies from all five paper trays.

Y N
Check the IOT Lead Edge/Side Edge Registration (ADJ 9.1.1) for that tray
Check the feeder for the affected tray for wear, slipping, damage, or contami
nation.

- Tray 1 Feeder (PL 14.3)
- Tray 2 Feeder (PL 14.3
- Tray 3 Feeder (PL 14.1)
- MSI Feed Assembly (PL 9.2)

Registration varies from copy to copy

Y \mathbf{N}
Go to ADJ 9.1.1, Lead/Side Edge Adjustment.

IQ12 Process Direction Bands, Streaks, and Smears RAP

Initial Actions

- Clean the IBT Cleaner. Check for wear or damage
- Check the stripper baffle in the Fuser for contamination
- Check the 2nd BTR and the Detack Sawtooth for Toner contamination.

Procedure

NOTE: The repetition rate for Transfer Belt defects varies considerably, depending on paper size and mode of operation. The defect may appear every sheet, or may occur every other sheet.

The defect occurs in approximately the same position on multiple prints.

Y N
If the defect occurs intermittently, examine the Developer Housings for evidence of toner clumping. If clumping is found, replace the Developer (PL 5.2). if this does not resolve the problem

The defect is a full-width (LE - TE) Streak Deletion in Process Direction.
Y N
Remove the Fuser Assembly. Examine the Heat Roll for damage or contamination. Clean or replace as required (PL 7.1).
Check the IBT Cleaner (PL 6.1). Ensure that the blade and the Mylar backing are free from damage. Check that the auger turns freely. Clean repair or replace as required
Check the Developer Housing (PL 5.2). Repair or replace as required.
Check the Drum Cartridge for defects, nicks, sport and/or contamination.
If the problem is related to a single color, replace the Drum Cartridge (PL 4.1)
Print Test Pattern 59 at 20% coverage pattern for all colors. The defect is present for all colors.
Y N

- Go to BSD 9.5 to check the 1st BTR bias circuit
- Replace the Developer Housing (PL 5.2) for the affected color. Check the housing for damage or toner clumping
- If the problem continues, replace the HVPS (PL 11.1).

Check the ROS window for damage or contamination. Clean or replace as required.
Remove the IBT Cleaner (PL 6.1). Inspect the cleaning blade and Mylar seal for damage
Clean or replace as required.
If the IBT Cleaner is OK, check the IBT Belt (PL 6.2) for damage or contamination. Ensure that there is no debris or loose wiring, etc. in contact with the belt. Clean or replace as required.

IQ13 Unfused Copy/Toner Offset RAP

Initial Actions

- Replace the paper in use with fresh, dry paper of the correct specification.
- Check the post-Fuser transport areas for dirt.
- Ensure that the media being used matches the settings on the UI screen or print driver Using the next heavier setting may resolve the problem.
- If the Key Operator/Administrator has configured certain trays for a specific type of media, ensure that the specified media is actually loaded in those trays.

Procedure

Check the following:

- Check the Fuser (PL 7.1) for damage, toner offsetting, paper wrap, or incorrect installation. Clean or replace as required.
After resolving the problem, make 10 blank copies (letter size, Black mode) to cleaner residual toner from the Fuser Heat Roll and Fuser Pressure Belt. If the problem persists, replace the Fuser (PL 7.1).

IQ14 Repeating Bands, Streaks, Spots, and Smears RAP

Procedure

Measure the distance between the repeating defects. Locate the distance on the table below Perform the indicated repair actions

Table 1 Repeating Defects		
Repetition spacing	Component(s)	Repair Actions
$<4 \mathrm{~mm}$	High Frequency Band- ing	Replace the ROS (PL 3.1).
27 mm	Developer Mag Roll	Check Developer roll bias for floating or shorting out. Replace Developer Housing (PL 5.2) if required.
148 mm	Drum Cartridge	Replace the Drum Cartridge(PL 4.1).
83 mm	Fuser Heat Roll	Remove the Fuser Assembly. Check the Heat Roll for damage (nicks, wear, or cuts) or contamination. Clean or replace as required (PL 7.1).
88 mm	Backup Roll BTR 2 Roll	Check the 2nd BTR Assembly for damage or contami- nation. Clean, repair or replace as required (PL 6.1). Replace the IBT Belt (PL 6.2).
94 mm	Drum Cartridge Fuser Belt	All Colors - Remove the Fuser Assembly. Check the Heat Roll for damage (nicks, wear, or cuts) or contami- nation. Clean or replace as required (PL 7.1).
59 mm	1st BTR	Developer Drive Com- ponents
74 mm	Replace the Developer Motor (PL 5.1).	
44 mm	BCR	BCR Cleaner

IQ15 Mottle RAP

This RAP troubleshoots the causes of output images showing image density that varies from inboard to outboard edges, or randomly throughout the print.

Initial Actions

- Replace the paper in use with fresh, dry paper of the correct specification. Ensure that the loaded media matches the UI or print driver settings
- Determine if the Drum Cartridge or any of the Toner Cartridges are approaching end-ofife. Replace if necessary
- Perform Max Setup (ADJ 9.1.2). If this does not resolve the problem, continue with this RAP.

Procedure

Print Test Pattern 54. The defect involves a single color
Y N
Make a print of the Test Pattern 53. Open the Front Door when the lead edge of the print begins to protrude from the Fuser Exit nip. Open the Fuser and examine the partially fused sheet. The defect is present in both the fused and unfused portion of the sheet.

Clean or replace the Fuser (PL 7.1).

Print Test Pattern 53. As the print is being processed, open the Front Door. Examine the image on the Transfer Belt. The image on the belt has acceptable density.
\boldsymbol{V}
Replace the IBT Belt (PL 6.1). If the problem continues, replace the Drum Cartridge (PL 4.1)

Clean/replace the 2nd BTR Assembly (PL 6.1).
If the problem continues, replace the IBT Belt (PL 6.1).
Check the following:

- Clean the HV contact for the developer in question
- Replace the Toner Cartridge if not done previously
- Replace the Developer (PL 5.2). Examine the housing for damage, wear, or contamina tion

IQ16 Spots RAP

Initial Actions

Ensure that the paper in use is fresh, dry, and within specification for weight and quality.
Check print driver and copier control panel settings to ensure the media is being run in the proper mode.

Compare the spots against the samples in the Image Quality Defects supplement. If the defect matches the Debris Centered Deletions sample, go to the IQ7 RAP.

Procedure

The defect occurs in Copy mode only.
Y N
The spots occur at a fixed interval on each print.

NOTE: The repetition rate for Transfer Belt defects varies considerably, depending on paper size and mode of operation. The defect may appear on every sheet, or may occur on every other sheet.

The defect occurs in approximately the same position on multiple prints.

Y N
The problem is Fuser offset and/or lead edge smears or spots.
$Y \quad N$

CAUTION

Do not use a vacuum cleaner or any solvents in the following step. Damage to the Belt Cleaner will result.
Remove the IBT Cleaner (REP 4.2.4). Carefully clean the cleaning blade and the Mylar shield with a soft brush or a lint free cloth. Brush away any accumulation of toner on the foam seal and the outside surfaces. Wipe the surface of the Transfer Belt with a lint free cloth. If the problem continues, replace the IBT Cleaner (PL 6.1).

Go to the IQ13 RAP
Check the IBT Belt (PL 6.1) for dirt or damage. Clean or replace as required.
Go to the IQ14 RAP.
Ensure that the original is free from the defect.
Clean the Platen Glass and Lens.

IQ17 Missing Colors RAP

One or more of the primary (YMCK) colors is missing from the image.

Procedure

Go to the IQ21 Developer Bias RAP to check the developer bias circuit.
If the circuits are OK, ROS for damage or contamination. Clean, repair or replace as required (PL 3.1).

Check the Developer Drive Assembly and Clutch Assembly for damage, slippage, and/or binding, replace as required (PL 1.1).

Check the gears of the Developer Housings for damage, slippage, and/or binding, replace as required (PL 5.2).

IQ21 Developer Bias/1st BTR RAP

BSD-ON:9.5

Procedure

WARNING

HIGH VOLTAGE!

Exercise caution when performing the voltage checks in this procedure.

There should be approximately -520 to -580 VDC (+/-10\%) present. Check the Developer Bias VDC on the front of the machine. The voltages are within range.
Y N
+24 VDC is measured between pins 17, 16 and pin 15, 14, 9 of J500 on the HVPS.
Y N
+24 VDC is measured between pins 1,2 and pin 3, 4, 9 of J406 on the MCU PWB.
Y N
Go the BSD 1.2 DC Power Distribution and check the wiring between the MCU PWB and the Power Unit. The wiring is OK.
Y N
Repair or replace as required.
Replace the MCU PWB (PL 11.1).
Check the wires between $\mathrm{P} / \mathrm{J} 406$ and $\mathrm{P} / \mathrm{J} 500$ for an open circuit.
Check for Developer Bias VDC on the red wire at the front of the machine. The
Bias voltage is present.
Y N
Check the red wire for an open circuit, if the wire is OK, replace the HVPS (PL 11.1).
Replace the Drum Cartridge (PL 5.1).
Check for +24 VDC between $\mathrm{P} / \mathrm{J} 500-16,17(+)$ and $14,15(-)$ on the HVPS. +24VDC is measured.
Y N
Go to BSD 9.5. Check for +24VDC between P/J406-1, 2 (+) and 3, 4(-) on the MCU PWB. +24VDC is measured.
Y $\quad \mathrm{N}$
Go to BSD 1.3 and check the interlock circuit for an open.
Check the connectors and wiring between P/J406 and P/J500 for an open circuit.
Check the 1st BTR Monitor Voltage on the HVPS between P/J500-13(+) and GND. The voltage is $O K$.
Y N
Check the 1st BTR Monitor Voltage between P/J406-5(+) and GND. The voltage is OK.
$\boldsymbol{\gamma} \quad \mathrm{N}$
Replace the MCU PWB (PL 11.1).
Check the connectors and wiring between P/J406 and P/J500 for an open circuit.

If the problem continues, replace the HVPS (PL 11.1). If the problem persists, replace the 1 st BTR (IBT Belt Assembly) (PL 6.2).

Image Quality Specifications

The following steps are used to set up the machine for the purpose of making test pattern copies to judge output image color density, balance, and registration.

1. Set the following Customer Mode Settings to the positions listed:
a. Output Color - Full Color
b. Original Type - Photo \& Text / Halttone
c. Lighter/Darker - Auto Contrast
d. Variable Color Balance - Normal
e. Color Saturation - Normal
f. Sharpness - Normal
2. Place the Color Test Pattern, 82E13120, on the platen. Load $11^{\prime \prime} \mathrm{X} 17$ or A3 paper into Tray 1. Make a copy of the test pattern.
3. Compare the copy to the test pattern. Refer to Figure 2 and Table 1 for this evaluation.

Table 1 Color Specifications Check Locations

AREA (Fig. 1)	Check for the Following Results
A	Text Reproduction. Each of the seven sentences in this area are fully repro- duced with no missing letters or portions of letters. The sentences are repro- duced in Black, Cyan, Magenta, Yellow, Red, Green and Blue.
B	Color Registration. The patterns in location B should be properly registered to provide Black, Red, Green and Blue lines.
C	Front to Rear Density. The density of both the low density and high density bands should be uniform from front to rear. This can be tested by folding the copy in the center and comparing the front side of the copy to the rear side of the copy at location C. Both the high density and low density locations should exhibit even front to rear density.
D	Color Gradation. This area should exhibit a decreasing density of each of the colors from 100\% density to 5\% density. In a properly adjusted machine, the 10\% patches should be visible and the 5\% patches should be barely visible or not visible on the test pattern copy (except for the bottom row).
E	Routine Color. Location E represents three general tests for the machine to reproduce colors common to customer originals. Location A is a general skin tone test. Location B represents the color of grass or other common foliage. Location C represents the color of the sky.
F	Photo Gradation. Location F is not used for any copy quality evaluation on this product.
G	IIT Calibration Patches. These patches are scanned for IIT Calibration during the IIT Calibration portion of Max Setup.
H	100 Lines/Inch Image. A Moire defect will show on this image. Moire on a 100 Line/Inch image is within specification.
175 Lines/Inch Image. This image is used to test for Moire. Depending on the degree of the defect, moire seen on this image should be considered out of specification.	

Registration and border deletions are checked using the Step Scales on the Geometric Test Pattern, 82E8220, an example of which is shown in Figure 1. All of the scales are 20 mm in height, and are made up of four 5 mm steps. Step 1 will be described as at the top of the Step Scale, and Step 4 will be described as at the bottom.

Figure 1 Step Scales

Each Step Scale is positioned for a particular paper size and orientation. Table 2 indicates the appropriate Step Scales to use for the various paper sizes, orientations and measurement locations.

Table 2 Geometric Checkout - Step Scale Data.

Paper Size	Orientation	To check:	Step Scales to use (refer to Figure 2)
11×17	SEF	Lead Edge Side Edge Trail Edge	LE1 through LE3 SE1 through SE4 (top); SE5 and SE8 (bottom) TE3
A3	SEF	Lead Edge Side Edge Trail Edge	LE 1 through LE3 SE1 through SE4 (top); SE6 and SE7 (bottom) TE4
8.5×11	SEF	Lead Edge Side Edge Trail Edge	LE 1 and LE2 SE1 through SE3 (top); SE9 (bottom) TE5
A4	LSEF	Lead Edge Side Edge Trail Edge	LE 1 and LE2 SE1 through SE3 (top); SE10 (bottom) TE6
8.5×11	LEF	Lead Edge Side Edge Trail Edge	LE1 through SE3 SE1 and 2 (bottom) SE6 and SE7 (top) TE 2
A4	LEF	Lead Edge Side Edge Trail Edge	LE1 through SE3 SE5 (top); SE1 and SE2 (bottom) TE1

1. Set the following Customer Mode Settings to the positions listed:

- Output Color - Black
- Original Type - Text
- Lighter/Darker - Auto Contrast
- Color Saturation - Normal
- Variable Color Balance - Normal
- Sharpness - Normal

2. Place Test Pattern 82E8220 on the platen and 24\# Xerox Color Xpressions 11×17 (USSG), or 90 GSM Colotech A3 (XL) paper in Tray 1. Make a copy of the test pattern.
3. Follow the directions in Table 3 to determine if the machine registration is within specification.

Table 3 Test Pattern Image Data Locations for Geometric Specifications

GEOMETRIC AREA	CHECK PERFORMED
Magnification	Locate the 300 mm line running from near LE1 to the trail edge of the 1.8 lp ladder. Locate the 200 mm line running from near LE1 to near LE3. Make a copy. The measurements should be:. - Left to Right.: $300 \mathrm{~mm} \pm 1.8 \mathrm{~mm}$ - Front to Rear: $200 \mathrm{~mm} \pm 1.2 \mathrm{~mm}$
Resolution	Observing the targets on the test pattern copy at locations R1 through R8, the line pairs specified below are clearly visible for the magnification value indicated: - $70 \%: 3.0 \mathrm{lp} / \mathrm{mm}$ - 100% through $400 \%: 4.3 \mathrm{lp} / \mathrm{mm}$
Lead Edge Registration	Measure from the lead edge of the paper to the top of Step 3 on the LE2 Step Scale. The measurement should be: - Trays 1 through 4 : $10 \mathrm{~mm} \pm 1.5 \mathrm{~mm}$ ($\pm 1.9 \mathrm{~mm}$ for 2 nd side of duplex job) - Tray $5: 10 \mathrm{~mm} \pm 2.2 \mathrm{~mm}$
Side Edge Registration	Measure from the side edge of the paper to the top of Step 3 on the SE2 and SE3 Step Scales. The distance should be within the following tolerance: - Trays 1 through $4: 10 \mathrm{~mm} \pm 2.0 \mathrm{~mm}$ ($\pm 2.4 \mathrm{~mm}$ for 2 nd side of duplex job) - Tray $5: 10 \mathrm{~mm} \pm 2.4 \mathrm{~mm}$
$\begin{aligned} & \hline \text { Lead Edge } \\ & \text { Skew } \end{aligned}$	For skew from front to rear, the distance from the lead edge of the paper to the targets at LE1 and LE3 are measured. The measurements must match each other to within the tolerance below. - Trays 1 through 4 : within $\pm 1.5 \mathrm{~mm}$ ($\pm 2.0 \mathrm{~mm}$ for 2 nd side of duplex job) - Tray 5: within $\pm 2.0 \mathrm{~mm}$
$\begin{aligned} & \begin{array}{l} \text { Side Edge } \\ \text { Skew } \end{array} \end{aligned}$	For skew from left to right, the distance from the side edge of the paper to the targets at SE1 and SE4 are measured. They must match each other to within the tolerance below: - Trays 1 through 4 : within $\pm 3.0 \mathrm{~mm}$ ($\pm 4.0 \mathrm{~mm}$ for 2 nd side of duplex job) - Tray 5 : within $\pm 4.0 \mathrm{~mm}$
Line Density	This parameter is measured on the two 0.7G Text Blocks on the test pattern copy. The machine should reproduce all of the characters shown in the block on the output copy.
Solid Reproduction	This specifies the desired standard for reproduction of solid gray images at 1.0 K. The 1.0 K blocks on the output copy should reproduce with minimal mottle or graininess.

Table 3 Test Pattern Image Data Locations for Geometric Specifications

GEOMETRIC AREA	CHECK PERFORMED
Low Contrast Reproduction	This specifies the desired standard for reproduction of low density images. The machine should reproduce all of the text in the 0.2 G Text Blocks on the output copy.
ROS Borders (Image Loss)	Measure from the lead edge of the paper at LE2, the side edge of the paper at SE2 and SE7, and the trail edge at TE4, to the top edge of the step scales in those locations. The measurements should conform to the following specifications: - Lead Edge $4 \mathrm{~mm} \pm 1 \mathrm{~mm}$ - Side Edges $2 \mathrm{~mm} \pm 1 \mathrm{~mm}$ - Trail Edge $2 \mathrm{~mm} \pm 1 \mathrm{~mm}$

Figure 2 Color and Geometric Test Patterns

Image Defect Samples

The following figures contain examples of defects and their possible causes.

- Background
- Color Misregistration
- Debris-Centered Deletions
- Deletions
- High Frequency Bands
- Irregular Process Direction Streak
- Low Image Density
- Moire
- Mottle
- Newton Rings
- Regular (Repeating) Bands, Streaks, Spots, or Smears
- Residual Image
- Streak Deletion in Process Direction
- Wrinkled Image
- Worm Defect
- Auger Marks Defect (Black)
- Auger Marks Defect (Magenta)
- 59 mm Pitch Density Non-Uniformity Defect
- 201 mm Streaks from the lead edge Defect
- M, C, K Banding Defect
- 103 mm Streaks from the lead edge Defect
- Scratches on Transparency Defect
- Toner Soft Blocking Defect
- Toner Dam Ghosting Defect

Background

Figure 1 Background Defect Sample

Cause

Incorrect Electrostatics, high TC, faulty ADC Sensor

Corrective Action

Go to the IQ6 RAP.

Color Misregistration

Figure 1 Color Misregistration Defect Sample

Cause

Failure of the ROS or IBT "walking" from rear to front or front to rear.
Mechanical problem in the IBT Assembly.

Corrective Action

Go to the IQ8 RAP.

Debris-Centered Deletions

Figure 1 DCD Defect Sample

Cause

Toner agglomerates cause deletions in the areas surrounding them during transfer.

Corrective Action

Go to the IQ7 RAP.

Deletions

Figure 1 Deletions Defect Sample

Cause

Defective IBT Belt, damp paper, uneven charge.

Corrective Action

Go to the IQ7 RAP.

High Frequency Bands

Figure 1 High Freq. Bands Defect Sample

Cause

Faulty ROS Assembly or Photoreceptor/Developer Housing gear or bearing problem.

Corrective Action

Go to the IQ14 RAP.

Irregular Process Direction Streak

Figure 1 Streak Defect Sample

Cause

Clog in Developer Housing Trim Bar, malfunction of Belt Cleaner, contaminated ROS window.

Corrective Action

Go to the IQ12 RAP.

Low Image Density

Figure 1 Low Density Defect Sample

Cause

Incorrect electrostatics, defective ADC Sensor, low toner concentration or out-of-specification paper (especially low quality or heavy weight paper).

Corrective Action

Go to the IQ3 RAP.

Moire

Figure 1 Moire Defect Sample

Cause

The halftone screen used on the original interferes with the halftone screen used by the copier.

Corrective Action

Go to the IQ2 RAP.

Mottle

Figure 1 Mottle Defect Sample

Cause

Damp or low quality paper, aged developer, low toner concentration

Corrective Action

Go to the IQ15 RAP.

Newton Rings

Figure 1 Newton Rings Defect Sample

Cause

Highly reflective surfaces on a glossy photograph.

Corrective Action

Perform the following:

- Clean the Document Glass
- Place a transparency between the document and the glass

Regular (Repeating) Bands, Streaks, Spots, or Smears

Figure 1 Repeating Defects Sample Image

Cause

Damage, density variation, or deletions caused by rotating component. Spacing equal to effective circumference of part.

Corrective Action
Go to the IQ14 RAP.

Residual Image

Figure 1 Residual Image Defect Sample

Cause

Improper IBT cleaning and/or defective IBT Belt.

Corrective Action

Go to the IQ5 RAP.

Streak Deletion in Process Direction

Figure 1 Streak Deletion Defect Sample

Cause

Contamination of ROS window, damage to or contact with Transfer Belt or Drum Cartridge

Corrective Action

Go to the IQ12 RAP.

Wrinkled Image

Worm Defect

Figure 1 Worm Image Defect Sample (VA-001)
Cause
Worm may appear in the process direction feeding from the MSI Tray.

Corrective Action

Feed from a different tray to eliminate the worm problem.

Auger Marks Defect (Black)

Figure 1 Auger Marks Image Defect Sample (VA-002)

Cause

Auger marks may appear on the prints when the amount of toner becomes low in the Developer Unit.

The following conditions increase the defect:

- Monotone image over the whole print with coverage between 40 and 60%.
- High temperature and high humidity.

Corrective Action

If the defect is worse than the defect sample, replace the Developer Unit (PL 5.2).

Auger Marks Defect (Magenta)

Figure 1 Auger Marks Image Defect Sample (VA-003)

Cause

Auger marks may appear on the prints when the amount of toner becomes low in the Developer Unit.

The following conditions increase the defect:

- Monotone image over the whole print with coverage between 40 and 60%.
- High temperature and high humidity.

Corrective Action

If the defect is worse than the defect sample, replace the Developer Unit (PL 5.2).

59mm Pitch Density Non-Uniformity Defect

Figure 1 59mm Pitch Density Non-Uniformity Defect Sample (VA-004)

Cause

The 59 mm Pitch Density Non-Uniformity is on printed sheets printed in the Half-Tone image of the secondary color. The defect is more visible on the first print job when the machine is left in a high temperature and high humidity environment overnight or longer.

Corrective Action

If the defect is worse than the defect sample, replace the Developer Unit (PL 5.2).

201mm Streaks from the lead edge Defect

Cause

The 201 mm streaks appear in the same position of the black images, 201 mm from the lead edge.

Corrective Action

Replace the 2nd BTR (PL 2.7).

M, C, K Banding Defect

, ,

Cause

This defect is caused by one of several components:

- Developer Assembly
- IBT Assembly
- Fuser Assembly
- ROS Assembly

Corrective Action

.Replace the above components in order, one at a time.

Figure 1 M, C, K Banding Defect Sample (VA-006)

103 mm Streaks from the lead edge Defect

Cause

The 103 mm streaks appear in the same position of the black images, 201 mm from the lead edge.

Corrective Action

Replace the 2nd BTR (PL 2.7).

Figure 1 103mm Streaks Defect Sample (VA-008)

Scratches on Transparency Defect

Figure 1 Scratches on Transparency Defect Sample (VA-009)

Cause

Minor scratches run along the process direction on 8.5×11 LEF or A4 LEF of the transparency.

Corrective Action

Replace the Fuser (PL 7.1).

Toner Soft Blocking Defect

Figure 1 Toner Soft Blocking Defect Sample (VA-0010)

Cause

Toner soft blocking appears as streaks in the process direction.

Corrective Action

Shake the toner Cartridge. If the problem continues, replace the Toner Cartridge (PL 5.2).

Toner Dam Ghosting Defect

Toner Dam Ghosting

NG

2. Check whether white spots or streaks appear in the Magenta halftone on the $2 n d$ and latter outputs.
3. Tone Down the Developer ADJ 9.1.0, if the BKG or high solid density occurs. (Use Test Pattern 52)
4. Check NVM $753-552$. The stored value is $0-9$. (Table 1)
Table 1

NVM value stored in 753-552	NVM address to access	Default Value	Limited Value
0	$153-542$	0	-20
1	$153-543$	-20	-40
2	$153-544$	-20	-40
3	$153-545$	-10	-30
4	$153-546$	0	-20
5	$153-547$	0	-20
6	$153-548$	0	-20
7	$153-549$	0	-20
8	$153-550$	0	-20
9	$153-551$	0	-20

5. Change NVM Values by increments of -5 . (ex. In the case $753-552$ is 5 , change $753-547$ from 0 to -5 first)
6. Check the print image. If the defect is still present, increment the NVM value again.

CAUTION

Never increment more than the value listed in the Limited Value column in Table 1.

Figure 1 Toner Dam Ghosting Defect Sample (VA-0011)

Cause

Toner dam ghosting appears as white streaks 105 mm from the lead edge. The white streak is more visible in magenta.

Corrective Action

1. Print Test Pattern $59,40 \%$ coverage, Magenta, output 2 or more 11×17 sheets.
2. Drives
REP 1.1.1 Main Drive Assembly 4-3
REP 1.1.2 Drum Drive Assembly 4-10
3. Paper Transportation
REP 2.1.1 Tray 1 Feeder 4-13 4-15REP 2.3.1 Tray 1 Feed/Nudger/Retard Roll.
REP 2.4.1 Registration Unit 4-17
REP 2.5.1 Takeaway Roll4-18
REP 2.6.2 L/H Upper Cover Unit $4-20$
4. ROS
REP 3.1.1 ROS Unit 4-21
5. Xerographics/Development
REP 4.1.1 Developer Housing 4-23
REP 4.1.2 Toner Cartridge 4-26
REP 4.1.3 Developer Bias Brush -27REP 4.1.4 Waste Toner Auger.
REP 4.2.1 Developer Motor Assembly...REP 4.2.2 IBT Module
REP 4.2.3 Print Drum.
REP 4.2.4 IBT Cleaner

REP 4.2.5 IBT Belt
REP 4.2.6 Rotary Drive MotorREP 4.2.7 Developer Material
REP 4.2.8 2nd BTR Contact Arms

\qquadREP 4.3.1 Sensor Bar4-284-304-314-314-354-364-37-434-444-484-50
5. FuserREP 5.1.1 Fuser Unit4-53
6. ExitREP 6.1.1 Exit2 + OCT24-55
7. MPT
REP 7.1.1 MSI Assembly 4-57
REP 72.1 MSI Feed Roll/Retard Pad 4-59
9. Electrical Components
REP 9.1.1 MCU PWB 4-61
REP 9.1.2 MCU PWB EPROM 4-63
REP 9.2.1 ESS PWB -64
REP 9.2.2 ESS PWB EPROM
REP 9.2.3 Power Supply PWB 4-694-69
10. Covers
REP 10.1.1 Top Cover Assembly
REP 10.2.1 Rear Lower Covers 4-71 4-71
REP 10.2 2 Front Inner Cover 4-72
REP 10.2.3 Right Side Cover 4-74 4-75
REP 10.3.1 Rear Fan. 4-76
REP 11.1.1 Platen Cushion 4-77
REP 11.1.2 Control Panel Assembly 4-78
REP 11.3.1 Platen Glass 4-78
REP 11.3.2 IIT/IPS PWB 4-79
REP 11.4.1 Lens Kit Assembly 4-84
REP 11.5.1 Carriage Cable 4-86
REP 11.5.2 Carriage Motor Assembly 4-92
REP 11.6.1 Exposure Lamp 4-96
REP 11.6.2 Lamp Wire Harness 4-97
12. Tray Module - 2 T
REP 12.1.1 Tray 2 Feeder (2TM) -10
REP 12.1.2 Tray 3 Feeder (2TM) -104
REP 12.3.1 Feed/Retard/Nudger Roll (2TM) 4-107
REP 12.6.1 2TM PWB 4-108
13. Tray Module - TT
REP 13.1.1 Tray 2 Assembly (TTM) 4-11
REP 13.1.2 Tray 3 Assembly (TTM) 4-112
REP 13.3.1 Front/Rear Tray Cable (TTM) 4-113
REP 13.4.1 Tray 3 Feeder (TTM) 4-114
REP 13.5.1 Tray 2 Feeder (TTM) -11
REP 13.6.1 Feed/Retard/Nudger Roll (TTM) -119
REP 13.8.1 TTM PWB 4-120
15. DADF
REP 15.1.1 DADF 4-123
REP 15.1.2 DADF Platen Cushion 4-125
REP 15.2.1 DADF Document Tray -126
REP 15.2.2 DADF Feeder Assembly 4-128
REP 15.2.3 DADF Front Cover 4-130
REP 15.2.4 DADF Rear Cover -130
REP 15.3.1 DADF PWB -132
REP 15.3.2 Left Counter Balance 4-133
REP 15.3.3 Right Counter Balance 4-134
REP 15.4.1 Retard Roll. 4-135
REP 15.4.2 Top Cover Assembly 4-137
REP 15.6.1 Nudger Roll, Feed Roll 4-142
REP 15.8.1 Registration Roll. 4-147
16. Finisher
REP 16.1.1 H-Transport Assembly 4-15
REP 16.1.2 Finisher Assembly -15
REP 16.3.1 H-Transport Belt 4-155
REP 16.4.1 Front Cover Assembly 4-157
REP 16.4.2 Rear Cover. -158
REP 16.5.1 Stack Height Sensor Assembly -159
REP 16.5.2 Eject Roll Assembly -160
REP 16.6.1 Decurler Roll 4-166
REP 16.6.2 Finisher Drive Motor. -16
REP 16.7.1 Paper Eject Belt 4-168
REP 16.8.1 Staple Unit Rail 4-171
REP 16.8.2 Staple Assembly 4-176
REP 16.9.1 Compiler Tray Assembly 4-177
REP 16.10.1 Stacker Motor Assembly 4-179
REP 16.10.2 Elevator Belt Assembly 4-181
REP 16.11.1 Paddle Gear Shaft 4-182
REP 16.12.1 Finisher PWB 4-184
REP 16.12.2 Finisher LVPS PWB 4-185
7. MPT
ADJ 7.1.1 MSI (Bypass) Tray Guide Adjustment 4-193
9. Xerographics
ADJ 9.1.0 Toner Density Adjustment 4-195
ADJ 9.1.1 IOT Image Registration 4-195
ADJ 9.1.2 Max Setup .4-199
ADJ 9.1.6 TRC Adjustment 4-
ADJ 9.1.7 Color-To-Color Registration 4-199
ADJ 9.1.8 IIT Calibration 4-203
ADJ 9.1.9 Optical Axis Alignment4-206
ADJ 9.1.10 Procon ON/OFF Print 4
ADJ 9.2.1 Edge Erase Value Adjustment
$4-211$
$4-211$
ADJ 9.3.1 Software Loading and Upgrading
11. IIT
ADJ 11.1.1 IIT Lead Edge/Side Edge Registration 4-213
ADJ 11.1.2 IIT Vertical/Horizontal Magnification 4-214
ADJ 11.2.1 Reduce/Enlarge Adjustment. 4-215
ADJ 11.3.1 UI Alignment.
4-216
4-216
ADJ 11.6.1 Full/Half Rate Carriage Position Adjustment 4-217
15. DADF
ADJ 15.1.1 DADF Side Edge Registration 4-221
ADJ 15.1.3 DADF Non-Standard Sized Original Customized Registration Function.. 4-222
ADJ 15.1.4 DADF Lead Edge Registration 4-223
ADJ 15.1.5 DADF Height Adjustment 4-226
ADJ 15.1.6 DADF Position (Skew) Adjustment 4-226

22 a-finisher

REP 22.1 A-Finisher ... 4-229
REP 22.3.1 Paddle Belt .. 4-230
REP 22.3.2 Sub Paddle Solenoid ... 4-233
REP 22.4.1 Exit Roll Assembly .. 4-234
REP 22.4.2 Staple Assembly ... 4-236
REP 22.4.3 Set Clamp Home Sensor ..237
REP 22.4.4 Exit Roll Assembly ... 4-238
REP 22.5.1 Pinch Roll..240
REP 22.5.2 Finisher Entrance Sensor ... 4-240
4-240
REP 22.5.3 Compile Exit Sensor .. 4-242
REP 22.5.4 Main Paddle Shaft Assembly.. 4-243
REP 22.5.5 Lower Chute Assembly ... 4-245

REP 22.6.1 ENT Roll Assembly
REP 22.6.2 Upper Chute Assembly 4-247
REP 22.7.1 Finisher Control PWB 4-249
REP 22.8.1 Stacker Tray Assembly 4-251
REP 22.8.2 Stacker Shaft Assembly 4-253
REP 22.8.3 Stacker Motor 4-255
REP 22.8.4 Stacker Stack Sensor 4-257
REP 22.9.1 Compile Assembly 4-257
REP 22.9.2 Set Clamp Shaft. 4-259
REP 22.9.3 Eject Belt 4-261
REP 22.9.4 Eject/Set Clamp Motor Assembly 4-262
REP 22.9.5 Rear Tamper Home Sensor 4-264
REP 22.9.6 Eject Shaft Assembly 4-266
REP 22.10.1 Front /Rear Tamper Motor Assembly. 4-267
REP 22.10.2 Front Tamper Home Sensor 4-269
REP 22.10.3 Eject Clamp Home Sensor. 4-270
REP 22.10.4 Stack Height Sensor 4-271

REP 1.1.1 Main Drive Assembly

Parts List on PL 1.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Switch off the power and disconnect the Power Cord.

NOTE: Do not cut cable ties to remove. Cable ties are designed to be disconnected from the frame and reinstalled.
2. Remove the Rear Lower Covers. (REP 10.2.1)
3. Remove the MCU PWB Chassis (REP 9.1.1)
4. Remove the support bracket. (Figure 1)

Figure 1 Removing the support bracket
5. Disconnect the connectors on the Main Drive Assembly and the Drum Drive Assembly (Figure 2)

Figure 2 Disconnecting the connectors (4)
6. Remove the cable harnesses from the harness clamps and remove the cable ties from the frame. (Figure 3)

Figure 3 Disconnecting the cable ties and opening cable clamps
7. Remove the lower support bracket. (Figure 4)

Figure 4 Removing the lower bracket
8. Open the Left Side Upper Cover and remove the Fuser Assembly. (Figure 5)

Figure 5 Removing the Fuser Assembly
9. Remove the Drive Belt from the Pulley. (Figure 6)

Figure 6 Disengaging the Drive Belt
10. Move the bracket to the left. (Figure 7)

Figure 7 Moving the bracket to the left
11. Remove the side support bracket. (Figure 8)

12. Remove the Clutch bracket. (Figure 9)

NOTE: When removing the Clutch Bracket, be careful to recover the washer from between the Clutch Bracket and the Clutch shaft.

Figure 9 Removing the Clutch bracket

NOTE: Removing the (6) screws is shown in two steps in the following two figures.

Figure 10 Removing the screws (4) first
13. Remove the screw (6) from the Main Drive Assembly. (Figure 10, Figure 11)

Figure 11 Removing the remaining (2) screws
14. Rotate the Clutch clockwise to position the Clutch away from the Main Drive Assembly (Figure 12)

Figure 12 Preparing to remove the Main Drive Assembly
15. Remove the Main Drive Assembly. (Figure 13)

Figure 13 Removing the Main Drive Assembly

Figure 14 Installing the Clutch Bracket

Replacement

1. To install, carry out the removal steps in reverse order.
2. During installation of the Clutch Bracket, ensure that the bracket finger engages the Clutch dog. (Figure 14)

REP 1.1.2 Drum Drive Assembly

Parts List on PL 1.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the ESS PWB Cover (PL 12.2) the MCU PWB Cover (PL 11.2).
3. Remove the MCU PWB Chassis (REP 9.1.1)
4. Remove the ESS PWB Assembly. (REP 9.2.1)
5. Remove the screws (2) and remove the support bracket. (Figure 1)

Figure 1 Removing the support bracket
6. Disconnect the connectors (7) from the Drum Drive Assembly. (Figure 2)

Figure 2 Disconnect the connectors (7)
7. Disconnect the cable from the cable clamps or remove the cable ties from the Drum Drive Assembly. (Figure 3)

Figure 3 Disconnecting cable clamps or removing cable ties
8. Remove the screws (3) and remove the lower support bracket. (Figure 4)

Figure 4 Removing the lower bracket
9. Remove the screws (5). (Figure 5)

Figure 5 Preparing to remove the Drum Drive Assembly
10. Remove the Drum Drive Assembly.

REP 2.1.1 Tray 1 Feeder

Parts List on PL 2.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION
Check that "Ready to Copy" is displayed on the Control Panel display.

1. Switch off the power and disconnect the power cord.
2. Remove the MSI Assembly. (REP 7.1.1)
3. Remove the L/H Upper Cover Unit. (REP 2.6.2)
4. Pull out Tray 1.
5. Open the left side Tray 1 Vertical Transport door.
6. Disconnect the connector (1) and remove the wires from the wire clamps (2). (Figure 1)

Figure 1 Disconnecting the connector
7. Remove the screw from the sensor bracket and move the sensor bracket aside. (Figure 2)

Figure 2 Moving the Sensor Bracket
8. Preparing to remove the Tray 1 Feeder.
a. Remove the screws (2). (Figure 3)

Figure 3 Preparing to remove the Tray 1 Feeder
9. Move the outboard end of the Tray 1 Feeder toward the left of the machine. Remove the Tray 1 Feeder from the machine. (Figure 4)

Figure 4 Removing the Tray 1 Feeder

Replacement

When installing the sensor bracket, be sure to insert the bracket tab into the cut out in the frame before installing the screw. (Figure 5

Figure 5 Installing the sensor bracket

REP 2.3.1 Tray 1 Feed/Nudger/Retard Roll

Parts List on PL 2.3
Removal
NOTE: Only the replacement procedure for the Tray 1 Feed/Nudger/Retard Roll is described here.
NOTE: When replacing the Tray 1 Feed/Nudger/Retard Roll, enter Diag. mode and clear the counter for the Tray 1 Feed counter.

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.
NOTE: The Feed, Nudger and Retard Roll must be replaced at the same time.

1. Remove Tray 1.
2. Slide the guide toward the front. (Figure 1)
3. Slide the guide.

Figure 1 Sliding the guide to the front
3. Remove the Feed/Nudger/Retard Roll. (Figure 2)

1. Rotate the Feed/Nudge/Retard Roll clockwise to access the locking tab. Release the lock and remove the Feed/Nudger/Retard Roll.

Figure 2 Removing the Feed/Nudger/Retard Roll

REP 2.4.1 Registration Unit

Parts List on PL 2.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the L/H Upper Cover Unit. (REP 2.6.2)
2. Remove the MSI Unit. (REP 7.1.1)
3. Disconnect the connector. (Figure 1)

Figure 1 Disconnecting the connector (1)
4. Remove the screws (2). (Figure 2)

Figure 2 Removing the screws (2)
5. Pull the outboard end of the Registration Unit toward the left of the machine and remove the Unit. (Figure 3)

Figure 3 Removing the Registration Unit

Replacement

NOTE: When reinstalling the Registration Unit, it might be necessary to rotate the Registration Drive gears in order for the gears to be aligned properly.

REP 2.5.1 Takeaway Roll

Parts List on PL 2.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Switch off the power and disconnect the power cord.
2. Remove the MSI Assembly. (REP 7.1.1)
3. Remove the L/H Lower Cover.
4. Remove the Chute. (Figure 1)
5. Remove the screws (2).
6. Release the hook.
7. Remove the Chute

REP 2.6.2 L/H Upper Cover Unit

Parts List on PL 2.7

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Switch off the power and disconnect the connector.
2. Open the L/H Upper Cover
3. Release the Cover Support while holding the L/H Upper Cover. (Figure 1)
4. Release the Cover Support.

Figure 2 Removing the L/H Upper Cover Unit
4. Remove the L/H Upper Cover Unit. (Figure 2)

NOTE: If Duplex Module is present, disconnect the connector.

1. Open the L/H Upper Cover Unit until it becomes horizontal.
2. Lift up the unit and remove it.

REP 3.1.1 ROS Unit

Parts List on PL 3.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Switch off the power and disconnect the Power Cord.
2. Remove the Right Side Cover. (REP 10.2.3)
3. Remove the Power Supply. (REP 9.2.3)
4. Remove the ROS Cooling Fan bracket. (Figure 1)

Figure 1 Removing the ROS Cooling Fan Bracket
5. Preparing to remove the ROS Assembly. (Figure 2)

Figure 3 Removing the ROS Assembly

Replacement

NOTE: When the ROS Unit has been installed, read the warning label on top of the ROS unit carefully before turning on the power and performing replacement.

1. Installing the ROS Assembly. (Figure 3)
a. To install, push the ROS Assembly into the machine.
b. Be sure that the locating pins (2) on the ROS is engaged into the machine frame.
c. Install the screws (2).
d. Connect the connectors (3).
2. Perform the remainder of the replacement procedure in the reverse order or the removal.

REP 4.1.1 Developer Housing

Parts List on PL 5.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Ensure that the "Ready to Copy" is displayed on the Control Panel display.
2. Switch off the power and disconnect the Power Cable.
3. Remove the Toner Cartridge of the Developer Housing to be removed.
4. Remove the Front Cover. (REP 10.2.2)
5. Remove the Low Voltage Power Supply. (REP 9.2.3)
6. Prepare to remove the Rotary Cover. (Figure 1)

Figure 1 Preparing to remove the Rotary Cover

Figure 2 Removing the Rotary Cover
8. Open the Toner/Developer Access Door.
9. Prepare to remove the Developer Housing. (Figure 3)

1. Push in and hold the Rotary Release Knob.
2. Manually rotate the Rotary until the Developer Housing to be removed is in position then release the rotary Release Knob
3. Remove the screw (1).

Figure 3 Preparing to remove the Developer Housing
4. Move the Developer Housing toward the front then remove the Developer Housing. (Figure 4)

Figure 4 Removing the Developer Housing

Replacement

1. When reinstalling the Developer Housing, ensure that the Spring, located on the outboard end of each Developer Housing, is straight as it is pressed against the turret of the Rotor frame. This Spring must be present, and properly installed. (Figure 5)

NOTE: If this Spring is not straight when the Developer Housing is in place, Color-toColor registration will be out of alignment.

Figure 5 Location of Spring

CAUTION

When installing the Rotary Cover, ensure that the three Rotary Cover tabs are properly inserted into the frame before installing the screws. An improperly installed Rotary Cover may cause a developer dump during machine operation. (Figure 6)
2. Install the Rotary Cover. (Figure 6)

Figure 6 Inserting the Rotary Cover tabs
3. Perform the remainder of the replacement in reverse order of removal.
4. Enter UI Diagnostic Mode, select Adjustment / Others button, then select Initialize HFSI Counter and Reset Current Value.

- 954-830 = Black
- 954-831 = Yellow
- $954-832=$ Magenta
- 954-833 = Cyan

5. Enter UI Diagnostic Mode, and select NVM Read/Write and reset the following NVM locations to zero.

- 752-941 = Yellow
- 752-942 = Magenta
- 752-943 = Cyan
- 752-944 = Black

6. Perform Max Setup. (ADJ 9.1.2)

REP 4.1.2 Toner Cartridge

Parts List on PL 5.2

Removal

CAUTION

FAX Models

Check the Job Status button to ensure that there are no jobs in progress.
Check that "Ready to Copy" is displayed on the Control Panel display.

1. With the machine in Ready to Copy mode, press the Machine Status button.
2. On the Machine Status Screen select the Supplies tab.
3. Select on the UI screen, the color toner cartridge to be removed.
4. Select Replace Cartridge on the screen

NOTE: This will rotate the Toner/Developer Rotary to the color Toner Cartridge selected.
5. Open the Front Door.
6. Open the Toner/Developer Access Door by releasing the latch. (Figure 1)

Figure 1 Opening the Access Door

Figure 2 Removing the Toner Cartridge

Replacement

1. After replacing the Toner Cartridge, close the Toner/Developer Access Door.
2. Close the Front Door.

NOTE: The control logic will detect the Toner Cartridge and return to the Supplies menu.
7. Remove the Toner Cartridge. (Figure 2)

REP 4.1.3 Developer Bias Brush

Parts List on PL 5.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the Finisher if present.
3. Remove the Black (K) Developer Housing. (REP 4.1.1)

NOTE: Be sure to cover the Drum Module to prevent light shock.
4. Remove the Drum Module and store it in a black bag.
5. Rotate the Developer Rotary Assembly by pushing in the lock knob and rotate the Rotary until it is in the position shown. (Figure 1)

Figure 1 Positioning the Developer Rotary Assembly
6. Remove the Waste Toner Auger. (REP 4.1.4)
7. Remove the screws (2) and disconnect the High Voltage lead. (Figure 2)

Figure 2 Removing the screws (2) and disconnecting the High Voltage Lead
8. Remove the Developer Bias Brush. (Figure 3)

Figure 3 Removing the Developer Bias Brush

REP 4.1.4 Waste Toner Auger

Parts List on PL 6.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the Waste Auger drive shaft bushing. (Figure 1)

Figure 1 Removing the Waste Auger drive shaft bushing
NOTE: In the next step, place a sheet of paper under the opening in the Waste Auger when removing it from the frame.
3. Remove the Waste Auger. (Figure 2)

Figure 2 Removing the Waste Auger

REP 4.2.1 Developer Motor Assembly

Parts List on PL 1.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the Rear Lower Cover, the ESS Cover, and the MCU Cover. (REP 10.2.1)
3. Remove the MCU PWB chassis. (REP 9.1.1)
4. Remove the ESS PWB chassis. (REP 9.2.1)
5. Disconnect the connectors (2). (Figure 1)

Figure 1 Disconnecting the connectors (2)
6. Remove the Developer Motor Assembly. (Figure 2)

Figure 2 Removing the Developer Drive Assembly

Replacement

1. To install, carry out the removal steps in reverse order.

REP 4.2.2 IBT Module

Parts List on PL 6.1

Removal

1. Switch off the power and disconnect the power cord.
2. Remove the Front Cover. (REP 10.2.2)
3. Remove the Print Drum. (REP 4.2.3)

NOTE: Do not allow the Print Drum to be exposed to light for more than 30 seconds.
4. Store the Print Drum out of the way on a level surface and cover with paper to prevent light shock.

NOTE: The IBT Module should be removed with the IBT Cleaner attached, especially if the IBT Belt is to be reused.
5. Remove the Waste Toner Bottle, (Figure 1)

Figure 1 Removing the Waste Toner Bottle
6. Remove the Xerographic Drum CRUM Bracket. (Figure 2)

Figure 2 Removing the CRUM Bracket
7. Remove the Waste Auger drive gear. (Figure 3)

Figure 3 Removing the Waste Auger C-clip and drive gear
8. Remove the Waste Auger drive shaft bushing. (Figure 4)

Figure 4 Removing the Waste Auger drive shaft bushing
NOTE: In the next step, place a sheet of paper under the opening in the Waste Auger when removing it from the frame.
9. Remove the Waste Auger. (Figure 5)

Figure 5 Removing the Waste Auger
10. Open the left side door and position the levers (2) to the up or retract position. (Figure 6)

11. Place the IBT Belt Tension Handle on the shaft and rotate the Handle counter clockwise to the down position put tension on the IBT Belt. (Figure 7)

Figure 7 Re-tension the IBT Belt
12. Remove the screws (4) and the Tension Handle. (Figure 8)

Figure 8 Preparing to removing the IBT Module

CAUTION

Do not touch the surface of the IBT Belt with hands. Print quality can be affected by belt surface residue and marks.
13. Pull the IBT Module out of the machine. (Figure 9)

Figure 9 Removing the IBT Module from the machine
14. Place the IBT Module on a clean work surface.

NOTE: If the IBT Belt is to be removed, proceed to the IBT Belt procedure. (REP 4.2.5)

Replacement

1. Rotate the couplings to fully extent the two BTR2 levers.
2. With the two BTR2 levers fully extend, manually position them behind the IBT Module frame. This will allow the IBT Module to be inserted into the opening in the machine.
3. When the IBT Module is in the machine, then move the two BTR2 levers away from the IBT Module frame. This will allow the levers to capture the BTR2 when the left side door is closed.
4. Install the IBT Module in reverse order of removal.

REP 4.2.3 Print Drum

Parts List on PL 4.1

Removal

1. Open the Front Door.
2. Preparing to remove the Print Drum. (Figure 1)

Figure 1 Preparing to remove the Print Drum
3. Removing the Print Drum from the machine. (Figure 2)

REP 4.2.4 IBT Cleaner

Parts List on PL 6.1

Removal

1. Open the Front door.
2. Prepare to remove the IBT Cleaner. (Figure 1)

Figure 2 Removing the IBT Cleaner

REP 4.2.5 IBT Belt

Parts List on PL 6.2

Removal

1. Switch off the power and disconnect the Power Cord.
2. Remove the IBT Module. (REP 4.2.2)
3. Place the IBT Module on a flat work surface.
4. Remove the IBT Cleaner from the IBT Module. (REP 4.2.4)
5. Remove the outboard frame (Figure 1)

Figure 1 Removing the outboard frame

6. Remove the cross bar from the IBT Module. (Figure 2)

Figure 2 Removing the cross bar

NOTE: Note the orientation of the frame cross brace. Be sure to reinstall the frame cross brace in the same manner which it was removed.
7. Remove the cross brace. (Figure 3)

Figure 3 Removing the cross brace.
8. Use the cross bar as a foot by inserting it through the holes in the IBT Module frame and stand the Module on its end as shown. (Figure 4)

Figure 4 Using the cross bar as a foot
9. Remove the inner bracket. (Figure 5)

Figure 5 Removing the inner bracket
10. Release the tension of the Belt. (Figure 6)

Figure 6 Releasing the Belt tension
11. Remove the follower lever. (Figure 7)

Figure 7 Removing the follower lever
12. Remove the bushing and E-ring. (Figure 8)

Figure 8 Removing the bushing and E-ring
13. Remove the Backup Roll bracket. (Figure 9)

Figure 9 Removing the Backup Roll bracket
14. Remove the Backup Roll. (Figure 10)

Figure 10 Removing the Backup Roll
15. Carefully remove the IBT Belt from the IBT Module. (Figure 11)

NOTE: Note that the Belt Sensor reflector is located toward the outboard end of the IBT Module. Be sure to install the IBT Belt in this orientation.

Figure 11 Removing the Belt

Replacement

1. Reassemble the IBT Module in reverse order of removal.

REP 4.2.6 Rotary Drive Motor

Parts List on PL 5.1

Removal

1. Switch off the power and disconnect the power cord.
2. Remove the Upper Rear Cover.
3. Remove the Lower Rear Cover.
4. Disconnect the Motor connector and wire harness clamps. (Figure 1)

Figure 1 Disconnecting the connector and harness
5. Remove the screws (4) and remove the Rotary Motor. (Figure 2)

Figure 2 Removing the Rotary Motor

REP 4.2.7 Developer Material

Parts List on PL 5.1

Removal

1. Remove the Developer Housing. (REP 4.1.1)
2. Place several sheets of paper on a work surface and place the Developer Housing on the paper.

CAUTION

Be careful to avoid getting Developer Material on the Developer Housing drive gears. If some developer does contaminate the gears, clean the gears and make sure that the gears rotates smoothly.
3. Remove the screw from the cover on the Developer Housing. (Figure 1)

Figure 1 Removing the screw from the Developer Housing Cover
4. Unlatch the tabs on the Developer Housing Cover. (Figure 2)

Figure 2 Removing the Developer Housing Cover
5. Remove the Developer Housing Cover. (Figure 3)

Figure 3 Removing the Developer Housing Cover
6. Remove the plastic bag from the new Developer Material package.
7. Place the Developer Housing up side down inside the plastic bag and turn the Mag Roll Gear on the end of the Cartridge to pour out the old Developer Material. (Figure 4)

Figure 4 Dumping the Developer Material
8. Vacuum the augers, mag roll and inner surfaces of the Developer Housing. (Figure 5)

Figure 5 Vacuuming the Developer Housing
9. Pour the new Developer Material into the Developer Housing using a back and forward motion while rotating the Mag Roll. (Figure 6)

Figure 6 Adding the new Developer Material
10. Prepare to reinstall the Developer Housing cover. (Figure 7)

Figure 7 Preparing to reinstall the Developer Housing Cover
11. Press the Cover tabs to lock the Developer Housing Cover. (Figure 8)

Figure 8 Locking the Cover tabs
12. Install the screw (1). (Figure 9)

Figure 9 Install the screw (1)

13. Reinstall the Developer Housing into the machine. (REP 4.1.1)
14. Enter UI Diagnostic Mode and select NVM Read/Write and reset the following NVM locations to zero.

- 752-086 = Yellow
- 752-087 = Magenta
- 752-088 = Cyan
- 752-089 = Black

15. Perform Max Setup. (ADJ 9.1.2)

REP 4.2.8 2nd BTR Contact Arms

Parts List on PL PL 6.2

Removal

1. Switch off the power and disconnect the Power Cord.
2. Prepare to remove the IBT Module, (REP 4.2.2).
3. To replace the outboard 2nd BTR Contact Arm, perform the following:
a. Slide the IBT Module part way out of the machine.
b. Remove the E-ring, washer and Contact Arm.

Figure 1 Removing the outboard Contact Arm

Figure 2 Removing the inboard Contact Arm

Replacement

1. Be sure that the plastic spacer on the Contact Arm shaft is properly seated as the Contact Arm is installed.

Figure 3 Properly seat plastic spacer
2. Install the 2nd BTR Contact Arm behind the cam follower on the IBT Module.

Figure 4 Placing Contact Arm behind cam follower
3. Be sure the brass bushing is installed in the Contact Arm.
4. Install the washer and E-ring.
5. Retract the Contact Arms and slide the IBT Module into the machine.
6. After the IBT Module is installed and secured with the screws (4), be sure to extend the 2nd BTR Contact Arms.

REP 4.3.1 Sensor Bar

Parts List on PL 11.1

Removal

1. Switch off the power and disconnect the Power Cord
2. Remove the IBT Module. (REP 4.2.2)
3. Prepare to remove the Sensor Bar.
a. Release the harness clamps (2).
b. Disconnect the connectors (2).
c. Remove the screw (1).

Figure 1 Preparing to remove the Sensor Bar
4. Remove the Sensor Bar (PL 11.1).

REP 5.1.1 Fuser Unit

Parts List on PL 7.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check the Job Status to ensure that there are no jobs in progress.
CAUTION
Do not start servicing until the Fuser has cooled down.

1. Switch off the power.
2. Open the L/H Upper Cover Assembly. (PL 2.6).
3. Remove the Fuser Unit. (Figure 1)
4. Loosen the knobs (2).
5. Pull the Fuser by the handles (2).

Replacement

1. To install, carry out the removal steps in reverse order.
2. When replacing the Fuser;
a. Press the Machine status button.
b. Select Supplies.

REP 6.1.1 Exit2 + OCT2

Parts List on PL 8.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Open the L/H Upper Cover.
2. Remove the Exit2 + OCT2. (Figure 1)
3. Lift up the front and rear levers and remove the Exit2 + OCT2.

Figure 1 Removing the Exit2+OCT2 (j0tp40601)

Replacement

1. To install, carry out the removal steps in reverse order.

REP 7.1.1 MSI Assembly

Parts List on PL 9.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the MSI Rear Cover. (Figure 1)
2. Remove the screw.
3. Remove the MSI Rear Cover.

j0st40706

Figure 1 Removing the MSI Rear Cover
2. Disconnect the connector. (Figure 2)

1. Release the Wire Harness from the clamp
2. Release the Wire Harness from the clamp.
3. Disconnect the connector.

Figure 2 Disconnecting the connector
3. Remove the MSI Assembly. (Figure 3)

1. Remove the screws (2).
2. Remove the MSI Assembly.

Figure 3 Removing the MSI Assembly

Replacement

1. To install, carry out the removal steps in reverse order.

REP 7.2.1 MSI Feed Roll/Retard Pad

Parts List on PL 9.2

Removal

NOTE: When replacing the MSI Feed Roll/Retard Pad, enter the Diag. mode and clear the counter for MSI Feed.

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.
NOTE: The MSI Feed Roll and MSI Retard Pad must both be replaced at the same time.

1. Remove the MSI Assembly. (REP 7.1.1)
2. Remove the plate. (Figure 1)
3. Remove the screws (2).
4. Remove the plate.

Figure 1 Removing the plate
3. Remove the MSI Feed Roll. (Figure 2)

1. Remove the ends of the roll and slide them out.
2. Remove the ends of the roll and slide them out.
3. Slide the MSI Feed Roll to the front and remove it.

Figure 2 Removing the MSI Feed Roll
4. Remove the MSI Retard Pad. (Figure 3)

1. Remove the springs (2).
2. Remove the MSI Retard Pad.
3. Pull out the shaft.

Figure 3 Removing the MSI Retard Pad

Replacement

1. To install, carry out the removal steps in reverse order.

REP 9.1.1 MCU PWB

Parts List on PL 11.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Static electricity may damage electrical parts.
Always wear a wrist strap to protect electrical parts from static damage. If a wrist strap is not available, touch some metallic parts before servicing to discharge the static electricity.

CAUTION

Perform GP 4 Part 2 after each PWB is replaced. To maintain the integrity of the serial number and billing data NEVER replace all of the PWBs at once. Replacing all three PWBs at once will cause unrecoverable NVM corruption. If a PWB needs replacing, only replace ONE AT A TIME and perform this procedure after each one is replaced. If the problem is not resolved, reinstall the original PWB and re-enter the serial number (if necessary) before attempting to replace a different PWB.

1. Whenever the MCU PWB is being replaced, go to GP 4 Replacing Billing PWBs and perform PART 1 to document Customer Settings and Machine Settings.
2. Switch off the power and disconnect the power cord.
3. Remove the ESS Cover, the MCU Cover and the Rear Lower Cover. (REP 10.2.1)
4. Disconnect the connectors from the MCU PWB. (Figure 1, Figure 2)

Figure 1 Disconnecting 13 of the connectors on the MCU PWB

Figure 2 Disconnecting the remaining 8 connectors on the MCU PWB
5. Loosen the screws (5) on the MCU PWB and slide the MCU to the right to disconnect the P 389 connector. (Figure 3)

Figure 3 Disconnecting the P 389 connector on the MCU PWB
6. Remove the MCU PWB.

CAUTION

Pin breakage occurs if the EPROM is carelessly removed.
NOTE: Be sure to notice the orientation of the EPROM in the connector on the PWB. Be sure to install the EPROM in the same orientation
7. If a new MCU PWB will be installed, remove EPROM from old MCU PWB and save for installation on new MCU PWB. (Figure 4)

Figure 4 MCU PWB EPROM Location

Replacement

1. If installing the same MCU PWB that was just removed, use the reverse of the removal procedure to install.
2. If replacing the MCU PWB with a new MCU PWB continue with these steps.

CAUTION

Pin breakage occurs if the EPROM is carelessly replaced.
3. Install the EPROM from the old MCU PWB on the new MCU PWB. (Figure 5)

Figure 5 MCU PWB EPROM Location
4. Install the MCU PWB and connect P/Js.
5. Switch on the machine power.
6. If a 041-340 Fault occurs, continue with the following step.
7. Load the current IOT software level on to the MCU PWB and use the Single File down load.
8. Perform PART 2 of GP 4 Replacing Billing PWBs.

REP 9.1.2 MCU PWB EPROM

Removal

CAUTION

A disabled machine with loss of serialization and billing data occurs if both the ESS PWB with EPROM and the MCU PWB with EPROM are replaced at the same time.

NOTE: Refer to REP 9.1.1 to remove or replace the MCU PWB EPROM (Figure 1).

Figure 1 MCU PWB EPROM Location

REP 9.2.1 ESS PWB
Parts List on PL 11.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Static electricity may damage electrical parts.
Always wear a wrist strap to protect electrical parts from static damage. If a wrist strap is not available, touch some metallic parts before servicing to discharge the static electricity.

CAUTION

Perform GP 4 Part 2 after each PWB is replaced. To maintain the integrity of the serial number and billing data NEVER replace all of the PWBs at once. Replacing all three PWBs at once will cause unrecoverable NVM corruption. If a PWB needs replacing, only replace ONE AT A TIME and perform this procedure after each one is replaced. If the problem is not resolved, reinstall the original PWB and re-enter the serial number (if necessary) before attempting to replace a different PWB.

1. Go to GP 4 Replacing Billing PWBs and perform PART 1 to document Customer Settings and Machine Settings.
2. Switch off the power and disconnect the power cord.
3. Remove the ESS Cover, the MCU Cover and the Rear Lower Cover. (REP 10.2.1)
4. Disconnect all the connectors (5) on the ESS PWB. (Figure 1)

Figure 1 Disconnecting the connectors on the ESS PWB
5. Disconnect the connectors from the MCU PWB. (Figure 2, Figure 3)

Figure 2 Disconnecting 13 of the connectors on the MCU PWB

Figure 3 Disconnecting the remaining 8 connectors on the MCU PWB
6. Loosen the screws (5) on the MCU PWB and slide the MCU to the right to disconnect the P 389 connector. (Figure 4)

Figure 4 Disconnecting the P 389 connector on the MCU PWB
7. Remove the Rear Top Cover. (Figure 5)

Figure 5 Remove the Rear Top Cover
8. Remove the Right Rear Side Panel. (Figure 6)

Figure 6 Removing the Right Rear Side Panel
9. Loosen the upper screws (2) from the ESS PWB Chassis. (Figure 7)

Figure 7 Loosen the upper screws (2) from the ESS PWB Chassis
10. Loosen the Lower screws (2) from the ESS PWB Chassis. (Figure 8)

Figure 8 Loosen the screws (2) from the ESS PWB Chassis
11. Lift up the ESS PWB Chassis and remove it from the machine.
12. If present, remove the Printer PWB from the ESS Chassis. (REP 9.2.4) (PL 11.2).
a. Loosen thumbscrews and pullout Printer PWB to disconnect it from the ESS PWB.
13. Remove the ESS Panel. (PL 11.2)
14. Remove the HDD Base Chassis. (PL 11.2)
15. Remove the screws and remove ESS PWB.

CAUTION

Pin breakage occurs if the EPROM is carelessly removed.
NOTE: Be sure to notice the orientation of the EPROM in the connector on the PWB. Be sure to install the EPROM in the same orientation.
16. If a new ESS PWB will be installed, remove the DDR DIMM (2), the PC133 DIMM (1) and the EPROM from the old ESS PWB and save for installation on new ESS PWB. (Figure 9)

Figure 9 DDR DIMM, PC133 DIMM and ESS PWB EPROM Location

Replacement

1. If installing the same ESS PWB that was just removed, use the reverse of the removal procedure to install.
2. If replacing the ESS PWB with a new ESS PWB, continue with the following steps CAUTION
Pin breakage occurs if the EPROM is carelessly replaced.
3. Install the DDR DIMM, PC133 DIMM and EPROM from the old ESS PWB on to the new ESS PWB. (Figure 10)

Figure 10 ESS PWB EPROM Location
4. Install the ESS PWB and Panel into the Chassis.
5. Install the Base Chassis and then the HDD PWB and tighten the thumbscrews.
6. If present, install the Printer PWB.
a. Install Printer PWB while connecting it to ESS PWB and tighten thumbscrews.
7. Install the ESS PWB Chassis into the machine and connect all the connectors.
8. Slide the MCU PWB into position and tighten the screws.
9. Connect all the connectors to the MCU PWB.
10. Switch on the power.
11. If a fault occurs (116-334) switch off then switch on the power.
12. If a Serial Number, Billing Meter Mismatch fault (Speed Mismatch fault) occurs (124-315), disregard and continue.
13. Perform PART 2 of GP 4 Replacing Billing PWBs.
14. Reinstall the Customer Settings. (Sys User settings will be affected).

REP 9.2.2 ESS PWB EPROM

Parts List on PL 11.2

Removal

CAUTION

A disabled machine with loss of serialization and billing data occurs if both the ESS PWB with EPROM and the MCU PWB with EPROM are replaced at the same time.

NOTE: Refer to REP 9.2.1 ESS PWB to remove or reinstall the ESS PWB EPROM (Figure 1).

Figure 1 ESS PWB EPROM Location

REP 9.2.3 Power Supply PWB

Parts List on PL 9.1

Removal

1. Switch off the power and disconnect the Power Cord.
2. Remove the Right Side Cover. (REP 10.2.3)
3. Remove the Power Supply PWB. (Figure 1)
a. Disconnect the connectors (9).

Figure 1 Removing the Power Supply PWB
b. Loosen the screws (4). (Figure 2)
c. Lift the Power Supply PWB up and remove it.

Figure 2 Removing the Power Supply PWB

REP 9.2.4 Print Chassis Assembly

Parts List on PL 11.2

Removal

1. Disconnect the Ethernet cable.
2. Switch off the power and disconnect the power cord.
3. Remove the ESS Cover. (REP 10.2.1)
4. Remove the Printer Chassis Assembly by loosening the thumb screws (3). (PL 11.2)

Replacement

1. Install the Printer Chassis Assembly in reverse order of removal.
2. Connect the power cord and switch on the power.
3. Verify that the machine has the correct level of ESS Controller software. If necessary, upgrade the software to the correct version.

REP 9.2.5 PS DIMM

Parts List on PL 11.2

Removal

1. Disconnect the Ethernet cable.
2. Switch off the power and disconnect the power cord.
3. Remove the ESS Cover. (REP 10.2.1)
4. Remove the PS DIMM by gently releasing the 2 plastic clips that hold the DIMM in place

When released, the DIMM will 'pop up' at an angle to the print controller PWBA. (PL 11.2)

Replacement

NOTE: Ensure that the PS DIMM is seated properly and that the 2 clips engage the edge of the DIMM.

1. Install the PS DIMM in reverse order of removal.
2. Connect the power cord and switch on the power.
3. Verify that the machine has the correct level of ESS Controller software. If necessary, upgrade the software to the correct version.

REP 10.1.1 Top Cover Assembly

Parts List on PL 12.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Toner Cartridge. (REP 4.1.2)
2. Remove the Front Left Cover. (Figure 1)
3. Remove the screw.
4. Remove the Front Left Cover.

5. Remove the Paper Weight Assembly. (Figure 2)
6. Remove the Paper Weight Assembly.

Figure 2 Removing the Paper Weight Assembly

4. Remove the Top Cover Assembly. (Figure 3)
5. Remove the screws (x2).
6. Remove the Top Cover Assembly.

Figure 1 Removing the Front Left Cover

Figure 3 Removing the Top Cover Assembly

Replacement

1. To install, carry out the removal steps in reverse order.

REP 10.2.1 Rear Lower Covers

Parts List on PL 11.3, PL 12.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the ESS Cover Assembly. (Figure 1)
2. Loosen the screws (2).
3. Remove the ESS Cover Assembly.

j0st41005
Figure 1 Removing the ESS Cover Assembly
4. Remove the Rear Middle Cover. (Figure 2)
5. Remove the screws (2)
6. Remove the Rear Middle Cover.

Figure 2 Removing the Rear Middle Cover

j0st41007

Figure 3 Removing the cover

4. Remove the Rear Lower Cover. (Figure 4)
5. Remove the screws (4).
6. Remove the Rear Lower Cover.

Figure 4 Removing the Rear Lower Cover

Replacement

1. To install, carry out the removal steps in reverse order.

REP 10.2.2 Front Inner Cover

Parts List on PL 12.1

Removal

1. Open the Front Door.
2. Remove the Print Drum Latch Handle. (Figure 1)
a. Rotate handle to the unlatch position.
b. Remove the screw (1).
c. Remove the Print Drum Latch Handle.

3. Remove the Front Cover. (Figure 2)

Figure 2 Remove the Front Cover

REP 10.2.3 Right Side Cover

Parts List on PL 12.2

Removal

1. Open the Front Door.
2. Remove the Right Side Cover. (Figure 1)
a. Remove the screws (2).
b. Push down on the Right Side Cover and remove it from the machine.

Figure 1 Removing the Right Side Cover

REP 10.3.1 Rear Fan

Parts List on PL 11.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the ESS PWB (REP 9.2.1).
3. Remove the screw (A).
4. Unplug connector (B).
5. Remove the Rear Fan (Figure 1).

Figure 1 Rear Fan

Replacement

To install, carry out the removal steps in reverse order.

REP 11.1.1 Platen Cushion

Parts List on PL 13.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the Platen Cushion. (Figure 1)
2. Remove the Platen Cushion.

Replacement

NOTE: Remove all remaining tapes on the Platen Cover after the Platen Cushion has been removed

1. Install the Platen Cushion. (Figure 2)
2. Remove the seal.
3. Press gently in the direction of the arrow.
4. Slowly lower the Platen Cover pressing on the Platen Cushion.

Figure 1 Removing the Platen Cushion

REP 11.1.2 Control Panel Assembly

Parts List on PL 13.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine

1. Remove the Control Panel Assembly. (Figure 1)
2. Remove the screws (2).
3. Remove the screws (2).
4. Slide the Control Panel Assembly to front a little.
5. Release the connector.
6. Release the wire harness from the frame.
7. Remove the Control Panel Assembly.

Figure 1 Removing the Control Panel Assembly

Replacement

CAUTION

Do not pinch the wire harness upon installation.

1. To install, carry out the removal steps in reverse order.

REP 11.3.1 Platen Glass

Parts List on PL 13.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the Platen Glass. (Figure 1)
2. Remove the screws (x2).
3. Remove the plate.
4. Remove the Platen Glass.

Figure 1 Removing the Platen Glass

Replacement

1. To install, carry out the removal steps in reverse order taking note of the following:

NOTE: To install the Platen Glass, push the Platen Glass in the direction of arrow A and the plate in the direction of arrow B. (Figure 2)

Figure 2 Installing the Platen Glass

REP 11.3.2 IIT/IPS PWB

Parts List on PL 13.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Switch off the power and disconnect the power cord.
2. Remove the Platen Glass (REP 11.3.1)
3. Disconnect the connector and remove the connector screws (2). (Figure 1)

Figure 1 Disconnect the connector and remove the screws (2)
4. Remove the ESS PWB cover and the Top Rear Cover. (Figure 2)

Figure 2 Removing the ESS Cover and the Top Rear Cover
5. Disconnect the connector from the left rear IIT/IPS PWB and remove the screw. (Figure 3)

Figure 3 Disconnect the connector and remove the screw (1)
6. Remove the Lens Cover. (Figure 4)

Figure 4 Removing Lens Cover

Figure 5 Removing the IPS Cover
8. Disconnect the connectors (3). (Figure 6)

Figure 6 Disconnecting the connectors (4)

Figure 7 Disconnecting the large ribbon cable
10. Remove the IIT/IPS PWB. (Figure 8)
9. Disconnect the large ribbon cable on the IIT/IPS PWB. (Figure 7)

Figure 8 Removing the screws (7)
11. Remove the IIT/IPS PWB.
12. When replacing the IIT/IPS PWB, remove the EPROM from the old IIT/IPS PWB to install it on the new IIT/IPS PWB. (Figure 9)

Figure 9 Removal and replacing the IIT EPROM

Replacement

1. When replacing the IIT/IPS PWB, install the EPROM from the old ITT/IPS PWB onto the new IIT/IPS PWB. (Figure 10)

Figure 10 Removal and replacing the IIT EPROM
2. To install, carry out the removal steps in reverse order.
3. Check the software level of the new IIT/IPS PWB to ensure that it is current with the machine software. If the software level is different, upgrade the software on the PWB.

REP 11.4.1 Lens Kit Assembly

Parts List on PL 13.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the Platen Glass. (REP 11.3.1)
2. Remove the Lens Cover. (Figure 1)

Figure 1 Removing Lens Cover
3. Remove the APS Sensor. (Figure 2)

1. Remove the Screw.
2. Release the wire harness from the clamp.
3. Remove the APS Sensor

Figure 2 Removing the APS Sensor
4. Disconnect the CCD Flat Cable. (Figure 3)

1. Take off the hook
2. Disconnect the CCD Flat Cable.

Figure 3 Disconnecting the FFC CCD Cable
5. Replace the Lens Kit Assembly. (Figure 4)

1. Remove the screws (4).
2. Remove the Lens Kit Assembly.
3. Observe the orientation of the Lens Kit Assembly

Figure 4 Removing the Lens Kit Assembly

Replacement

1. Install the Lens Kit Assembly.
2. Connect the CCD Flat Cable and install the Lens Cover.
3. Install the Platen Glass. (No need to install the Glass Press Guide.)
4. Switch on the power.
5. Perform the Optical Axis Adjustment ADJ 9.1.9.

REP 11.5.1 Carriage Cable

Parts List on PL 13.5

Removal

NOTE: Only the replacement procedure for the Rear Carriage Cable is described here. The replacement procedure for the Front Carriage Cable is the same as for the Rear Carriage Cable.

NOTE: The Front and Rear Carriage Cables must be replaced separately.

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. For the Platen models, remove the Platen Cover. (Figure 1)
2. Remove the Platen Cover.

Figure 1 Removing the Platen Cover
2. Remove the following parts:

- Platen Glass (REP 11.3.1)
- Control Panel (REP 11.1.2)
- DADF Assembly (REP 15.1.1)

3. Remove the DADF Platen Glass. (Figure 2)
4. Remove the screw (1).
5. Remove the Front Support Bracket.
6. Remove the DADF Platen Glass.

Figure 2 Removing the Left Side Platen
4. Unfasten the Full Rate Carriage from the Carriage Cable. (Figure 3)

1. Move the Full Rate Carriage to the frame cutouts.
2. Remove the screws (1).

Figure 4 Removing the spring

Figure 5 Winding the Carriage Cable around the pulley. 1/3

Replacement

1. Wind the Carriage Cable around the pulley. (Figure 5, Figure 6, Figure 7)
2. Insert the Carriage Cable ball into the ditch of the pulley.
3. Wind the spring end of the cable around the pulley for 1.5 rounds.
4. Fix the cable at the spring end on the frame with tape.
5. Wind the cable at the ball end around the pulley for 2 rounds.
6. Fix the cable on the pulley with tape to prevent it from moving.

Figure 6 Winding the Carriage Cable around the pulley. 2/3

j0st41117
Figure 7 Winding the Carriage Cable around the pulley. 3/3

NOTE: Indicates the number of coils made by the Carriage Cable at the front and rear. (Figure 8)

Figure 8 The number of coils made by Carriage Cable at the front and rear
2. Install the ball end of the Carriage Cable. (Figure 9)

1. Route the Carriage Cable on the pulley in front of it.
2. Hang the ball on the notch of the frame.

Figure 9 Installing the Carriage Cable

3. Install the spring end of the Carriage Cable. (Figure 10)
4. Remove the tape securing the Carriage Cable
5. Route the spring end of the Carriage cable along the frame and on the pulley.
6. Route the cable on the pulley at the rear of the Half Rate Carriage.
7. Attach the spring to the Carriage Cable and route the cable along the frame as indicated.

8. Temporarily attach the Full Rate Carriage on the Carriage Cable. (Figure 11)
9. Remove the tape.
10. Move the Full Rate Carriage to the Frame cutout position
11. Temporarily attach the Full Rate Carriage on the Carriage Cable.

Figure 11 Installing the Carriage Cable at the front
4. Remove the tape used for keeping the cable in place.
5. Adjust the position of Full Rate/Half Rate Carriages. (ADJ 11.6.1)
6. Manually move the Full Rate Carriage to ensure that it moves smoothly.

REP 11.5.2 Carriage Motor Assembly

Parts List on PL 13.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. For the Platen models, remove the Platen Cover.
2. Remove the Platen Cover. (Figure 1)

3. Remove the ESS Cover Assembly.

Figure 2 Removing the ESS Cover
3. Remove the Rear Upper Cover. (Figure 3)

Figure 1 Remove the Platen Cover
2. For the DADF Models Remove the DADF. (REP 15.1.1)
3. Remove the ESS Cover Assembly. (Figure 2)

1. Loosen the screws (2).

Figure 3 Removing the Rear Upper Cover
4. Remove the IIT Left Cover. (Figure 4)

1. Remove the screws (2).
2. Remove the IIT Left Cover.

j0vr411006
Figure 4 Removing the IIT Left Cover
3. Remove the IIT Rear Cover. (Figure 5)
4. Remove the screws (2).
5. Remove the IIT Right Cover.

j0vr411007
Figure 5 Removing the IIT Right Cover
6. Remove the IIT Rear Cover. (Figure 6)
7. Remove the screws (3).
8. Remove the IIT Rear Cover

Figure 6 Removing the IIT Rear Cover
3. Disconnect the connector. (Figure 7)

1. Disconnect the connector.
2. Remove the clamp.
3. Remove the spring

Figure 7 Disconnecting the connector
4. Remove the Carriage Motor Assembly. (Figure 8)
a. 1. Remove the screws (x3).
b. 2. Remove the Carriage Motor Assembly.

j0vr411010
Figure 8 Removing the Carriage Motor Assembly

Replacement

1. To install, carry out the removal steps in reverse order.

REP 11.6.1 Exposure Lamp

Parts List on PL 13.6
Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Open the Platen Cover or DADF.
2. Remove the Platen Glass. (REP 11.3.1)
3. Move the Full Rate Carriage to the frame notch.
4. Remove the Exposure Lamp. (Figure 1)
5. Disconnect the connector.
6. Remove the screw.
7. Remove the Exposure Lamp.

Figure 1 Removing the Exposure Lamp

REP 11.6.2 Lamp Wire Harness

Parts List on PL 13.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the DADF. (REP 15.1.1)
2. Remove the Platen Glass. (REP 11.3.1)
3. Remove the Lens Cover. (Figure 1)

Figure 1 Removing Lens Cover

4. Remove the IPS Cover. (Figure 2)
5. Remove the screws (2).
6. Remove the IPS Cover

Figure 2 Removing the IPS Cover
5. Disconnect the connector of the Lamp Wire Harness. (Figure 3)

1. Disconnect the connector.

Figure 3 Disconnecting the connector ($\mathrm{j} 0 \mathrm{st41125)}$
6. Release the Lamp Wire Harness from the hook. (Figure 4)

1. Release the Lamp Wire Harness from the hooks.
2. Remove the Harness from the frame opening.

Figure 4 Release the Lamp Wire Harness from the hook
3. Remove the Full Rate Carriage. (Figure 5)

1. Remove the screws (2).
2. Remove the Full Rate Carriage.

Figure 5 Removing the Full Rate Carriage (j0st41126)
4. Remove the Lamp Wire Harness from the Full Rate Carriage. (Figure 6)

1. Turn over the Full Rate Carriage.
2. Remove the screw.
3. Remove the guide.
4. Disconnect the connector.
5. Remove the Lamp Wire Harness.

Figure 6 Removing the Lamp Wire Harness (j0st41127)

Replacement

1. Install the Lamp Wire Harness by aligning it with the marks as shown in the figure. (Figure 7)
2. To install, carry out the removal steps in reverse order.

NOTE: Adjust the positions of the Full Rate/Half Rate Carriages after installation. (ADJ 11.6.1)

Figure 7 Installing the Lamp Wire Harness

REP 12.1.1 Tray 2 Feeder (2TM)

Parts List on PL 14.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Pull out Tray 2.
2. Remove the Foot Cover. (Figure 1)

j0st41213

Figure 2 Removing the Left Lower Cover
4. Open the Left Cover Assembly.
5. Remove the bracket. (Figure 3)

1. Remove the screw
2. Remove the screw.
j0tp41201

Figure 1 Removing the Foot Covers
3. Remove the Left Lower Cover. (Figure 2)

6. Remove the Feed Out Chute. (Figure 4)

1. Remove the Feed Out Chute.

Figure 4 Removing the Feed Out Chute
7. Disconnect the connector. (Figure 5)

1. Disconnect the connector.
2. Release the clamp to remove the wire.

Figure 5 Disconnecting the connector
8. Remove the Tray 2 Feeder. (Figure 6)

1. Remove the screws (2).
2. Remove the Tray 2 Feeder.

Figure 6 Removing the Tray 2 Feeder

Replacement

1. To install, carry out the removal steps in reverse order.
2. When replacing, enter Diag. mode. Clear the counter.

REP 12.1.2 Tray 3 Feeder (2TM)

Parts List on PL 14.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Pull out Tray $2 / 3$.
2. Remove the Foot Covers. (Figure 1)

j0tp41201

j0st41213

Figure 2 Removing the Left Lower Cover
4. Open the Left Cover Assembly.
5. Remove the screws. (Figure 3)

1. Remove the screws.

Figure 1 Removing the Foot Covers
3. Remove the Left Lower Cover. (Figure 2)

6. Remove the Feed Out Chute. (Figure 4)

1. Remove the Feed Out Chute.

Figure 4 Removing the Feed Out Chute
7. Disconnect the connector. (Figure 5)

1. Disconnect the connector.
2. Release the clamp to remove the wire.

Figure 5 Disconnecting the connector
8. Remove the Tray 3 Feeder. (Figure 6)

1. Remove the screws (2).
2. Remove the Tray 3 Feeder.

Figure 6 Removing the Tray 3 Feeder

Replacement

1. To install, carry out the removal steps in reverse order.
2. When replacing, enter Diag. mode. Clear the counter.

REP 12.3.1 Feed/Retard/Nudger Roll (2TM)

Parts List on PL 14.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.
NOTE: The Feed, Retard and Nudger Roll must be replaced at the same time.

1. Remove the paper tray for the Feed, Retard and Nudger Roll to be replaced
a. Pull out tray and remove paper.
b. Ensure tray is pulled out to the stop.
c. Lift end and pull out to remove.
2. Remove the Tray $2 / 3$ Feeder.

- Tray 2 Feeder (REP 12.1.1)
- Tray 3 Feeder (REP 12.1.2)

3. Move the Front Chute in the direction of the arrow. (Figure 1)
4. Move the Front Chute.

j0st41209
Figure 1 Moving the Front Chute
5. Remove the Feed/Retard/Nudger Roll. (Figure 2)
6. Release the hooks (3) to remove the Feed/Retard/Nudger Roll.

REP 12.6.1 2TM PWB

Parts List on PL 14.7

Clean

Replacement

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Before replacing the 2TM PWB, read and record the values at NVM location 742-022 and 742-023.
2. When replacing the 2TM PWB, set the 2TM PWB Dip Switch to the position as shown. (Figure 1)

Figure 2 Removing the Feed/Retard/Nudger Roll

Replacement

1. To install, carry out the removal steps in reverse order.
2. When replacing, enter Diag. mode. Clear the counter.

3. After replacing the 2TM PWB, restore the original values to NVM locations $742-022$ and 742-023.

REP 13.1.1 Tray 2 Assembly (TTM)

Parts List on PL 15.1

Removal

WARNING
To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Pull out Tray 2.
2. Remove the paper from Tray 2.
3. Open the Left Cover Assembly.
4. Remove the Tray 2 Assembly. (Figure 1)
5. Remove the screw.
6. Slide the stopper.
7. Remove the Tray 2 Assembly.

j0st41301

Replacement

1. To install, carry out the removal steps in reverse order.

Figure 1 Removing the Tray 2 Assembly

REP 13.1.2 Tray 3 Assembly (TTM)

Parts List on PL 15.1

Removal

WARNING
To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Pull out Tray 3.
2. Remove the paper from Tray 3.
3. Remove the Tray 3 Assembly. (Figure 1)
4. Remove the screws (2).
5. Push in Tray 3 Transport Assembly.
6. Remove the screw.
7. Remove the stopper.
8. Remove the Tray 3 Assembly.

Figure 1 Removing the Tray 3 Assembly

Replacement

1. To install, carry out the removal steps in reverse order.

REP 13.3.1 Front/Rear Tray Cable (TTM)

Parts List on PL 15.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the Tray 3 Assembly. (REP 13.1.2)
2. Remove the Tray 3 Cover together with the frame. (Figure 1)
3. Remove the screws (4).
4. Remove the Tray 3 Cover together with the frame.

j0st41303
Figure 1 Removing the Tray 3 Cover
5. Remove the Tray Cable. (Figure 2)

NOTE: Only the replacement procedure for the Front Tray Cable is described here. The Rear Tray Cable is removed in the same way.

1. Remove the E-Clip.
2. Remove the Cable Guide
3. Remove the Tray Cable.
4. Remove the E-Clip.
5. Remove the Cable Guide
6. Remove the Tray Cable.

Figure 2 Removing the Tray Cable
4. Remove the Left Shaft Assembly to remove the Tray Cable. (Figure 3)

1. Remove the E-Clip.
2. Slide the bearings (2)
3. Remove the Lift Shaft Assembly.

REP 13.4.1 Tray 3 Feeder (TTM)

Parts List on PL 15.4

Removal

WARNING

Figure 3 Removing the Left Shaft Assembly to remove the Tray Cable

Replacement

1. To install, carry out the removal steps in reverse order.

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the Tray 2 Assembly. (REP 13.1.1)
2. Remove the Tray 3 Assembly. (REP 13.1.2)
3. Remove the Tray 3 Transport Assembly. (Figure 1)
4. Remove the Tray 3 Transport Assembly.

Figure 1 Removing the Tray 3 Transport Assembly
4. Remove the Stud Bracket. (Figure 2)

1. Remove the screw.

Figure 2 Removing the Stud Bracket
5. Remove the Tray 3 Feeder Assembly. (Figure 3)

1. Disconnect the connectors (2).
2. Remove the screws (2).
3. Remove the Tray 3 Feeder Assembly.

j0st41307

Figure 3 Removing the Tray 3 Feeder Assembly

6. Remove the Tray 3 Feeder. (Figure 4)
7. Remove the screws (2).
8. Remove the Upper Chute.
9. Remove the screws (2).
10. Remove the Lower Chute.

j0st41308

Figure 5 Removing the Tray 3 Feeder

Figure 4 Removing the Lower Chute

7. Remove the Tray 3 Feeder. (Figure 5)
8. Remove the screws (2).
9. Remove the bracket.
10. Remove the screw.
11. Remove the bracket.
12. Remove the screw.
13. Remove the bracket.

Replacement

1. To install, carry out the removal steps in reverse order.

REP 13.5.1 Tray 2 Feeder (TTM)

Parts List on PL 15.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove Tray 2 (REP 13.1.1).
2. Open the Left Cover
3. Remove the Upper/Lower Chute. (Figure 1)
4. Remove the Upper Chute.
5. Remove the Lower Chute.

Figure 1 Removing the Upper/Lower Chute

NOTE: This image is seen as looking in
from the front of the machine and viewing the rear frame. This screw is one of 3 that secures the Feeder Assembly.
j0st41315

Figure 2 Removing the screw

5. Remove the Tray 2 Feeder Assembly. (Figure 3)
6. Remove the screws.
7. Release the Wire Harness from the clamp
8. Disconnect the connector
9. Remove the screws (2).
10. Remove the Tray 2 Assembly.
11. Remove the screw. (Figure 2)

Figure 3 Removing the Tray 2 Assembly
6. Remove the Tray 2 Feeder. (Figure 4)

1. Remove the screws (2).
2. Remove the bracket.

Figure 4 Removing the Tray 2 Feeder

Replacement

1. To install, carry out the removal steps in reverse order.

REP 13.6.1 Feed/Retard/Nudger Roll (TTM)

Parts List on PL 15.7

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

NOTE: The Feed, Retard, and Nudger Roll must be replaced at the same time.

1. Remove the Paper Tray of the Feed Roll, Retard Roll, and Nudger Roll to be removed.

- Tray 2 (REP 13.1.1)
- Tray 3 (REP 13.1.2

2. Pull out tray and remove paper.
3. Move the Front Chute in the direction of the arrow. (Figure 1)
4. Move the Front Chute

j0st41209

Figure 1 Moving the Front Chute
4. Remove the Feed/Retard/Nudger Roll. (Figure 2)

1. Release the hooks (3) to remove the Feed Roll/Retard/Nudger Roll.

Figure 2 Removing the Feed/Retard/Nudger Roll

Replacement

1. To install, carry out the removal steps in reverse order.

REP 13.8.1 TTM PWB

Parts List on PL 15.9

Replacement

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Before replacing the $2 T M$ PWB, read and record the values at NVM location 742-022 and 742-023.
2. When replacing the TTM PWB, set the TTM PWB Dip Switch to the position as shown.

- Model (Figure 1)

OFF\|O	OFF	ON	OFF\|	2TM
OFF	OFF	OFF	OFF	TTM

Figure 1 Setting the Dip Switch
3. After replacing the 2TM PWB, restore the original values to NVM locations 742-022 and 742-023.

REP 15.1.1 DADF

Parts List on PL 16.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

The DADF is heavy component. Take care when lifting the DADF.

1. Disconnect the connector. (Figure 1)
2. Loosen the screws (x 2) and disconnect the connector.

j0st41501
Figure 1 Disconnecting the connector
3. Remove the DADF. (Figure 2)
4. Remove the Knob Screws (x2).
5. Remove the DADF.

Figure 2 Removing the DADF

Figure 3 Installing the DADF

REP 15.1.2 DADF Platen Cushion

Parts List on PL 16.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

NOTE: The DADF Platen Cushion pasted on with Velcro Fastening.

1. Remove the DADF Platen Cushion. (Figure 1)
2. Peel off the DADF Platen Cushion from the Velcro Fastening at 10 locations.

j0st41503

Figure 1 Removing the DADF Platen Cushion
2. Paste the DADF Platen Cushion. (Figure 2)

1. Place the DADF Platen Cushion on the Platen Glass.
2. Set up the gaps from the Registration Guide and Platen Guide.
3. Slowly lower the DADF and press on to the Platen Cushion.

j0st41504
Figure 2 Installing the DADF Platen Cushion

REP 15.2.1 DADF Document Tray

Parts List on PL 16.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the following parts:

- DADF Front Cover (REP 15.2.3)
- DADF Rear Cover (REP 15.2.4)

2. Open the Top Cover.
3. Disconnect the connectors. (Figure 1)
4. Remove the clamp.
5. Disconnect P/J760.
6. Disconnect P/J759.
7. Disconnect the screw (1).
8. Remove the Earth Wire.
9. Unhook the Wire Harness (x2).

Replacement

1. To install, carry out the removal steps in reverse order.

Figure 1 Disconnecting the connectors
4. Remove the DADF Document Tray. (Figure 2)

1. Remove the Tapping Screws (1).
2. Remove the Tray Holder.
3. Remove the DADF Document Tray.
4. Pull out the Wire Harness.

Figure 2 Removing the DADF Document Tray

Replacement

1. To install, carry out the removal steps in reverse order.

REP 15.2.2 DADF Feeder Assembly

Parts List on PL 16.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the DADF. (REP 15.1.1)
2. Remove the following covers.

- DADF Front Cover (REP 15.2.3)
- DADF Rear Cover (REP 15.2.4)

3. Open the Top Cover Assembly.
4. Remove the DADF Document Tray. (REP 15.2.1)
5. Disconnect the DADF PWB connectors. (Figure 1)
6. Disconnect the connectors (6).

Figure 1 Disconnecting the DADF PWB connectors
6. Remove the lever and Wire Harness. (Figure 2)

1. Loosen the Set Screw and remove the disk.
2. Release the hook and remove the lever.
3. Remove the screw (Gold).
4. Remove the washer.
5. Move the DADF Interlock Switch.
6. Disconnect the connector.
7. Disconnect the connector.
8. Remove the Wire Harness from the clamps (x3).

Figure 2 Removing the Lever and Wire Harness

Figure 3 Removing the DADF Feeder Assembly

Replacement

1. To install, carry out the removal steps in reverse order.
2. When replacing, enter Diag. mode. Clear the [HFSI] counter.

REP 15.2.3 DADF Front Cover

Parts List on PL 16.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Open the Top Cover Assembly.
2. Remove the DADF Front Cover. (Figure 1)
3. Remove the Tapping Screw (1).
4. Remove the tabs (x2) from the Tab Slot and remove the DADF Front Cover.

REP 15.2.4 DADF Rear Cover

Parts List on PL 16.2

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Open the Top Cover.
2. Open the DADF Document Tray.
3. Remove the DADF Rear Cover. (Figure 1)
4. Remove the Tapping Screw (1).
5. Remove the screw (2).
6. Release the hooks (x2).
7. Remove the harness from the notch of the DADF Rear Cover.
8. Remove the tabs (x4) from the Tab Slot and remove the Data Rear Cover.

Figure 1 Removing the DADF Front Cover

Replacement

1. To install, carry out the removal steps in reverse order.

Figure 1 Removing the DADF Rear Cover

Replacement

1. Pull the harness to the notch of the DADF Rear Cover when installing the DADF Rear Cover. (Figure 2)
2. Pull the harness to the notch of DADF Rear Cover.

Figure 2 Installing the DADF Rear Cover

REP 15.3.1 DADF PWB

Parts List on PL 16.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine

1. Remove the DADF Rear Cover. (REP 15.2.4)
2. Disconnect the DADF PWB connectors. (Figure 1)
3. Disconnect the connectors (13)

Figure 2 Removing the DADF PWB

Replacement

1. To install, carry out the removal steps in reverse order.
2. Check the S/W version and upgrade if necessary.

Figure 1 Disconnecting the DADF PWB connectors
3. Remove the DADF PWB. (Figure 2)

1. Remove the screws (1).
2. Remove the Tapping Screws (4).
3. Remove the Earth Wires (x 2).
4. Remove the DADF PWB.

REP 15.3.2 Left Counter Balance

Parts List on PL 16.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

NOTE: Left/Right Counter Balance is identified by Compression Spring pressure. Left Counter Balance: Compression Spring pressure strong
Right Counter Balance: Compression Spring pressure weak

1. Remove the DADF. (REP 15.1.1)
2. Remove the following covers.

- DADF Front Cover (REP 15.2.3)
- DADF Rear Cover (REP 15.2.4)

3. Open the Top Cover Assembly.
4. Remove the DADF Document Tray. (REP 15.2.1)
5. Remove the DADF Feeder Assembly. (REP 15.2.2)
6. Remove the Left Counter Balance. (Figure 1)
7. Remove the Tapping Screws (4).
8. Remove the Left Counter Balance

Figure 1 Removing the Left Counter Balance

Replacement

1. To install, carry out the removal steps in reverse order.

REP 15.3.3 Right Counter Balance

Parts List on PL 16.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

NOTE: Left/Right Counter Balance is identified by Compression Spring pressure. Left Counter Balance: Compression Spring pressure strong
Right Counter Balance: Compression Spring pressure weak

1. Remove the DADF. (REP 15.1.1)
2. Remove the DADF Rear Cover. (PL 15.2).
3. Remove the screw that secures the Right Counter Balance. (Figure 1)
4. Check the calibration.
5. Remove the screws (1).
6. Remove the Earth Wire.
7. Remove the Tapping Screws (4).

Figure 1 Unfastening the Right Counter Balance
4. Remove the Right Counter Balance. (Figure 2)

1. To remove, slide the Right Counter Balance in the direction of the arrow.
2. Precautions during installation
A.Slot
B.Boss
C.Cutout

REP 15.4.1 Retard Roll

Parts List on PL 16.4

Removal

NOTE: The Feed, Retard and Nudger Roll must be replaced at the same time.

1. Open the Top Cover Assembly.
2. Remove the Retard Roll chute. (Figure 1)

Figure 1 Removing the Retard Roll chute.
3. Remove the Retard Roll Bracket and spring. (Figure 2)

1. Check DADF (ADJ 15.1.6).

Figure 2 Removing the Retard Roll Bracket and spring
4. Remove the Retard Roll. (Figure 3)

1. Remove the shaft.
2. Remove the Retard Roll.
3. Remove the Torque Limiter.

Figure 3 Removing the Retard Roll
Replacement
Check the software version and upgrade the software level as needed.

REP 15.4.2 Top Cover Assembly

Parts List on PL 16.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Open the Top Cover Assembly.
2. Remove the following covers:

- DADF Front Cover (REP 15.2.3)
- DADF Rear Cover (REP 15.2.4)

3. Remove the Feed Upper Chute. (Figure 1)
4. Remove the screw (1)
5. Remove the Feed Upper Chute.
6. Take note of the following at installation:
A. Insert the Boss into the U-groove.
B. Insert the Tab into the Tab Slot.

Figure 1 Removing the Feed Upper Chute
4. Remove the Harness Guide. (Figure 2)

1. Loosen the screw.
2. Remove the Earth Wire
3. Remove the Tapping Screw (1).
4. Unfasten the Harness Guide.

Figure 2 Removing the Harness Guide
5. Remove the Plate Spring. (Figure 3)

1. Remove the Tapping Screw (2).
2. Remove the Plate Spring.

Figure 3 Removing the Plate Spring
6. Remove the Top Cover with the Wire Harness connected. (Figure 4)

1. Remove the E-clip.
2. Remove the screw (1).
3. Remove the Stud Bracket.
4. Remove the stud.
5. Remove the Top Cover Assembly.

Figure 4 Removing the Top Cover Assembly
7. Unfasten the Wire Harness. (Figure 5)

1. Disconnect the connector.
2. Remove the Topping Screw (1).
3. Remove the Earth Wire.
4. Remove the Tapping Screw (2).
5. Unfasten the Harness Guide.

Figure 5 Unfastening the Wire Harness

8. Remove the Wire Harness from the Top Cover. (Figure 6)
9. Disconnect the connector.
10. Remove the Wire Harness from the Harness Guide.
11. Remove the Wire Harnesses (3) from the square hole and remove the Top Cover.

Replacement

1. Remove the Wire Harness from the new Top Cover Assembly when installing the cover.
2. Remove the Feed Upper Chute and Plate Spring from the new Top Cover Assembly. (Figure 7)
3. Remove the screw (1).
4. Remove the Feed Upper Chute.
5. Remove the Tapping Screw (2).
6. Remove the Plate Spring.

Figure 7 Removing the Feed Upper Chute and Plate Spring
3. Remove the Wire Harness from the new Top Cover. (Figure 8)

1. Disconnect the connectors (2).
2. Removing the Tapping Screw (3)
3. Removing the Wire Harness (x3) from the square hole.

Figure 8 Removing the Wire Harness
Figure 9 Hooking on the spring
4. Hook on the spring when securing the Harness Guide. (Figure 9)

REP 15.6.1 Nudger Roll, Feed Roll

Parts List on PL 16.6

Removal

NOTE: The Feed, Retard and Nudger Rolls must be replaced at the same time.

1. Open the Top Cover Assembly.
2. Remove the Feed Upper Chute. (Figure 1)
3. Remove the screw (1).
4. Remove the Feed Upper Chute.
5. Precautions during Installation:
A. Insert the Boss into the U-groove.
B. Insert the Tab into the Tab Slot.

Figure 1 Removing the Feed Upper Chute
3. To remove the Nudger Roll rotate the inboard gear of the Torque Limiter until the Nudger Roll is fully extended. (Figure 2)

Figure 2 Rotate the gear to extend the Retard Roll
4. Lift the retaining clip from the Nudger Roll. (Figure 3)

Figure 3 Removing the retaining clip from the Nudger Roll
5. Remove the Nudger Roll Shaft and remove the Nudger Roll. (Figure 4)

Figure 4 Removing the Nudger Roll shaft and the Nudger Roll
6. Retract the Nudger Roll by rotating the Torque Limiter inboard gear.
7. To remove the Feed Roll, remove the locking tab. (Figure 5)

Figure 5 Removing the Feed Roll Locking Tab
8. Remove the Feed Roll Shaft and remove the Feed Roll. (Figure 6)

Figure 6 Removing the Feed Roll shaft and the Feed Roll

Replacement

1. Extend the Nudger Roll by rotating the Torque Limiter inboard gear.
2. Install the Nudger Roll and Nudger Roll shaft. The shaft is spring loaded so push in the shaft and hold it and install the locking clip. (Figure 7)

Figure 7 Installing the Nudger Roll, Nudger Roll shaft and locking clip
3. Retract the Nudger Roll by rotating the Torque Limiter inboard gear.
4. Install the Feed Roll and Feed Roll shaft. The shaft is spring loaded so push in the shaft and hold it and install the locking clip. (Figure 8)

Figure 8 Installing the Feed Roll and Feed Roll shaft.
5. Observe following while installing Upper Feed Chute. (Figure 9)

- Insert the Boss into the U-groove (A).
- Insert the Tab into the Tab Slot (B).
- Install the screw (1)

Figure 9 Installing the Feed Upper Chute

REP 15.8.1 Registration Roll

Parts List on PL 16.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

1. Remove the DADF. (REP 15.1.1)
2. Remove the following covers.

- DADF Front Cover (REP 15.2.3)
- DADF Rear Cover (REP 15.2.4)

3. Open the Top Cover.
4. Remove the DADF Document Tray. (REP 15.2.1)
5. Remove the DADF Feeder Assembly. (REP 15.2.2)
6. Loosen the belt tension on the DADF Registration Motor. (Figure 1)
7. Remove the spring.
8. Loosen the screws (2).

Figure 1 Loosening the belt tension
7. Move the motor unit. (Figure 2)

1. Disconnect the connector.
2. Remove the screws (3).
3. Remove the guide.
4. Remove the Stud Screw.
5. Move the motor unit.
6. Remove the belt.

Figure 3 Removing the Feed Guide
10. Remove the sensor holder. (Figure 4)

1. Remove the Tapping Screws (2).
2. Remove the sensor holder.
3. Open the chute
4. Remove the Feed Guide. (Figure 3)
5. Remove the screws (2).
6. Remove the Feed Guide.

Figure 4 Removing the sensor holder
11. Loosen the belt tension. (Figure 5)

1. Remove the spring.
2. Loosen the screw.
3. Loosen the belt tension.
4. Remove the E-Clip.
5. Remove the gear.

Figure 5 Loosening the belt tension
12. Remove the Registration Roll. (Figure 6)

1. Remove the E-Clip.
2. Remove the bearings (2).
3. Remove the Registration Roll.

Replacement

1. When installing the motor unit, pull the Wire Harness as shown in Fig. 7. (Figure 7)

Figure 6 Removing the Registration Roll

Figure 7 Pulling the Wire Harness

REP 16.1.1 H-Transport Assembly

Parts List on PL 17.1
Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the following parts:

- Finisher Assembly (REP 16.1.2)

2. Move the H -Transport Assembly. (Figure 1)
3. Remove the screws (x2).
4. Remove the H-Transport Assembly.

Figure 1 Removing the H -Transport Assembly

REP 16.1.2 Finisher Assembly

Parts List on PL 17.1

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Right Cover. (Figure 1)
2. Remove the Right Cover.

j0st41654

Figure 1 Removing the Right Cover
2. Remove the cover. (Figure 2)

1. Remove the cover.

Figure 2 Removing the cover

Figure 3 Removing the cover
4. Remove the Left Panel. (Figure 4)

1. Remove the Left Panel.

2. Disconnect the cables and connectors. (Figure 5)
3. Disconnect the connectors (x 2).
4. Disconnect the cable.

Figure 4 Removing the Left Panel

\qquad

Figure 5 Disconnecting the cables and connectors
6. Remove the Knob Screws. (Figure 6)

1. Remove the Knob Screws (x2).

Figure 6 Removing the Knob Screws
7. Move the Finisher Assembly to the left and lower it down from the rack. (Figure 7)

1. Remove the Finisher Assembly.

Figure 7 Removing the Finisher Assembly

REP 16.3.1 H-Transport Belt

Parts List on PL 17.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the H -Transport Assembly. (REP 16.1.1)
2. Remove the H-Transport Rear Cover. (Figure 1)
3. Remove the screws (x2).
4. Remove the H-Transport Rear Cover.

5. Remove the belt. (Figure 2)
6. Remove the E-Clip.
7. Remove the belt.
8. Remove the pulley and bearing.

Figure 2 Removing the belt
4. Remove the Transport Roll. (Figure 3)

1. Remove the E-Clip and bearing.
2. Remove the Transport Roll.

Figure 1 Removing the H -Transport Rear Cover

Figure 3 Removing the Transport Roll
5. Remove the bracket. (Figure 4)

1. Remove the screw.
2. Remove the bracket.

Figure 5 Removing the H -Transport Belt

REP 16.4.1 Front Cover Assembly

Parts List on PL 17.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Front Cover Assembly. (Figure 1)
2. Remove the screws (x4).
3. Remove the Front Cover Assembly.

Figure 1 Removing the Front Cover Assembly

REP 16.4.2 Rear Cover

Parts List on PL 17.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the Left Panel. (Figure 1)
2. Remove the Left Panel.

Figure 2 Removing the connector
3. Remove the Rear Cover. (Figure 3)

1. Remove the screws (x4).
2. Remove the Rear Cover.

Figure 1 Removing the Left Panel

2. Remove the connector. (Figure 2)
3. Remove the connector.

Figure 3 Removing the Rear Cover

REP 16.5.1 Stack Height Sensor Assembly

Parts List on PL 17.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the link from the Top Open Cover Assembly. (Figure 1)
2. Lift up the Top Open Cover Assembly.
3. Remove the screws on both sides.
4. Remove the links on both sides.

Figure 1 Removing the link
2. Remove the Stack Height Sensor Assembly. (Figure 2)

1. Remove the screw.
2. Disconnect the connector
3. Remove the Stack Height Sensor Assembly.

REP 16.5.2 Eject Roll Assembly

Parts List on PL 17.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the following parts:

- Rear Cover (REP 16.4.2)
- Front Cover Assembly (REP 16.4.1)

2. Remove the Stacker Tray. (Figure 1)
3. Remove the screw.
4. Remove the Stacker Tray.

Figure 1 Removing the Stacker Tray
3. Remove the Right Cover. (Figure 2)

1. Remove the Right Cover.

Figure 2 Removing the Right Cover
4. Remove the bracket. (Figure 3)

1. Remove the screws (x4).
2. Remove the bracket.

Figure 3 Removing the bracket

Figure 4 Disconnecting the connector

6. Remove the Knob Screws. (Figure 5)
7. Remove the Knob Screws (x2).

Figure 5 Removing the Knob Screws
7. Remove the Tray Guide. (Figure 6)

1. Remove the screws (x4).
2. Remove the rivet to remove the clamp.
3. Remove the wire from the hole.
4. Remove the Tray Guide.

j0st41617
Figure 6 Removing the Tray Guide
5. Remove the Set clamp clutch. (Figure 7)
6. Remove the clamp.
7. Remove the screw
8. Remove the spring.

Figure 7 Removing the Set Clamp clutch
9. Remove the Eject Roll. (Figure 8)

1. Remove the E-Clip and bearing on both sides.
2. Remove the hook from the Eject Shaft.
3. Remove the Eject Roll.

Figure 8 Removing the Eject Roll
10. Remove the Eject Shaft. (Figure 9)

1. Remove the E-Clip and gear.
2. Remove the E-Clip and bearing on both sides.
3. Remove the Eject Shaft.

Replacement

NOTE: Replace the Exit Roll and Eject Roll at the same time.

Figure 9 Removing the Eject Shaft
NOTE: When installing the Actuator, ensure that the stopper is inserted into the ditch of the Actuator as illustrated below. (Figure 10)

j0st41621

Figure 10 Installing the Actuator

REP 16.6.1 Decurler Roll

Parts List on PL 17.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the following parts:

- Front Cover Assembly (REP 16.1.2)
- Rear Cover (REP 16.4.1)

2. Remove the Top Cover. (Figure 1)
3. Loosen the screws (x4).
4. Remove the Top Cover.

Figure 1 Removing the Top Cover
3. Remove the arm. (Figure 2)

1. Remove the spring
2. Remove the E-Clip.
3. Remove the arm.

Figure 2 Removing the arm

4. Remove the Decurler Roll Assembly. (Figure 3)

1. Remove the spring.
2. Remove the E-Clip.
3. Remove the arm.
4. Remove the Decurler Roll Assembly.

REP 16.6.2 Finisher Drive Motor

Parts List on PL 17.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the Rear Cover. (REP 16.4.1)
2. Remove the Finisher Drive Motor. (Figure 1)
3. Disconnect the connector.
4. Remove the screws (x4).
5. Remove the Finisher Drive Motor.

REP 16.7.1 Paper Eject Belt

Parts List on PL 17.7

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Rear Cover. (REP 16.4.1)
2. Turn the actuator. (Figure 1)
3. Turn the actuator in the direction of the arrow.

Figure 1 Turning the actuator
3. Release the clamp to remove the wire. (Figure 2)

1. Disconnect the connectors (x 4).
2. Release the Edge Saddle to remove the wire.

Figure 2 Disconnecting the connectors
4. Remove the Cam Bracket Assembly. (Figure 3)

1. Remove the screws ($\times 4$),
2. Remove the Cam Bracket Assembly

Figure 3 Removing the Cam Bracket Assembly
5. Remove the belt. (Figure 4)

1. Remove the E-Clip to remove the gear.
2. Remove the E-Clip to remove the pulley
3. Remove the Paper Eject Belt.

Figure 4 Removing the belt

Replacement

1. To install, carry out the removal steps in reverse order taking note of the following:

NOTE: Make sure the stud on the Cam Bracket Assembly is inserted into the hole. (Figure 5)

1. Lift up the Upper Cover to lift up the roller.
2. Insert the stud into the hole.

Figure 5 Installing the Cam Bracket Assembly

NOTE: When installing the Actuator, ensure the stopper is inserted into the ditch of the Actuator as illustrated below. (Figure 6)

REP 16.8.1 Staple Unit Rail

Parts List on PL 17.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the following parts:

- Staple Assembly (REP 16.8.2)
- Front Cover Assembly (REP 16.1.2)
- Rear Cover (REP 16.4.1)

2. Disconnect the connectors. (Figure 1)
3. Disconnect the connectors ($x 5$).
4. Release the Edge Saddles $(x 4)$ to remove the wire.
5. Remove the screw to remove the Earth Wire.

Figure 6 Installing the Actuator

Figure 1 Disconnecting the connectors
3. Remove the bracket. (Figure 2)

1. Remove the screw.
2. Loosen the screws ($\times 2$)
3. Remove the bracket.

Figure 2 Removing the bracket
4. Move the PWB Bracket in the direction of the arrow. (Figure 3)

1. Loosen the screw.
2. Remove the screws (x2).
3. Remove the PWB Bracket with the connector still connected.

Figure 3 Moving the PWB Bracket
5. Pull out the Wire Harness. (Figure 4)

1. Remove the screws (x2).
2. Pull out the Wire Harness.

Figure 4 Pulling out the Wire Harness
6. Remove the screws. (Figure 5)

1. Disconnect the connector
2. Remove the screws (x2).

3. Remove the Rail Assembly. (Figure 6)
4. Remove the Rail Assembly.

Figure 6 Removing the Rail Assembly
8. To remove the Carriage Assembly, move it in the direction of the arrow. (Figure 7)

1. Remove the Carriage Assembly.

2. Remove the rail. (Figure 8)
3. Remove the screws ($\times 5$)
4. Remove the Staple Unit Rail.

REP 16.8.2 Staple Assembly

Parts List on PL 17.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the Front Cover Assembly. (REP 16.4.1)
2. Disconnect the connectors. (Figure 1)
3. Disconnect the connectors (x2).

Figure 1 Disconnecting the connectors

1. Remove the screw
2. Remove the screw to remove the Earth Wire.
3. Remove the Staple Assembly.

Figure 2 Removing the Staple Assembly
3. Remove the Staple Assembly. (Figure 2)

Replacement

1. To install, carry out the removal steps in reverse order taking note of the following:

NOTE: Ensure the tip of the Staple Assembly is inserted into the hole in the bracket. (Figure 3)

Figure 3 Installing the Staple Assembly

REP 16.9.1 Compiler Tray Assembly

Parts List on PL 17.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Staple Assembly (REP 16.8.2).
2. Remove the Tray Guide (Perform REP 16.5.2 up to Step 5.)
3. Release the clamp to remove the wire. (Figure 1)
4. Disconnect the connectors (x2).
5. Release the Edge Saddles (x 2) to remove the wire.

Figure 1 Disconnecting the connectors
4. Remove the screws. (Figure 2)

1. Remove the screws (x 2).

j0st41642
Figure 3 Removing the Compiler Assembly

Figure 2 Removing the screws
5. Remove the Compiler Assembly (item 1) (Figure 3).
2. Loosen the screws (x2)
3. Remove the bracket.

REP 16.10.1 Stacker Motor Assembly

Parts List on PL 17.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Rear Cover. (REP 16.4.1)
2. Slide the gear to lower down the Stacker Tray. (Figure 1)
3. Slide the gear to disengage the teeth of Cam.

Figure 2 Removing the bracket
4. Remove the screws. (Figure 3)

1. Remove the screws (x2).
2. Loosen the screw.
j0st41643
Figure 1 Moving the gear
3. Remove the bracket. (Figure 2)
4. Remove the screw.

Figure 4 Removing the Staple Motor Assembly
5. Remove the Stacker Motor Assembly. (Figure 4)

1. Remove the screws ($\times 3$) while sliding the PWB Bracket upwards.
2. Slide the gear.
3. Remove the Stacker Motor Assembly.

REP 16.10.2 Elevator Belt Assembly

Parts List on PL 17.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display

1. Remove the Tray Guide. (Perform REP 16.5.2 up to Step 5.)
2. Remove the bracket. (Figure 1)
3. Remove the screw.
4. Loosen the screws (x2).
5. Remove the bracket.

6. Slide the PWB Bracket sideways. (Figure 2)
7. Disconnect the connectors (x2).
8. Release the clamps (x 2) to remove the wire.
9. Remove the clamp
10. Remove the screws (x 2).
11. Loosen the screw.
12. Slide the PWB Bracket in the direction of the arrow.

Figure 2 Moving the PWB Bracket

Figure 1 Removing the bracket
4. Remove the Elevator Belt Assembly. (Figure 3)

1. Remove the screws ($\times 3$).
2. Remove the Elevator Belt Assembly.

REP 16.11.1 Paddle Gear Shaft

Parts List on PL 17.11

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Rear Cover. (REP 16.4.1)
2. Remove the Cam Bracket Assembly. (Perform REP 16.7.1 up to Step 4.)
3. Remove the bearing. (Figure 1)
4. Remove the E-Clip.
5. Remove the gear.
6. Remove the bearing.

Figure 1 Removing the bearing
4. Remove the screw securing the Paddle Gear Shaft. (Figure 2)

1. Remove the screw.

Figure 2 Removing the screw
5. Remove the Paddle Gear Shaft. (Figure 3)

1. Remove the Paddle Gear Shaft.

Figure 3 Removing the Paddle Gear Shaft

REP 16.12.1 Finisher PWB

Parts List on PL 17.12

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Remove the Rear Cover. (REP 16.4.1)
2. Disconnect the connectors. (Figure 1)
3. Disconnect the connectors (x 10).
4. Release the Edge Saddles ($x 4$) to remove the wire.

Figure 1 Disconnecting the connectors
3. Remove the Finisher PWB. (Figure 2)

1. Remove the screws (x 5).
2. Remove the Finisher PWB.

Figure 2 Removing the Finisher PWB

Replacement

1. To install, carry out the removal steps in reverse order taking note of the following:

NOTE: When installing, keep the core shown in Figure 2 inside the box.

REP 16.12.2 Finisher LVPS PWB

Parts List on PL 17.13

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.

1. Switch off the power and disconnect the Power Cord.
2. Remove the Front Cover. (REP 16.4.1)
3. Open the Top Cover Assembly.
4. Remove the Rear Cover. (REP 16.4.2)
5. Remove the Stacker Tray. (Figure 1)
6. Remove the screw (1).
7. Remove the Stacker Tray.

Figure 2 Removing the Stacker Bracket Cover
4. Remove the Stacker Bracket. (Figure 3)

1. Remove the screws (4).
2. Remove the Bracket.

Figure 1 Removing the Stacker Tray
3. Remove the Stacker Bracket Cover. (Figure 2)

Figure 4 Disconnecting the connector
4. Remove the Right Cover. (Figure 5)

1. Remove the Right Cover.
j0st41614
Figure 3 Removing the Stacker Bracket
2. Disconnect the Connector. (Figure 4)

Figure 5 Removing the Right Cover
2. Remove the knob screws. (Figure 6)

1. Remove the knob screws (2)

Figure 6 Removing the knob screws (2)
2. Remove the Tray Guide. (Figure 7)

1. Remove the screws (4).
2. Remove the plastic rivet to remove the wire harness clamp.
3. Remove the wire harness from the Tray Guide opening.
4. Remove the Tray Guide.

Figure 8 Removing the LVPS housing cover
6. Disconnect the connectors (3) from the Power Supply. (Figure 9)

Figure 7 Removing the Tray Guide
5. Remove the screws (3) from Low Voltage Power Supply housing cover. (Figure 8)

Figure 9 Disconnecting the Connectors (3)
7. Remove the screws (4). (Figure 10)

Figure 10 removing the screws (4)
8. Pinch together the legs of the plastic PWB StandOffs to release the locking tabs (2). (Figure 11, Figure 12)

Figure 11 Locating the locking tabs

Figure 12 Releasing the locking tabs (2)
9. Remove the Low Voltage Power Supply PWB.

Replacement

1. When installing the Tray Guide, be sure to insert the lower tabs (2) into the Finisher frame.

Figure 13 Installing the Tray Guide

REP 22.1 A-Finisher

Parts List on PL22.1

Removal

WARNING
To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Disconnect the A-Finisher Wire Harness. (Figure 1)
(1)Remove Clamp.
(2)Disconnect Connectors (2).

Figure 2 Loosen the Thumb Screws (af422105)
3. Remove the A-Finisher. (Figure 3)

Figure 1 Disconnecting the Connectors (af422104)

Figure 3 Remove the A-Finisher (af422106)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.3.1 Paddle Belt

Parts List on PL 22.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine. (REP 22.1)
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the front Pulley. (Figure 1)
(1)Remove E-Clip.
(2)Remove Flange.
(3)Remove Belt from Pulley.
(4)Remove Pulley.

Figure 1 Removing the Pulley (jOfa42201)
4. Remove the front Bearing. (Figure 2)
(1)Remove Bearing.

Figure 2 Removing the Bearing (j0fa42202)
5. Remove the rear Gear. (Figure 3)
(1)Remove E-Clip.
(2)Remove Gear.

Figure 3 Removing the Gear (j0fa42203)
6. Remove the rear Bearing. (Figure 4)
(1)Remove Bearing.

Figure 4 Removing the Bearing (jofa42204)
7. Remove the Paddle Link Assembly. (Figure 5)
(1)Remove Paddle Link Assembly.

j0fa42205
Figure 5 Removing the Paddle Link Assembly (j0fa42205)
8. Remove the Bearing. (Figure 6)
(1)Remove E-Clip.
(2)Remove Bearing.

Figure 6 Removing Bearing (Ofa42206)
9. Remove the Shaft Assembly. (Figure 7)
(1)Remove Paddle Belt from Pulley.
(2)Remove Shaft Assembly in the direction of the arrow.

Figure 7 Removing Shaft Assembly (j0fa42207)
10. Remove the Paddle Belt. (Figure 8)
(1)Remove E-Clips (2).
(2)Move Bearings (2) in the direction of the arrow.
(3)Remove Sub Paddle Shaft Assembly.
(4)Remove Paddle Belt.

Figure 8 Removing the Paddle Belt (jofa42208)

Replacement

1. Reverse the removal procedure for replacement.
2. Install the Paddle Link Assembly as shown in the figure. (Figure 9)

Figure 9 Installing the Paddle Link Assembly (j0fa42209)

REP 22.3.2 Sub Paddle Solenoid

Parts List on PL 22.3

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Turn over the A-Finisher.
4. Remove the Bottom Cover. (PL 22.2)
5. Disconnect the Connector. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connector.

Figure 1 Disconnecting the Connector (jOfa42210)
6. Turn over the A-Finisher.
7. Remove the Sub Paddle Solenoid Assembly. (Figure 2)
(1)Disconnect Connector.
(2)Release Wire from Hook.
(3)Remove Screws (2).
(4)Remove Sub Paddle Solenoid Assembly.

Figure 2 Removing the Sub Paddle Solenoid Assembly (jOfa42211)
8. Remove the Support. (Figure 3)
(1)Remove Screw.
(2)Remove Support.

Ofa42212
Figure 3 Removing the Support (jOfa42212)
9. Remove the Sub Paddle Solenoid. (Figure 4)
(1)Remove Screws (2)
(2)Remove the Sub Paddle Solenoid.

Figure 4 Removing the Sub Paddle Solenoid (jOfa42213)

Replacement

1. Reverse the removal procedure for replacement.
2. Install the Sub Paddle Assembly as shown in the figure. (Figure 5)

Figure 5 Installing the Sub Paddle Assembly (j0fa42214)

REP 22.4.1 Exit Roll Assembly

Parts List on PL 22.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Pinch Roll. (REP 22.5.1)
4. Remove the Gear. (Figure 1)
(1)Remove KL-Clip.
(2)Remove Gear.

Figure 1 Removing the Gear (jOfa42215)
5. Remove the front Bearing. (Figure 2)
(1)Remove E-Clip.
(2)Remove Bearing

Figure 2 Removing the Bearing (j0fa42216)
6. Remove the rear Bearing. (Figure 3)
(1)Remove E-Clip.
(2)Remove Bearing.

Figure 3 Removing the Bearing (j0fa42217)
7. Remove the Exit Roll Assembly. (Figure 4)
(1)Remove Exit Roll Assembly.

Figure 4 Removing the Exit Roll Assembly (j0fa42218)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.4.2 Staple Assembly

Parts List on PL 22.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Staple Assembly. (Figure 1)
(1)Remove Clamps (2).
(2)Disconnect Connectors (2)
(3)Remove Screws (2).
(4)Remove Staple Assembly.

Figure 1 Removing the Staple Assembly (jofa42219)
4. Remove the Bracket from the Staple Assembly. (Figure 2)
(1)Remove Screws (2).

Figure 2 Removing the Bracket (jOfa42220)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.4.3 Set Clamp Home Sensor

Parts List on PL 22.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Rear Cover. (PL 22.1)
3. Disconnect the Connector. (Figure 1)
(1)Release Clamp and remove the wire.
(2)Disconnect Connector.

Figure 1 Disconnecting Connector (jOfa42221)
4. Remove the Set Clamp Home Sensor Assembly. (Figure 2)
(1)Remove Screw.
(2)Remove Set Clamp Home Sensor Assembly.

Figure 2 Removing the Set Clamp Home Sensor Assembly (jOfa42222)
5. Remove the Set Clamp Home Sensor. (Figure 3)
(1)Remove Set Clamp Home Sensor from Bracket.
(2)Disconnect Connector.

Figure 3 Removing the Set Clamp Home Sensor (jOfa42223)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.4.4 Exit Roll Assembly

Parts List on PL 22.4

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Remove the Left Cover. (PL 22.2)
5. Remove the Upper Frame Section. (Figure 1)
(1)Remove Screw and Bracket.
(2)Remove Screws (2).
(3)Remove Screw and Bracket.
(4)Remove Screws (2).
(5)Remove the Upper Frame Section

Figure 1 Removing the Upper Frame Section (af422101)
NOTE: The screws do not thread into the Upper Chute. They are used like pins to secure the Upper Chute in place.
6. Remove the Upper Chute Assembly. (Figure 2)
(1)Remove Screws (2).
(2)Remove Screw.
(3)Carefully Remove the Upper Chute Assembly.

Figure 2 Removing the Upper Chute Assembly (af422100)
7. Remove the Exit Roll Assembly. (Figure 3)
(1)Remove E-ring and Bearing.
(2)Remove E-ring and Bearing.
(3)Remove the Exit Roll Assembly.

Figure 3 Removing the Exit Roll Assembly (af422103)

Replacement

1. Reverse the removal procedure for replacement.

NOTE: Ensure that the Paper Guides on the Upper Chute (PL 22.6) are not folded back on top of the Exit Roll Assembly (PL 22.5).

REP 22.5.1 Pinch Roll

Parts List on PL 22.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Pinch Roll. (Figure 1)
(1)Raise Springs (4) in the direction of the arrow.
(2)Remove Pinch Rolls (4).

Figure 1 Removing the Pinch Rolls (jOfa42224)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.5.2 Finisher Entrance Sensor

Parts List on PL 22.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Turn over the A-Finisher.
3. Remove the Bottom Cover. (PL 22.2)
4. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (j0fa42266)
5. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate (j0fa42267)
6. Remove the Finisher Entrance Sensor Assembly. (Figure 3)
(1)Disconnect Connector.
(2)Remove Tapping Screw.
(3)Remove Finisher Entrance Sensor Assembly.

Figure 3 Removing the Finisher Entrance Sensor Assembly (jOfa42225)
7. Remove the Finisher Entrance Sensor. (Figure 4) (1)Remove Finisher Entrance Sensor from Bracket

Figure 4 Removing the Finisher Entrance Sensor (j0fa42226)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.5.3 Compile Exit Sensor

Parts List on PL 22.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Turn over the A-Finisher.
3. Remove the Bottom Cover. (PL 22.2)
4. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (Ofa42266)
5. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Release Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Moving the Bottom Plate (jOfa42267)
6. Remove the Compile Exit Sensor Assembly. (Figure 3)
(1)Remove Screw.
(2)Remove Compile Exit Sensor Assembly.

Figure 3 Removing the Compile Exit Sensor Assembly (jOfa42227)
7. Remove the Compile Exit Sensor. (Figure 4)
(1)Release Clamps (2) and remove the wire.
(2)Disconnect Connector.
(3)Remove Compile Exit Sensor.

Figure 4 Removing the Compile Exit Sensor (jOfa42228)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.5.4 Main Paddle Shaft Assembly

Parts List on PL 22.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Gear. (Figure 1)
(1)Remove E-Clip.
(2)Remove Gear.
(3)Remove KL-Clip.
(4)Remove Gear.

jOfa42229
4. Remove the Gear Pulley. (Figure 2)
(1)Remove E-Clip.
(2)Remove Gear.
(3)Remove Flange.

Figure 2 Removing the Gear Pulley (jOfa42293)
5. Remove the Bearing. (Figure 3)
(1)Remove Bearing.

Figure 3 Removing the Bearing (j0fa42294)
6. Remove the Support Bearing from the ENT Lower Chute Assembly. (Figure 4) (1)Remove Tapping Screw.
(2)Remove Support Bearing.

Figure 4 Removing the Support Bearing (jOfa42232)
7. Remove the Main Paddle Shaft Assembly. (Figure 5)
(1)Remove Main Paddle Shaft Assembly.

Figure 5 Removing the Main Paddle Shaft Assembly (jOfa42233)
8. Remove the Support Bearing from the Main Paddle Shaft Assembly. (Figure 6) (1)Remove E-Clip.
(2)Remove Support Bearing.

Figure 6 Removing the Support Bearing (jOfa42234)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.5.5 Lower Chute Assembly

Parts List on PL 22.5

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Turn over the A-Finisher (Transport).
4. Remove the Stapler Assembly. (Figure 1)
(1)Release Clamps (2) and remove the wire.
(2)Disconnect Connectors (2).
(3)Remove Screws (2).
(4)Remove Stapler Assembly.

Figure 1 Removing the Stapler Assembly (j0fa42219)
5. Turn over the A-Finisher.
6. Remove the Transport Motor. (Figure 2)
(1)Remove Screws (2).
(2)Remove Belt from Pulley.
(3)Remove Transport Motor.

Figure 2 Removing the Transport Motor (j0fa42236)
7. Remove the Gear. (Figure 3)
(1)Remove E-Clip.
(2)Remove Gear.
(3)Remove KL-Clip.
(4)Remove Gear.

jOfa42229
Figure 3 Removing the Gear (j0fa42229)
8. Remove the Gear Pulley. (Figure 4)
(1)Remove E-Clip.
(2)Remove Gear.
(3)Remove Pulley from Belt.
(4)Remove Flange.

Figure 4 Removing the Gear Pulley (jOfa42230)
9. Remove the Bearing. (Figure 5)
(1)Remove the Bearing.

Figure 5 Removing the Bearing (j0fa42231)
10. Remove the ENT Lower Chute Assembly. (Figure 6)
(1)Remove Screws (2).
(2)Loosen Screws (2).
(3)Remove ENT Lower Chute Assembly.

Figure 6 Removing the ENT Lower Chute Assembly (jOfa42237)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.6.1 ENT Roll Assembly

Parts List on PL 22.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Remove the Left Cover. (PL 22.2)
5. Remove the Upper Frame Section. (Figure 1)
(1)Remove Screw and Bracket.
(2)Remove Screws (2).
(3)Remove Screw and Bracket.
(4)Remove Screws (2).
(5)Remove the Upper Frame Section

Figure 1 Removing the Upper Frame Section (af422101)
NOTE: The screws do not thread into the Upper Chute. They are used like pins to secure the Upper Chute in place.
6. Remove the Upper Chute Assembly. (Figure 2)
(1)Remove Screws (2)
(2)Remove Screw.
(3)Carefully Remove the Upper Chute Assembly.

Figure 2 Removing the Upper Chute Assembly (af422100)
7. Remove the ENT Roll Assembly. (Figure 3)
(1)Disconnect Spring.
(2)Remove E-Rings (2).

NOTE: Capture the Bearing
(3)Remove Arm.
(4)Slide Shaft out of the Bearing in the Arm.

Figure 3 Removing the Gear (af422102)

REP 22.6.2 Upper Chute Assembly

Parts List on PL 22.6

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Remove the Left Cover. (PL 22.2)
5. Remove the Upper Frame Section. (Figure 1)
(1)Remove Screw and Bracket.
(2)Remove Screws (2).
(3)Remove Screw and Bracket.
(4)Remove Screws (2).
(5)Remove the Upper Frame Section

Figure 1 Removing the Upper Frame Section (af422101)
NOTE: The screws do not thread into the Upper Chute. They are used like pins to secure the Upper Chute in place.
6. Remove the Upper Chute Assembly. (Figure 2)
(1)Remove Screws (2)
(2)Remove Screw.
(3)Carefully Remove the Upper Chute Assembly.

Figure 2 Removing the Upper Chute Assembly (af422100)

Replacement

1. Reverse the removal procedure for replacement.

NOTE: Ensure that the Paper Guides (PL 22.6) are not folded back on top of the Exit Roll Assembly (PL 22.5).

REP 22.7.1 Finisher Control PWB

Parts List on PL 22.7

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Turn over the Finisher.
3. Remove the Bottom Cover. (PL 22.2)
4. Remove the Finisher Control PWB. (Figure 1)
(1)Disconnect Connectors (12).
(2)Remove Screws (4).
(3)Remove Finisher Control PWB.

Figure 1 Removing the Finisher Control PWB (j0fa42245)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.8.1 Stacker Tray Assembly

Parts List on PL 22.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Tray Cover. (PL 22.2)
7. Disconnect Connector. (Figure 1)
(1)Release Clamp.
(2)Remove Clamp.
(3)Release and remove Wire from Hook.
(4)Release Clamp.
(5)Disconnect Connector.
(6)Release and remove Wire from Hook.

Figure 1 Disconnecting the Connector (j0fa42247)
8. Release the Clamps and the Hook to remove the wire. (Figure 2)
(1)Release Clamps (5).
(2)Remove Wire from Hook.

Figure 2 Disconnecting the Wire (j0fa42248)
9. Remove the Stacker Stack Sensor Assembly. (Figure 3)
(1)Remove Screw.
(2)Remove Stacker Stack Sensor Assembly.
(3)Release Clamps (4).
(4)Disconnect Connectors (2)

Figure 3 Removing the Stacker Sensor Assembly (jOfa42249)
10. Remove the Stacker Tray Assembly. (Figure 4)
(1)Remove Screws (5).
(2)Remove Stacker Tray Assembly.

Figure 4 Removing the Stacker Tray Assembly (j0fa42250)

Replacement

1. Reverse the removal procedure for replacement.
2. Install the Stacker Tray Assembly and A-Finisher as shown in the figure. (Figure 5)

jofa42251
Figure 5 Installing the Stacker Tray Assembly (j0fa42251)

REP 22.8.2 Stacker Shaft Assembly

Parts List on PL 22.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.

Figure 2 Removing the Bracket (jOfa42253)
7. Remove the Top Tray. (Figure 3)
(1)Raise A-Finisher slightly in the direction of the arrow.
(2)Remove Top Tray.

Figure 3 Removing the Top Tray (jOfa42254)
8. Disconnect Connector. (Figure 4)
(1)Release Clamps (5) and remove the wire.
(2)Release Wire from Hook.
(3)Disconnect Connector.

Figure 4 Disconnecting the Connector (j0fa42255)
9. Remove the Stacker Stack Sensor Assembly. (Figure 5)
(1)Remove Screw.
(2)Remove Stacker Stack Sensor Assembly.
(3)Remove Wire from Clamps (5)

Figure 5 Removing the Stacker Stack Sensor Assembly (jOfa42256)
(1)Remove Tapping Screws (5).
(2)Remove Screw.
(3)Remove Stacker Assembly.

Figure 6 Removing the Stacker Assembly (jOfa42257)
11. Remove the Actuator. (Figure 7)
(1)Unhook.
(2)Remove Actuator.

Figure 7 Removing the Actuator (jOfa42258)
10. Remove the Stacker Assembly. (Figure 6)
12. Move the Bearing. (Figure 8)
(1)Remove E-Clip.
(2)Move Bearing in the direction of the arrow.

Figure 8 Moving the Bearing (j0fa42259)
13. Remove the Stacker Shaft Assembly. (Figure 9)
(1)Remove Stacker Shaft Assembly in the direction of the arrow.

jofa42260
Figure 9 Removing the Stacker Shaft Assembly (jOfa42260)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.8.3 Stacker Motor

Parts List on PL 22.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Rear Cover. (PL 22.1)
3. Turn over the A-Finisher.
4. Remove the Tray Cover. (PL 22.2)
5. Disconnect the Connector. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Release Wire from Hook.
(3)Disconnect Connector.

jOfa42261

Figure 1 Disconnecting the Connector (j0fa42261)
6. Remove the Bracket. (Figure 2)
(1)Remove Screw.
(2)Remove Bracket.

Figure 2 Removing the Bracket (jOfa42262)
7. Remove the Stacker Motor Assembly. (Figure 3)
(1)Remove Screws (2).
(2)Remove Stacker Motor Assembly.

Figure 3 Removing the Stacker Motor Assembly (jOfa42263)
8. Remove the Stacker Motor. (Figure 4)
(1)Remove Screws (3).
(2)Remove Belt from Pulley.
(3)Remove Stacker Motor.

Figure 4 Removing the Stacker Motor (jOfa42264)

Replacement

1. Reverse the removal procedure for replacement.
2. Install the Stacker Motor as shown in the figure. (Figure 5)

Figure 5 Installing the Stacker Motor (jOfa42265)

REP 22.8.4 Stacker Stack Sensor

Parts List on PL 22.8

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Rear Cover. (PL 22.1)
3. Turn over the A-Finisher.
4. Remove the Tray Cover. (PL 22.2)
5. Remove the Stacker Stack Sensor Assembly. (Figure 1)
(1)Release the wire from the Clamp.
(2)Remove Screw.
(3)Remove Stacker Stack Sensor Assembly.
(4)Disconnect the Sensor Connector and remove Sensor from Bracket (5)

Figure 1 Removing the Stacker Stack Sensor Assembly (af422108)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.9.1 Compile Assembly

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Tray Cover. (PL 22.2)
7. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (jOfa42266)
8. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate (j0fa42267)
9. Release the Clamp from the wire. (Figure 3)
(1)Release Clamp and remove the wire.

Figure 3 Releasing the Clamp (j0fa42268)
10. Remove the Stacker Tray (Figure 4)
(1)Release wires from Clamps (5)
(2)Disconnect the Connector
(3)Remove Screws (7)
(4)Remove the Stacker Tray

Figure 4 Removing the Stacker Tray (af422107)
11. Remove the front Tapping Screw. (Figure 5)
(1)Remove Tapping Screw.

Figure 5 Removing the Tapping Screw (jOfa42269)
12. Remove the rear Screw. (Figure 5)
(1)Remove Screw.

Figure 6 Removing the Screw (jOfa42270)
13. Remove the Compile Assembly. (Figure 6)
(1)Remove Compile Assembly.

Figure 7 Removing the Compile Assembly (j0fa42271)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.9.2 Set Clamp Shaft

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Bracket Assembly. (Figure 1)
(1)Release Clamps (2) and remove the wire.
(2)Remove Screws (2).
(3)Remove Bracket Assembly.

jOfa42272

Figure 1 Removing the Bracket Assembly (j0fa42272)
4. Remove the KL-Clips from the Eject Shaft. (Figure 2)
(1)Remove KL-Clips (2).

j0fa42273
Figure 2 Removing the KL-Clips (jOfa42273)
5. Remove the Eject Shaft from the Front/Rear Tamper Motor Assembly. (Figure 3) (1)Move Bearings (2) in the direction of the arrow.
(2)Remove Eject Shaft in the direction of the arrow. (3)Remove Belt from Pulley.

Figure 3 Removing the Eject Shaft (jOfa42274)
6. Remove the Actuator and the Bearing. (Figure 4)
(1)Remove E-Clip.
(2)Remove Actuator.
(3)Remove E-Clip.
(4)Remove Bearing.

Figure 4 Removing the Actuator and Bearing (jOfa42275)
7. Remove the Bearing. (Figure 5)
(1)Remove E-Clip.
(2)Remove Bearing.

Figure 5 Removing the Bearing (j0fa42276)
8. Remove the Set Clamp Shaft. (Figure 6)
(1)Move Set Clamp Shaft in the direction of the arrow.
(2)Remove Belts (3) from Pulleys (3).
(3)Remove Set Clamp Shaft in the direction of the arrow.

Figure 6 Removing the Set Clamp Shaft (jOfa42277)

Replacement

1. Reverse the removal procedure for replacement.
2. Install and align the Eject Belt with marks on the Pulleys. (Figure 7)

Figure 7 Installing the Eject Belt (jOfa42278)

REP 22.9.3 Eject Belt

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Front/Rear Tamper Motor Assembly. (REP 22.10.1)
4. Move the Eject Home Sensor Assembly. (Figure 1)
(1)Remove Screw.
(2)Move Eject Home Sensor Assembly.

Figure 1 Moving the Eject Home Sensor Assembly (jOfa42279)
5. Remove the Eject Belt. (Figure 2)
(1)Move the blades of Set Clamp Shaft in the direction of the arrow.
(2)Remove Eject Belt in the direction of the arrow.

Figure 2 Removing the Eject Belt (jOfa42280)

Replacement

1. Reverse the removal procedure for replacement.
2. Install and align the Eject Belt with marks on the Pulleys. (Figure 3)

Figure 3 Installing the Eject Belt (jOfa42278)

REP 22.9.4 Eject/Set Clamp Motor Assembly

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (j0fa42266)
7. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate (j0fa42267)
8. Remove the Stacker Tray (Figure 3)
(1)Release wires from Clamps (5)
(2)Disconnect the Connector
(3)Remove Screws (7)
(4)Remove the Stacker Tray

Figure 3 Removing the Stacker Tray (af422107)
9. Remove the screws securing the Eject/Set Clamp Motor Assembly. (Figure 4) (1)Release Clamps (2) and remove the wire.
(2)Remove Screws (2).
(3)Remove Tapping Screws (2).

Figure 4 Removing Screws (j0fa42281)
10. Remove the Eject/Set Clamp Motor Assembly. (Figure 5)
(1)Remove Belts (2) from Pulley.
(2)Remove Eject/Set Clamp Motor Assembly.

Figure 5 Removing the Eject/Set Clamp Motor Assembly (j0fa42282)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.9.5 Rear Tamper Home Sensor

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (j0fa42266)
7. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire form Hook.
(4)Remove Screw (4).
(5)Remove Bottom Plate.

Figure 2 Moving the Bottom Plate (jOfa42267)
8. Remove the Rear Tamper Home Sensor Assembly. (Figure 3)
(1)Release Clamps (2) and remove the wire.
(2)Remove Tapping Screw.
(3)Move Rear Tamper Home Sensor Assembly in order to disconnect the connector.

Figure 3 Removing the Rear Tamper Home Sensor Assembly (j0fa42283)
9. Remove the Rear Tamper Home Sensor. (Figure 4)
(1)Remove Rear Tamper Home Sensor from the bracket.

Figure 4 Removing the Rear Tamper Home Sensor (jOfa42284)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.9.6 Eject Shaft Assembly

Parts List on PL 22.9

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Bracket Assembly. (Figure 1)
(1)Release Clamps (2) and remove the wire.
(2)Remove Screws (2).
(3)Remove Bracket Assembly.

jOfa42272

Figure 1 Removing the Bracket Assembly (j0fa42272)
4. Remove the KL-Clips from the Eject Shaft. (Figure 2) (1)Remove KL-Clips (2).

jOfa42273
Figure 2 Removing the KL-Clips (jOfa42273)
5. Remove the Eject Shaft from the Front/Rear Tamper Motor Assembly. (Figure 3) (1)Move Bearings (2) in the direction of the arrow.
(2)Remove Eject Shaft in the direction of the arrow.
(3)Remove Belt from Pulley.

Figure 3 Removing the Eject Shaft (jOfa42274)

Replacement

1. Reverse the removal procedure for replacement.
2. Install and align the Eject Belt with marks on the Pulleys. (Figure 7)

Figure 4 Installing the Eject Belt (jOfa42278)

REP 22.10.1 Front /Rear Tamper Motor Assembly

Parts List on PL 22.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Compile Assembly. (REP 22.9.1)
3. Remove the Bracket Assembly. (Figure 1)
(1)Release Clamps (2) and remove the wire.
(2)Remove Screws (2).
(3)Remove Bracket Assembly.

jOfa42272

Figure 1 Removing the Bracket Assembly (jOfa42272)
4. Remove the KL-Clips from the Eject Shaft. (Figure 2)
(1)Remove KL-Clips (2).

j0fa42273
Figure 2 Removing the KL-Clips (jOfa42273)
5. Remove the Eject Shaft from the Front/Rear Tamper Motor Assembly. (Figure 3) (1)Move Bearings (2) in the direction of the arrow.
(2)Remove Eject Shaft in the direction of the arrow. (3)Remove Belt from Pulley.

Figure 3 Removing the Eject Shaft ($\mathrm{j} 0 \mathrm{fa42274}$)
6. Remove the Front/Rear Tamper Motor Assembly. (Figure 4)
(1)Remove Tapping Screws (2).
(2)Remove Screw.
(3)Remove Front/Rear Tamper Motor Assembly.

Figure 4 Removing the Front/Rear Tamper Motor Assembly (j0fa42285)

Replacement

1. Reverse the removal procedure for replacement.
2. Install and align the Eject Belt with marks on the Pulleys. (Figure 5)

Figure 5 Installing the Eject Belt (j0fa42278)

REP 22.10.2 Front Tamper Home Sensor

Parts List on PL 22.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data. [with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (j0fa42266)
7. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate ($\mathbf{j O f} \mathbf{0} 42267$)
8. Remove the Front Tamper Home Sensor Assembly. (Figure 3)
(1)Remove Screw.
(2)Remove Front Tamper Home Sensor Assembly.

Figure 3 Removing the Front Tamper Home Sensor Assembly (j0fa42286)
9. Remove the Front Tamper Home Sensor Assembly. (Figure 4) (1)Disconnect Connector.
(2)Remove Front Tamper Home Sensor Assembly.

Figure 4 Removing the Front Tamper Home Sensor (j0fa42287)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.10.3 Eject Clamp Home Sensor

Parts List on PL 22.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Turn over the A-Finisher.
3. Remove the Bottom Cover. (PL 22.2)
4. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (j0fa42266)
5. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate (j0fa42267)
6. Remove the Eject Home Sensor. (Figure 3)
(1)Release Clamp and remove the wire.
(2)Disconnect Connector.
(3)Remove Eject Home Sensor from the bracket.

Figure 3 Removing the Eject Home Sensor (jOfa42288)

Replacement

1. Reverse the removal procedure for replacement.

REP 22.10.4 Stack Height Sensor

Parts List on PL 22.10

Removal

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Before turning OFF the power switch, note the following to prevent loss of customer data.
[with the FAX function]
Check that the "Job in Memory" lamp is off. Press the "Job Status" button and check that no job is in progress.
[with the Printer function]
Check that "Ready to print/send" is displayed on the Control Panel.

1. Remove the A-Finisher from the machine.
2. Remove the Inner Front Cover. (PL 22.1)
3. Remove the Rear Cover. (PL 22.1)
4. Turn over the A-Finisher.
5. Remove the Bottom Cover. (PL 22.2)
6. Remove the Connector Bracket. (Figure 1)
(1)Release Clamps (3) and remove the wire.
(2)Disconnect Connectors (5).
(3)Remove Screws (2).
(4)Remove Connector Bracket.

Figure 1 Removing the Connector Bracket (jOfa42266)
7. Remove the Bottom Plate. (Figure 2)
(1)Release Clamps (5) and remove the wire.
(2)Disconnect Connectors (8).
(3)Remove Wire from Hook.
(4)Remove Screws (4).
(5)Remove Bottom Plate.

Figure 2 Removing the Bottom Plate (j0fa42267)
8. Remove the Stacker Tray (Figure 3)
(1)Release wires from Clamps (5)
(2)Disconnect the Connector
(3)Remove Screws (7)
(4)Remove the Stacker Tray

Figure 3 Removing the Stacker Tray (af422107)
9. Remove the Bracket Assembly. (Figure 4)
(1)Release Clamps (2) and remove the wire.
(2)Remove Screws (2).
(3)Remove Bracket Assembly.

Figure 4 Removing the Bracket Assembly (j0fa42272)
10. Remove the Stack Height Sensor. (Figure 5)
(1)Remove Clamp.
(2)Release Clamps (4) and remove the wire.
(3)Disconnect Connector.
(4)Remove Stack Height Sensor from the bracket.

Figure 5 Removing the Stack Height Sensor (jOfa42289)

Replacement

1. Reverse the removal procedure for replacement.

ADJ 7.1.1 MSI (Bypass) Tray Guide Adjustment

Purpose

To set the maximum and minimum positions of the MSI Side Guide for MSI Paper Size Sensor detection using the NVM.

Adjustment

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics in UI Diagnostic Mode).
b. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
2. Select Adjustment/Others.
3. Select Tray 5 (Bypass) Guide Adjustment.
4. Set the MSI Side Guide at the minimum position.
5. Select the minimum size position and press the Start button.
6. After the NVM sets the MSI Paper Size Sensor detection value, an OK or NG result will be displayed.
7. Set the MSI Side Guide at the maximum position.
8. Select the maximum size position and press the Start button.
9. After the NVM sets the MSI Paper Size Sensor detection value, an OK or NG result will be displayed.

NVM Settings for LEF Paper in the MSI Tray

When using the MSI and selecting LEF, change the NVM location 870-211 to the following values.

NOTE: The NVM location (870-211) for the MSI paper size default is A4 (NVM =5). This location is held in flash memory and will reset when the machine is PO/PO'ed.
Table 1 NVM location 870-211

Paper Size	NVM Value
A4 LEF	5
A3 LEF	6
8.5×11 LEF	19
11×17 LEF	24

ADJ 9.1.0 Toner Density Adjustment
 Purpose

To set a suitable toner density for printing by determining the toner density in the Developer Unit from the difference between the Read value of the TC Sensor and the reference value, and by adjusting the toner level accordingly.

Adjustment

1. Place the Standard Test Pattern (82E13120) on the platen glass.
2. Enter UI Diagnostic Mode.
3. Enter Max Setup and select Adjust Toner Density.

NOTE: The difference between TC Target and TC Measured should be within +/- 30 .
NOTE: If TC Measured is to high, the amount of toner used to create the patch is too low. Therefore use a positive number in the Select Quantity to increase the amount of toner in the developer.

NOTE: If TC Measure is to low, the amount of toner used to create the patch is too high. Therefore use a negative number in the Select Quantity to decrease the amount of toner in the developer.
NOTE: When the negative numbers are used in Select Quantity, the routine will print solid area coverage on several sheets of paper in order to tone down the developer.
4. Select Quantity, using the Up and Down buttons displayed for Magenta, Yellow, Cyan and Black. Adjust in 2 to 3 increments.
5. Press Start button to begin Toner Density Adjustment.
6. After the adjustment ends, the TC Measured value will be displayed.
7. Repeat steps 4 thorough 6 until all TC Measurements is within $+/-30$ of the TC Target
8. Exit Diagnostic Mode.
9. Place the Standard Test Pattern (82E13120) on the platen glass.
10. Make 5 copies of the test pattern and determine if Toner Density is properly adjusted.
11. Repeat this procedure until the Toner Density is satisfactory.

ADJ 9.1.1 IOT Image Registration

Purpose

The purpose of this adjustment is to properly align the ROS image to the paper / media, for all trays, all modes, print and copy. This adjustment must be completed prior to the IIT Lead Edge/ Side Edge Registration, and the DADF Lead Edge Registration.

Specification

- For A3 paper, the specifications are as follows:
- The specification for lead edge registration is $10.0+/-0.5 \mathrm{~mm}$.
- The specification for side edge registration is $8.0+/-0.5 \mathrm{~mm}$. (Both Sides)
- For $11 \times 17^{\prime \prime}$ paper, the specifications are as follows:
- The specification for lead edge registration is $10.0+/-0.5 \mathrm{~mm}$.

The specification for side edge registration is $10.0+/-0.5 \mathrm{~mm}$. (Both Sides)

Introduction

Initial set up should be done by following these 5 sequenced steps:

1. Tray Baseline

NOTE: The Tray Base line should only be performed as required to bring the machine back to the factory settings.
2. Tray 1 Lead Edge Set Up
3. Side Edge Adjustment, Trays 1, 2, 3, and MSI
4. IIT Alignment, Platen Glass
5. DADF Lead Edge / Side Edge Registration

NOTE: Copies / Prints are delivered to output Trays in different orientations depending on the job; example, Platen Glass, DADF, Finisher Un-collated or Collated/Stapled. Read and understand proper image viewing in each adjustment section.

NOTE: Label each image as it is removed from the output tray.
Mark the following references on each print:

- Tray 1, 2, 3 or MSI
- Color or B/W
- Mode, Bond, HW1 or HW2
- Lead Edge

NOTE: Lead Edge to Trail Edge Registration. Decrease the NVM Value to move the image towards the Lead Edge. (9 bits $=1 \mathrm{~mm}$)
NOTE: Diagnostics must be exited for any Side Edge NVM changes to take effect. Lead Edge NVM changes take effect immediately.

NOTE: Positive numbers (bits) increases the image distance from the paper edge and negative numbers (bits) decreases the distance from the paper edge.

Tray Baseline

1. For 2TM machines Load all paper trays with 11X17"/A3 paper SEF.

For TTM machines load paper Tray 1 and MSI tray with 11x17"/A5 paper SEF and Tray 2 and Tray 3 with $8.5 \times 11^{\prime \prime}$ paper LEF.
2. Disconnect the Network cable from the machine.
3. Enter UI Diagnostic Mode.
4. Set the following NVM's in Table 1, to the following default values.

Table 1 Default NVM Settings			
Description NVM Default Values Range Lead Edge ALL $742-031$ 66 0 to 160 L/E Tray $1-3$ $742-039$ 80 0 to 160 L/E MSI $742-032$ 80 0 to 160 L/E Duplex $742-046$ 80 0 to 255 Side Edge Tray 1 $742-002$ 0 -25 to 25 S/E MSI $742-009$ 0 -25 to 25 S/E Tray 2 $742-022$ 3 -25 to 25 S/E Tray 3 $742-023$ 0 -25 to 25 S/E Duplex Tray 1 $742-018$ 0 -25 to 25 S/E Duplex Tray 2 $742-019$ 0 -25 to 25 S/E Duplex Tray 3 $742-020$ 0 -25 to 25			

Tray 1 Lead Edge Set Up

Adjustment

NOTE: To properly view printed image, remove from center output tray and Flip Left to Right.

1. Enter UI Diagnostic Mode.
2. Select the Print Test Pattern routine and enter 58.

NOTE: Ensure Tray 1 is loaded with 11×17 or A3 paper and Tray 1 is selected. The default tray is Tray 1.
3. Press the Start button.
4. Remove the copy from the center exit tray and position it as shown in Figure 1.

NOTE: The Trail Edge of the image is being measured to the Trail Edge of the paper and the entire image is shifted by any adjustments.
5. Refer to Figure 1. Measure and record the dimensions.

Figure 1 Measurement on Test Pattern \#58
6. Determine the direction and the amount the image must be moved to achieve the $10.0+$ 0.5 mm dimension.

NOTE: 9 bits $=1 \mathrm{~mm}$
7. Enter NVM Read/Write and enter 742-031, select Confirm/Change.
8. Enter the new NVM value into Current Value, and press the Start button.
9. Enter Print Test Pattern and enter number 58, press the Start button.
10. Repeat steps 6 through 9 until the correct Lead Edge measurement is achieved.

Lead Edge Adjustment Duplex

Adjustment

1. Ensure Tray 1 is loaded with 11×17 " or A3 paper, Tray 1 and Duplex is selected. The default tray is Tray 1.

NOTE: The default is Tray 1.
2. Ensure that ADJ 11.1.1, IIT Lead Edge/Side Edge Registration has been performed.

NOTE: Use the Test Pattern Original that was created in ADJ 11.1.1, IIT Lead Edge/Side Edge Registration or create a Test Pattern Original in the next step.
3. To create a test pattern original, use a plain white sheet of 11×17 " paper and fold the sheet precisely in half lengthwise and width wise. Then with a straight edge, draw a straight line in the length wise crease and a straight line in the width wise edge. Write the words "Lead Edge" on the short edge that will be placed on the platen glass registration edge. (Figure 2)

LEAD EDGE

Figure 2 Creating a Test Pattern Original

4. Place the Test Pattern Original face down on the platen glass with the short edge against the left registration edge.
5. From the UI Copying screen, select Black, 1-2 sided, 100%, Tray 1 and press the Start Button.
6. After the first pass of the lens, place a small piece of paper under the Test Pattern Original, with the words "Side 2" written on it.
7. Press the Start button
8. Remove the print from the center exit tray and position it as indicated in the following note.

NOTE: Duplex copies will be delivered to the center output tray face down. To view the duplex prints for registration analysis, remove the prints from the tray and flip it left to right. The words "Side 2" should be visible.
NOTE: The Trail Edge of the image is being measured to the Trail Edge of the paper and the entire image is shifted by any adjustments.
9. Fold the copy in half in both directions.
10. The printed lines should align with the folds.
11. If not, measure and record the direction and distance the image need to be moved to align them with the folds. (Figure 3)

Figure 3 Measuring the distance to move the image
NOTE: 9 bits $=1 \mathrm{~mm}$
12. Enter NVM Read/Write and enter 742-046, then select Confirm/Change.
13. Enter the new NVM value into the Current Value, and press the Start Button.
14. Repeat steps 4 through 11 until the correct Lead Edge measurement is achieved.

Side Edge Registration

Purpose

To center the image from the side edges of the paper.
Optionally, the SE registration can be set for each tray individually; use the Tray 1 through MSI buttons and repeat the check or adjustment for each tray.

Adjustment

NOTE: Exit and re-enter the Diagnostic Mode in order for the Side Edge Registration changes to take effect.

1. Enter UI Diagnostic Mode.
2. Enter Print Test Pattern, and print Test Pattern \#58.
3. Select Paper Tray 1.
4. Select the Print Count and press the Start button.
5. The Side Edge Registration dimensions should be $10.0+/-0.5 \mathrm{~mm}$. See Figure 1 .
6. Determine the difference between the measured dimensions and the desired specifications.
7. Calculate the number of NVM bits and the direction of movement.

NOTE: Side Edge Registration. Increase the value to move the image toward the side edge of the paper. (Each bit = approximately .2 mm).
8. Enter NVM Read/Write and enter the NVM location for Side Edge Tray 1 (742-002) from Table 1.
9. Select Confirm/Change, and change the Current Value with the NVM bits determined.
10. Select Confirm.
11. Enter Print Test Pattern and print test pattern \#58.
12. Select Paper Tray 1.
13. Select the Print Count and press the Start button.
14. Repeat steps 5 through 14 to achieve the $10.0+/-0.5 \mathrm{~mm}$ dimension for the Side Edge.
15. Repeat steps 5 through 14 for Trays 2 , and 3 .
16. When using 11x17" paper in the MSI and selecting LEF, change NVM location 870-211 to 24.
17. Use Table 2 if using other size paper in the MSI for this procedure:

NOTE: When the machine powers off then powers on, the NVM location 870-211 will return to setting 5 for A4 paper.
Table 2 NVM location 870-211

Paper Size	Set NVM to:
A4 LEF	5
A3 LEF	6
8.5×11 LEF	19
11×17 LEF	24

18. Exit Diagnostics.

ADJ 9.1.2 Max Setup

Purpose

To conduct a check of the machine and set it up so that excellent copy quality can be consistently obtained by stabilizing the development potential and copy density.

Adjustment

Max Setup consists of several separate adjustments that should be performed in the following sequence:

1. IIT Calibration ADJ 9.1.8
2. Procon On/Off Print ADJ 9.1.10
3. Adjust Toner Density ADJ 9.1.0
4. TRC Adjustment ADJ 9.1.6

ADJ 9.1.6 TRC Adjustment

Purpose

CAUTION

Perform this adjustment only to correct a strong customer complaint. Altering the set points will affect both Print and Copy modes. Also, there is quite a bit of overlap among the low, medium, and high densities. For these reasons, it is recommended that this procedure not be used unless absolutely necessary. High density problems should be first investigated in IOT.

To adjust image quality (TRC) to meet the user's preference, by increasing or decreasing the center value of gradation correction for each (YMCK) color, in low density, medium density, and high density ranges.

Adjustment

1. Enter UI Diagnostic Mode.
2. Under the Max Setup, select TRC Adjustment.
3. Select the TRC Adjust.
4. Select the first color toner to be adjusted.

NOTE: Adjusting the Low Density setting might cause background. It is best to leave the Low Density setting at " 0 ".
NOTE: Using a large number like 30 to 50 will make very noticeable differences in toner density.

NOTE: Adjusting all the colors, YMC and K, will also make very noticeable changes.
5. Adjust the medium and high density. Center value is " 0 ", the range is from -128 to 127.
6. Press the Start button to save the setting and then select the next color toner to be adjusted.
7. Adjust the medium and high density.
8. Press the Start button to save each setting.
9. Exit the Diagnostic Mode and place the Standard Test Pattern (82E13120) on the platen glass.
10. Make 2 prints or copies; the changes are not implemented until the $2 n d$ print is made.
11. Repeat steps 4 through 6 until the customer is satisfied with the image quality.

ADJ 9.1.7 Color-To-Color Registration

Purpose

This procedure is used to adjust the color-to-color registration, or Offset Displacement in the feed direction, by changing the NVM settings.

Adjustment

NOTE: Mis-registration between colors in the Cross feed Direction cannot be adjusted in NVM. Cross feed Mis-registration is a mechanical problem that can be addressed in the IQ8 Color-toColor Mis-registration RAP.

NOTE: For Skew Mis-registration in the Feed Direction go to the IQ8 Color-to-Color Mis-registration RAP.
NOTE: Color-to-Color Mis-registration of 0.04 mm between jobs is allowable.
NOTE: Only the K and Y colors can be adjusted for Color-to-Color mis-registration in the Feed Direction.

Color-to-Color Offset Displacement on the Lead Edge of the page

Table 1 Lead Edge NVM Settings

NVM	Default Setting	Setting Range
$760-043$	50,000	0
$760-048$	50,000	
$760-053$	53,000	
$760-056$	50,000	
$760-061$	50,000	
$760-066$	50,000	

NOTE: An NVM increment of 20,000 will move the K or Y color by 0.1 mm .

1. If the K color is shifted to the trail edge relative to the colors M and C, increase the value of the following NVM's; (Figure 2)

- 760-056
- 760-061
- 760-066

2. If the K color is shifted to the lead edge relative to the colors M and C, decrease the value of the following NVM's; (Figure 3)

- 760-056
- 760-061
- 760-066

3. If the Y color is shifted to the trail edge relative to the colors M and C, increase the value of the following NVM's; (Figure 2)

- 760-043
- 760-048
- 760-053

4. If the Y color is shifted to the lead edge relative to the colors M and C, decrease the value of the following NVM's; (Figure 3)

- 760-043
- 760-048
- 760-053

NOTE: If any NVM values were changed in the above procedures, print 4 consecutive pages, evaluate the Trail Edge color-to-color registration and proceed to the following steps.

Figure 1 Ideal alignment of colors from test pattern \#61

0730004A-ELN
Figure 2 Shift of colors K or Y toward the Trail Edge

0730005A-ELN

Figure 3 Shift of colors K and Y toward the Lead Edge

Color-to-Color Mis-registration on the Trail Edge of the page

Table 2 Trail Edge NVM Settings

NVM	Default Settings	Setting Range
$760-091$	87	0 to 200 $(100$ or above is not recommended)
$760-094$	55000	0 to 100,000
$760-101$	20235	20139 to 20274

1. If the K color is shifted to the Lead Edge relative to the colors M and C , decrease the value of the following NVM; (Figure 4)

NOTE: An NVM increment of 16 will move the K color by 0.1 mm .

- 760-101

2. If the K color is shifted to the Trail Edge relative to the colors M and C, increase the value of the following NVM; (Figure 5)

NOTE: An NVM increment of 16 will move the K color by 0.1 mm .

- 760-101

3. If the Y color is shifted to the Trail Edge relative to the colors M and C, decrease the value of NVM 760-091 and increase the value of NVM 760-094. (Figure 4)

- For the NVM 760-091, a decrease of 9 will move the Y color by 0.1 mm .
- For the NVM 760-094, an increase of 20,000 will move the Y color by 0.1 mm .

4. If the Y color is shifted to the Lead Edge relative to the colors M and C, increase the value of NVM 760-091 and decrease the value of NVM 760-094. (Figure 5)

- For the NVM 760-091, an increase of 9 will move the Y color by 0.1 mm .
- For the NVM 760-094, a decrease of 20,000 will more the Y color by 0.1 mm .

0730006A-ELN

Figure 4 Shift of colors K and Y

0730007A-ELN
Figure 5 Shift of colors K and Y

ADJ 9.1.8 IIT Calibration

Purpose

The IIT Calibration is accomplished in two stages, White Reference Adjustment and CCD Calibration.

- The White Reference Adjustment calculates the White Reference Correction using white paper placed on the platen glass (reflectance difference from true white), and machine NVM value for "True White".
- CCD Calibration uses the standard test pattern, 82E13120 to calibrate the sensitivity of the CCD. It looks at the 5 squares in the upper center of the test pattern as a reference to do the calibration.

NOTE:

White Reference Adjustment

Adjustment

1. For the White Reference Check, use Xerox Digital Color Xpressions+ or Colotech + paper. Result values for RGB should be approximately 130 to 145

- Digital Color Xpressions +24 lb . paper $=98$ Brightness rating (90 gsm).
- Colortech + paper $=(90 \mathrm{gsm})$.

2. Place 10 sheets of $A 3$ or $11 \times 17^{\prime \prime}$ (short edge lead) clean white paper on the Document Glass.
3. Enter the UI Diagnostic Mode.
4. Enter Max Setup, IIT Calibration, White Reference Adjustment.
5. Press the Start on the screen.
6. Result values for RGB should be in the range of 130 to 145. (Table 1)
Table 1 White Reference

R	$\mathbf{1 3 5}$
G	$\mathbf{1 3 6}$
B	$\mathbf{1 3 8}$

7. If the values are within range proceed to the CCD Calibration Adjustment below.
8. If the values are out of range continue with this procedure.

CAUTION

If the Lens Kit was replaced, the Optical Axis Alignment (ADJ 9.1.9) must be performed.
9. If the Lens Kit was replaced, go to ADJ 9.1.9.
10. NVM $715-\mathrm{XXX}$ is set to a 1 . (With DADF, the lamp will park to the left.)
11. Make sure you have placed 10 sheets of 11×17 digital color Xpressions+ paper against the registration edge of the platen glass (98 Brightness).
12. Clean the Optics:
a. Switch off the power and allow the Exposure Lamp to cool off.
b. Using the optical Cleaning Cloth, clean the front and rear of the Document Glass, the White Reference Strip, Reflector, and Mirrors.

NOTE: The white reference strip under the registration guide on the underside of the platen glass.
c. Clean the Exposure Lamp with a clean cloth and Film Remover.
d. Clean the Lens with Lens and Mirror Cleaner and lint free cloth
13. If necessary, troubleshoot the Exposure Lamp, Lamp Ballast PWB, or IIT PWB.

CCD Calibration

Adjustment

1. Enter the UI Diagnostic Mode.
2. Enter Max Setup, IIT Calibration, CCD Calibration.
3. Place the Standard Test Pattern 82E13120 on the Document Glass with the lead edge to the left.

NOTE: If the Standard Test Pattern 82E13120 is not used, the Result for Pcon and Scan will be $N G$.
4. Reflection values for YMCK vs. RGB should be as follows:
a. Values for " X " in Table 2 should be between 200 and 250.
b. The higher the number, the less reflectance. K is always higher than C, M or Y .

Table 2 Values for "X" 200 to 250

Reflection Ratio			
\mathbf{Y}	\mathbf{R}	\mathbf{G}	\mathbf{B}
\mathbf{M}		\mathbf{X}	\mathbf{X}
\mathbf{C}		\mathbf{X}	
\mathbf{K}	\mathbf{X}	\mathbf{X}	\mathbf{X}
Result			

5. The b^{*} Measurement should be within 10 bits (+/-) of the b^{*} Target.

| Table 3 b* Calibration Coefficient Check | |
| :--- | :---: | :---: |
| PCON SCAN
 \mathbf{b}^{*} coefficient 3 3
 b* Patch Value
 (measurement) 226 214
 b* Normal Value
 (target) 225 223
 Result OK OK | |

6. If values for "X" in Table 2 are less than 200 or b^{*} target Results Table 3 is NG, perform the following checks or troubleshoot.

- Make sure test pattern 82E13120 is being used and that the test pattern is clean and free of defects.
- Make sure the test pattern is position with the L.E. toward the left of the Platen Glass and registered.
- Clean both sides of the Document Glass, Document Cover, White Reference Strip, Reflector, and Mirrors.
- Clean the Lens with Lens and Mirror Cleaner and lint free cloth.
- Clean the Exposure Lamp with a clean cloth and Film Remover.
- Troubleshoot the Exposure Lamp, Lamp Ballast PWB and IIT PWB.
- Replace the Lens Pan Assembly if necessary.

NOTE: Do not select Optical Axis Calibration unless the Lens Pan Assembly is replaced.

ADJ 9.1.9 Optical Axis Alignment

Purpose

The purpose of this adjustment is to align the CCD with the lens. This procedure should only be performed if the lens or CCD is replaced, or if the documentation specifically directs.

Check

1. Install the Platen Glass.

CAUTION

Stray light will adversely affect the check. If there is significant ambient light around the machine (especially fluorescent light), open the platen cover as little as required to start the scan, and/or shroud the machine with a drop cloth, in order to keep as much stray light as possible away from the Lens and CCD.
2. Ensure the document cover or DADF is fully raised and that there is nothing on the platen glass.
3. Enter UI Diagnostic Mode. Raise the platen cover. Select Max Setup, IIT CaI., select the Optical Axis Correction and press Start.
4. Check the results in the Optical Axis Set Results box. If OK is displayed in the Result box, the check is good. Adjust the IIT Calibration (ADJ 9.1.8).
5. If the tool displays NG, perform the Adjustment.

Adjustment

1. Place an index mark on the barrel of a 5.5 mm nut driver. The following figure shows the tool and the adjusting nuts. (Figure 1)

2. Check the results in the Front Nut Correction Angle and the Rear Nut Correction Angle box. The values displayed indicate the amount and direction of the correction required:

- + means rotate clockwise
- - means rotate counterclockwise
- The amount of correction is displayed in degrees. Each division around the nut represents 15 degrees (divide the displayed value by 15 to get the number of divisions). If a value higher than 990 is displayed, this may indicate that insufficient light is entering the CCD. Make sure that the Lens and Platen Glass are clean.

3. Remove the Platen Glass and the Optics cover. (Figure 2)

Figure 2 Removing the Optics Cover
4. Make the indicated correction for both the front and rear screws,
5. Reinstall the Platen Glass and the Optics cover, then select on Start on the screen.
6. Repeat steps 2 and 3 until OK is displayed.
7. Reinstall the Optics Cover and reinstall the Platen Glass.
8. Adjust the IIT Calibration (ADJ 9.1.8).

ADJ 9.1.10 Procon ON/OFF Print

Purpose

The purpose of this routine is to determine the proper functioning of the ADC Sensor, ADC Patch, ADC Shutter open and close, ADC Mini Setup, TC Patch, and the environment Temperature and Humidity. These machine parameters must be functioning properly before Max Setup can be run.

Procon is Process Control and Process Control on this product is the Tone Reproduction Control (TRC).

Adjustment

1. Enter UI Diagnostic Mode.
2. Select Max Setup and select Procon "On/Off" Print.
3. Select Procon "ON" Print.
4. Press the Start button.
5. When the routine is completed, check the print out test pattern (Test Pattern \# 53)

Ensure that all colors (YMCK) have printed and Process Black is present in two places. (Figure 1)

Figure 1 Checking the test pattern for YMCK and Process Black printout.
6. Scroll through the Procon "ON" Print items list, find and check that the Items in table 1 are all OK.
7. If any items indicate NG (Fail), check for failed components: Return to Call Flow and determine component failure, etc. High Voltage Power Supply, ADC Assembly, Developer Housing, MCU PWB, Photoreceptor, bad Developer Bias.

NOTE: Most values in this table are for reference only. Actual values will vary.

Table 1 PRO CON "On Print"

PRO CON On Print	Yellow	Magenta	Cyan	Black (K)	Remarks
Target ADC - H	385	340	400	165	Compare the Target ADC - H with the ADC Measurement - H. The Measurement should be within 30 bits of the Target. (Ignore ADC LS 1 Measurement - H and the ADC LS 2 Measurement -H) If not See Corrective Action 1
ADC Measurement - H	368	364	395	166	
ADC LS 1 Measurement - H	455	402	484	213	
ADC LS 2 Measurement - H	352	254	307	127	
Target ADC - M	680	605	645	475	Compare the Target ADC - M with the ADC Measurement - M. The Measurement should be within 30 bits of the Target. (Ignore ADC LS 1 Measurement - M and the ADC LS 2 Measurement -M) If not See Corrective Action 1
ADC Measurement - M	656	642	663	500	
ADC LS 1 Measurement - M	710	675	718	543	
ADC LS 2 Measurement - M	635	521	586	465	
Target ADC - L	915	910	915	845	Compare the Target ADC - L with the ADC Measurement - L. The Measurement should be within 30 bits of the Target. (Ignore ADC LS 1 Measurement - L and the ADC LS 2 Measurement -L) If not See Corrective Action 1
ADC Measurement - L	923	931	937	848	
ADC LS 1 Measurement - L	041	951	965	866	
ADC LS 2 Measurement - L	831	839	835	705	
ADC Patch Fail	OK	OK	OK	OK	If NG see Corrective Action 8
ADC Sensor Fail	OK	-	-	-	If NG see Corrective Action 3
ADC Shutter open Fail	OK	-	-	-	If NG see Corrective Action 2
ADC Shutter close Fail					
ADC Mini setup Fail	OK	OK	OK	OK	If NG see Corrective Action 9
Charge Bias Voltage setting Common	715	715	715	715	If NG see Corrective Action 10
Illumination Settings	396	327	321	409	
Maximum Illuminations	673	673	673	673	
Bias Settings	575	580	580	565	
Target TC	433	423	417	281	Compare the TC Target with the TC Measurement value. The Measurement should be within 30 bits of the Target. If not see Corrective Action 4
TC Measurement	400	332	341	266	
TC Patch Fail	OK	OK	OK	OK	If NG see Corrective Action 5
Temperature	26	-	-	-	
Humidity	52	-	-	-	
Temperature Fail	OK	-	-	-	If NG see Corrective Action 6
Humidity Fail	OK	-	-	-	If NG see Corrective Action 7

Table 2 PRO CON "Off"

PRO CON On Print	Yellow	Magenta	Cyan	Black (K)	Remarks
Target ADC - H	385	340	400	165	
ADC Measurement - H	381	344	403	167	
ADC LS 1 Measurement - H	474	418	500	212	
ADC LS 2 Measurement - H	376	259	336	132	
Target ADC - M	680	605	645	475	
ADC Measurement - M	669	636	659	509	
ADC LS 1 Measurement - M	723	680	726	544	
ADC LS 2 Measurement - M	646	552	612	474	
Target ADC - L	915	915	915	845	
ADC Measurement - L	920	923	932	852	
ADC LS 1 Measurement - L	943	948	971	860	
ADC LS 2 Measurement - L	914	889	908	836	
ADC Patch Fail	OK	OK	OK	OK	
ADC Sensor Fail	OK	-	-	-	
ADC Shutter open Fail	OK	-	-	-	
ADC Shutter close fail	OK	-	-	-	
ADC Mini setup Fail	OK	OK	OK	OK	
Grid Voltage setting Common	715	715	715	715	
Illumination Settings	433	347	335	423	
Maximum Illuminations	674	674	674	674	
Bias Settings	570	580	580	562	
Target TC	432	423	417	282	
TC Measurement TC Patch Fail	411	365	366	260	
Temperature	26	-	-	-	
Humidity	51	-	-	-	
Temperature Fail	OK	-	-	-	
Humidity Fail	OK	-	-	-	

Corrective Action 1

Corrective Action

1. Procon Area

- ADC (Automatic Density Control) Target vs. Measured more than 30 bits off.

2. Prints And What To Look At.

- internal test pattern 53, Low, mid and high patches.

3. Corrective Action

- If the problem is in high density patches, then troubleshoot IOT problems.
- If the problem is only in low and mid density patches then perform TRC Adjustment and adjust low, mid and high starting with low density.

NOTE: Center value is " 0 ". Range is -128 to 127

Corrective Action 2

Corrective Action

1. Procon Area

- ADC (Automatic Density Control) Shutter Open Fail (NG) or ADC Shutter Close Fail (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Check the connections to the ADC Sensor.
- Check the operation and condition of the Shutter.
- If OK, replace the $\mathrm{ADC} / \mathrm{MOB} /$ Temp/Humidity sensor bar. (PL 11.1)

Corrective Action 3

Corrective Action

1. Procon Area

- ADC (Automatic Density Control) Fail (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Check the connections to the ADC Sensor.
- Check the operation and condition of the Shutter.
- If OK, replace the ADC/MOB/Temp/Humidity sensor bar. (PL 11.1)

Corrective Action 4

Corrective Action

1. Procon Area

- TC (Toner Concentration) Target vs. Measured more than 30 bits off.

2. Prints And What To Look At.

- internal test pattern 53, Low, mid and high patches.

3. Corrective Action

- Ensure that toner cartridges are not empty.
- Perform Adjust Toner Density.
- If the problem is in high density patches, then troubleshoot IOT problems.
- If the problem is only in low and mid density patches then perform TRC Adjustment and adjust low, mid and high starting with low density.

NOTE: Center value is "0". Range is -128 to 127

Corrective Action 5

Corrective Action

1. Procon Area

- TC (Toner Concentration) Patch Fail (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Ensure that toner cartridges are not empty.
- Perform Adjust Toner Density.
- If the problem is in high density patches, then troubleshoot IOT problems.
- Observe Developer Mag Brush for defects or missing Mag Brush in all colors.

Corrective Action 6

Corrective Action

1. Procon Area

- \quad Temp (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Failure occurs below 32 degrees $F(0$ degrees C) or above 140 degrees $F(60$ degrees C).
- Check connections to the Temperature Sensor
- If the connections are good and the temperature is within spec then replace the ADC/MOB/Temp/Humidity Sensor Bar.

Corrective Action 7

Corrective Action

1. Procon Area

- Humidity (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Failure occurs when the humidity is at 0% or above 105%.
- Check connections to the Humidity Sensor.
- If the connections are good and the humidity is within spec then replace the ADC/ MOB/Temp/Humidity Sensor Bar.

Corrective Action 8

Corrective Action

1. Procon Area

ADC Patch Fail (NG).
2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Check ADC Target vs. Measured, ADC Sensor fail, ADC shutter fail and ADC mini setup fail.
- Check connections to the ADC Sensor.
- Check the operation and condition of the shutter and Clean if necessary.
- Replace the ADC/MOB/Temp/Humidity Sensor Bar. (PL 11.1)

Corrective Action 9

Corrective Action

1. Procon Area

- ADC Mini Setup Fail (NG).

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Check connections to the ADC Sensor.
- Check the operation and condition of the shutter and Clean if necessary.
- Replace the ADC/MOB/Temp/Humidity Sensor Bar. (PL 11.1)
- Check for failed components:
- HVPS (PL 11.1)
- Developer Housing(s) (PL 5.2) or bad Developer Bias.
- MCU PWB (PL 11.1)
- Photoreceptor Machine Consumables

Corrective Action 10

Corrective Action

1. Procon Area

- Charge Bias Voltage Setting

2. Prints And What To Look At.

- (Nothing to look at)

3. Corrective Action

- Check the connections to the Developer Bias Brush and the HVPS.
- If OK, replace the HVPS. (PL 11.1)

ADJ 9.2.1 Edge Erase Value Adjustment

Purpose

To correct the Lead, Tail Edge and both Side Edge (rear/front) erase values.
NOTE: The IOT Lead Edge/Side Edge Registration must be adjusted.

Check

1. Enter UI Diagnostic Mode.
2. Select NVM Read/Write.
3. Set Chain-Link No. 780-066 (Image Area) to 0.
4. Specify a tray with paper. Make a black copy with the Platen Cover open.
5. Check that the white sections of the Lead, Tail and Side Edges are 2 mm .

Adjustment

1. Enter UI Diagnostic Mode.
2. Select NVM Read/Write
3. Adjust the measured values using the following NVM so that the measured values fall within the specifications (2 mm).
If the setting value is increased, the erase value increases.
Table 1 NVM List

Chain Link	Name	Min.	Initial	Max	Increment
$780-066$	LEAD EDGE ERASE ADJUSTMENT	40	40	50	1 mm
$780-067$	TRAIL EDGE ERASE ADJUSTMENT	20	20	30	1 mm
$780-068$	SIDE EDGE ERASE ADJUSTMENT	10	20	30	1 mm

NOTE: A value of 10 moves the image 1 mm .
4. After adjustment, make another black copy without using any originals and leaving the Platen Cover open.
5. Repeat the procedure until the measured values of the Lead (A), and Side (B) Edges fall within the specifications.

ADJ 9.3.1 Software Loading and Upgrading

Purpose

The purpose of this procedure is to enable updating the machine software (ESS, FAX, IISS, and IOT) or when reinstallation of the software is required due to a failure. The PWS Diagnostic tool will be used for this procedure.

CAUTION

This procedure is generic in nature and is intended as an overview only. Always follow the instructions that come with the software. There may be additional steps added, or other special requirements that vary from version to version.

Setting up the PWS

1. Using the instructions on the pull out sheet that comes with the system software disc, load the WC 7132 software download tool on you PWS.
2. Make a copy of the color test pattern 82E13120 and check for Image Quality problems. Resolve any problems before performing the software loading.
3. Print a copy of the Systems Settings List.
4. Switch off the WC 7132.
5. Disconnect the RJ45 Network Connector to the customer's network.
6. Connect the PWS to the USB 1.1 port on the WC 7132.

Figure 1 Where to connect the PWS and Network cables

NOTE: A new hardware wizard may appear and you will be asked to install the "Fuji Xerox Firmware Download Device" on you PWS. Select "Cancel".
15. Start the WC 7132 PWS Diagnostic Tool. When connected select Enter Software Download.

NOTE: The actual instructions will list the files that need to be selected.

- Generally the Add All 1 File selection is used when upgrading to a newer version of the software. Use the Add All 1 File (Postscript) selection if a PostScript module is installed.

NOTE: Verify the presence of the PostScript module from the System Settings List under Software Version. If the Statement "Controller + PS ROM" appears, the PostScript module is installed. Alternatively you can remove the ESS cover and verify if a PostScript module is installed on the Printer PWB.

- If there is no PostScript module use the Add All 1 File (Standard).
- If installing software at the same version. you must use individual files as the Add All 1 File option will not overwrite a file of the same version.

16. Select the appropriate file(s) for download.
17. Select Start Download... the screen will display Processing. (Lead time is approximately 15 minutes).
18. When the download is completed the machine will reboot. Exit the PWS tool.
19. Perform any additional steps or procedures per the actual instructions that accompany the software.
20. Print a copy of the new Systems Settings List to see if the SW was upgraded.
21. Reconnect RJ45 Network connector to the customer's network.
22. Switch on the WC 7132.

NOTE: The first time the WC 7132 download tool is used on the PWS, the prompt to install the Fuji Gen 2 driver might appear. Select "Install the Software Automatically" radio button and select "Next". Follow the screen prompts to install the driver. If the message "Found new hardware" appears, follow the prompts.
8. Go to Product Tools and start the WC 7132 PWS Diagnostic Tool.

NOTE: The actual instructions that accompany the software may have additional steps here, such as a list of NVM values that need to be recorded. Record those values.
9. When the tool is connected, select Enter Diagnostics.
10. Select dC351, ensure that All is selected.
11. Select Save Machine Settings. When the upload is complete, select File and Exit the Diagnostics Tool.
12. When prompted, save the Machine Data file.
13. Switch off the WC 7132.
14. Switch on the power while pressing the Power Saver switch. Download Mode will be displayed on the UI.

ADJ 11.1.1 IIT Lead Edge/Side Edge Registration Purpose

To set the home position for the IIT Lead Edge (Slow Scan) direction/IIT Side Edge (Fast Scan) direction.

NOTE: The IOT Lead Edge/Side Edge Registration must be adjusted before proceeding with this procedure.

Check

1. To create a Test Pattern Original, use a plain white sheet of 8.5×11 " paper and fold the sheet precisely in half lengthwise and width wise. Then with a straight edge draw a straight line in the lengthwise crease and a straight line in the width wise crease. (Figure 1)

Figure 1 Creating a Test Pattern Original

2. Load 8.5×11 " paper into Tray 1.
3. Place the Test Pattern Original face down on the platen glass with the long edge (Lead Edge) against the left registration edge.
4. From the UI Copying screen. select Black, 1-1, 100\%, Tray 1 and press the Start button.
5. Remove the copy from the output tray and label the lead edge, and indicate the tray feed from, type of paper, and color (Black).
6. Fold the copy in half in both directions.
7. The printed lines should align with the folds.
8. Measure and record the direction and distance the image need to be moved to align them with the folds. (Figure 2)

Figure 2 Measuring the distance to move the image
NOTE: Adjusting IIT Lead Edge 715-050. Decrease the value in NVM to move the image toward the lead edge of the print.

NOTE: Adjust IIT Side Edge 715-053. Decrease the value in NVM to move the image toward the outboard edge of the print.
9. If the measured distance is 2 mm then divide the measured distance by the $0.036 \mathrm{~mm} /$ step. $2 \mathrm{~mm} / 0.036 \mathrm{~mm}=55.5$ bits. To move the image to the left, increase the NVM reading by 55 bits. (If the current reading of $715-050$ is 84 then, $84+55=139$)
10. Enter NVM Read/Write, enter 715-050 and change the reading by adding 55 bits to the current reading.
11. Exit Diagnostics.
12. Place the Test Pattern Original face down on the platen glass with the long edge (Lead Edge) against the left registration edge.
13. From the UI Copying screen. select Black, 1-1, 100\%, Tray 1 and press the Start button.
14. Remove the copy from the output tray and label the lead edge, and indicate the tray feed from, type of paper, and color (Black).
15. Fold the copy in half in both directions.
16. Measure and record the direction and distance the image need to be moved to align them with the folds and adjust the NVM until the IIT is correctly registered.
17. Check that the measured values of the Lead Edge and Side Edge fall within the specifications of the supporting mode.

Table 1 IIT Registration Specification

Item	NVM Location	Increments	Range
Lead Edge	$715-050$	$0.036 \mathrm{~mm} /$ step	$16-184$
Side Edge	$715-053$	$0.085 \mathrm{~mm} /$ step	$16-184$

ADJ 11.1.2 IIT Vertical/Horizontal Magnification

Purpose

To correct the horizontal (fast scan)/vertical (slow scan) magnification ratio for a 100\% copy.

Check

CAUTION

Perform this procedure only if absolutely required. Changing the IIT magnification may adversely affect resolution due to ASIC shift, and may cause a color shift.

NOTE: Before performing this procedure, make sure that the IOT horizontal/Vertical magnification ratios are correct.

1. Place test pattern 82 E 8220 on the Platen Glass and make a copy using the following copy mode settings:

- Copy Mode: Black
- Document Type: Text/Photo
- Paper: $11 \times 17^{\prime \prime}$ or A3
- Magnification: 100\%
- Number of copies: 2

2. Check the 2nd copy for the following:
3. Check horizontal magnification.

- Measure the 200 mm line. If the dimension is not $200 \mathrm{~mm}+/-1 \mathrm{~mm}$, perform the Adjustment.

4. Check the vertical magnification.

- Measure the 300 mm line. If the dimension is not $300 \mathrm{~mm}+/-1.5 \mathrm{~mm}$, perform the Adjustment.

Adjustment

1. Horizontal Magnification Adjustment

- Enter UI Diagnostics, NVM 715-051.
- Each bit represents 0.1% change.
- Increase the value to lengthen the line.
- Decrease the value to shorten the line.

1. Vertical Magnification Adjustment

- Enter UI Diagnostics, NVM 715-702.
- Each bit represents 0.1% change.
- Increase the value to lengthen the line.
- Decrease the value to shorten the line.
Table 1 NVM List

Chain Link	Name	Min.	Initial	Max	Increments
$715-051$	Platen SS Reduce/Enlarge Adjustment	44	50	56	0.1%
$715-702$	Platen FS Reduce/Enlarge Adjustment	0	50	100	0.1%

ADJ 11.2.1 Reduce/Enlarge Adjustment

Purpose

To obtain the proper Reduce/Enlarge ratio for Copy in the Lead Edge to Trail Edge direction and the Front to Rear direction.

Check

1. Use Side B of the Standard Test Pattern (82P521 or 82P524).

The tolerance for each Reduce/Enlarge setting in the Lead Edge to Trail Edge direction and the Front to Rear direction are listed in the following table.
Table $\mathbf{1}$

Reduce/Enlarge (\%)	Measurement
65	1302 mm
101	2022 mm
154	1541.5 mm

Refer to Figure 1 for the areas to be measured. For 65% and 101%, use areas A and B for reduction/enlargement in the Lead Edge to Trail Edge direction, and areas C and D for enlargement in the Front to Rear direction. For 154%, use areas A and E for enlargement in the Lead Edge to Trail Edge direction, and areas C and F for enlargement in the Front to Rear direction. (Figure 1)

Figure 1 Enlargement areas to be measured

ADJ 11.3.1 UI Alignment

Purpose

To align the position of the buttons on the display and the touch panel so that the user can select the contents on the display using the touch panel. Perform this adjustment only after replacing the UI PWB and the Control Panel.

NOTE: Adjust using the Touch Pen found in the Control Panel. If the Touch Pen is not available, you may use a pointed object. Take care not to damage the surface of the UI when using the pointed object.

Adjustment

1. Turn off the power. Remove the Control Panel and take out the Touch Pen. (Figure 1)

j0st41140

Figure 1 Location of the Touch Pen for UI Alignment

2. Return the Control Panel to its original position. Hold down the $0,1,3$ keys while turning on the machine.

P1	P2	P3
P4	P5	P6
P7	P8	P9

j0st41141

Figure 2 UI Alignment Adjustment Screen

3. Using the Touch Pen, touch the intersections of the vertical and horizontal lines, P1 to P9, in sequence. (Stay on each point on the Touch Pen for approx. 1 sec . then proceed to the next point.)
After pressing all the buttons, the machine automatically calculates the difference between the coordinates and the correction values.
This calculation takes approx. 0.1 sec .
4. After a few seconds, turn the power Off/On. The Ul may be used after reboot as the data has been corrected.

NOTE: If power is turned off during adjustment, data before adjustment will be restored. Complete the whole procedure before turning off the machine.
5. Keep the Touch Pen in the Control Panel and return the Control Panel to its original position.

ADJ 11.6.1 Full/Half Rate Carriage Position Adjustment

Purpose

To adjust the position of the Full/Half Rate Carriage.

Adjustment

WARNING

To avoid personal injury or shock, do not perform repair or adjustment with electrical power applied to the machine.

CAUTION

Check that "Ready to Copy" is displayed on the Control Panel display.
NOTE: Adjust the position of the Front and Rear Full/Half Rate Carriage separately.

1. Switch off the power and disconnect the power cord.
2. Remove the Platen Glass. (REP 11.3.1)
3. Remove the Lens Assembly cover. PL 13.4
4. Prepare the tools (2) for determining the position. (Figure 1)
5. Remove the screws (2).
6. Take out the tools (2).

Figure 1 Taking out the tools
5. Align the tool hole in the Half Rate Carriage with the tool hole of the rail (Front/Rear). (Figure 2)

Figure 2 Position Adjustment of Half Rate Carriage 1/3
6. Fix the tool to the Half Rate Carriage. (Figure 3)

NOTE: Install the tools near the edges (the front tool to the front and the rear tool to the rear).

1. Fix the tool. (Front/Rear)
2. Secure it with a screw.

Figure 3 Position Adjustment of Half Rate Carriage 2/3
NOTE: The fixing position of the pulley can be changed if the tool holes of the Half Rate Carriage and the rail are not aligned and the tool is not fixed in place. (Figure 4)

1. Loosen the screws (2).
2. Turn the Pulley until the tool hole aligns.
3. Align the shaft concave with the Pulley end face and tighten the screws (2).

Figure 4 Position Adjustment of Half Rate Carriage 3/3
7. Fix the tool to the tool hole on the frame and check the tool holes of the frame and the Full Rate Carriage. (Figure 5)

NOTE: When adjusting the position of Full Rate Carriage from the rear side, to it with the rear tool for Half Rate Carriage installed.

1. Fix the tool.
2. Secure it with a screw.

Figure 5 Position Adjustment of Full Rate Carriage 1/2
NOTE: Loosen the securing screw of the Carriage Cable and align the tool holes if the tool holes of the frame and the Full Rate Carriage are not aligned, and the tool is not fixed in place. (Figure 6)

1. Loosen the screw.
2. Move the Full Rate Carriage until the tool hole aligns.
3. Tighten the screw.

Figure 6 Position Adjustment of Full Rate Carriage $\mathbf{2 / 2}$
8. When adjusting the front position of Full Rate Carriage, move the tool for Half Rate Carriage to the front of Full Rate Carriage before doing the adjustment.
At this time the rear tool for Full Rate Carriage remains installed.

ADJ 15.1.1 DADF Side Edge Registration

Purpose

To set the DADF Scan Position (original scan position) Side Edge (Fast Scan Direction).
NOTE: The following adjustments must be checked.

- IOT Image Registration Adjustment (ADJ 9.1.1)
- IIT Lead Edge/Side Edge Registration Adjustment (ADJ 11.1.1)
- DADF Height Adjustment (ADJ 15.1.5)
- DADF Position (Skew) Adjustment (ADJ 15.1.6)

For this sequence of checks and adjustments, an original Cross Line Test Pattern with lines drawn exactly down the center and across in both directions, will need to be created.

Check

DADF Side Edge Registration Side 1

1. To create a Cross Line Test Pattern Original, use a plain white sheet of $8.5 \times 11^{\prime \prime}$ paper and fold the sheet precisely in half lengthwise and width wise. Then with a straight edge draw a straight line in the lengthwise crease and a straight line in the width wise crease Label the top for orientation purposes. (Figure 1)

Figure 1 Creating a Test Pattern Original

2. Load Tray 1 with $8.5 \times 11^{\prime \prime}$ paper.
3. Place the new Cross Line Test Pattern on the DADF with the word TOP Face Up and towards the rear of the DADF.
4. Select Tray 1, 1-1 Sided.
5. 100%
$1->1$ Sided
1 copy
6. Make one copy to the center tray.
7. Remove the copy from the center tray and Flip the copy left to right.
8. Fold the copy in half in the 8.5 inch direction.
9. If adjustment is required, enter UI Diagnostic Mode, NVM 711-272 to place the Center line on the fold. See Table 1.

NOTE: Increase the value to move the image toward the lead edge.

DADF Side Edge Registration Side 2

1. Place the new Cross Line Test Pattern on the DADF with the word TOP Face Down and towards the rear of the DADF.
2. Select Tray 1, 2-2 Sided.
3. 100%
$1->1$ Sided
1 copy
4. Make one copy to the center tray.
5. Remove the copy from the center tray but DO NOT FLIP the copy this time,
6. Fold the copy in half in the 8.5 inch direction.
7. If adjustment is required, enter UI Diagnostic Mode, NVM 711-274 to place the center line on the fold. See Table 1.

NOTE: Increase the value to move the image toward the lead edge.
NOTE: The Values of NVM 711-272 and 711-274 are written to NVM's 715-110, 715-111, 715-112, and 715-113, when the machine power is switched on.

- $711-272=715-110$
- $\quad 711-274=715-111,715-112,715-113$
Table 1 NVM List

Chain Link	Name	Min.	Initial	Max	Increment
$711-272$	CVT FS Offset Side 1 Replace All	0	120	240	.06 mm
$711-274$	CVT FS Offset Side 2 Replace All	0	120	240	.06 mm

ADJ 15.1.3 DADF Non-Standard Sized Original Customized Registration Function
 Purpose

To enable non-standard sized originals to be fed as standard sized originals by registering original sizes that cannot be detected (non-standard sizes) by the DADF. This enables the feeding of customized original sizes for different users.
[Outline]
Original size detection is based on the customized registered data. The DADF then processes the original in the specified original size. Customized registration is limited to only 1 entry. If the registration data is valid, the original size is detected based on the priorities in the detection table.

Preparation

1. Borrow a non-standard sized original to be registered from the customer.
2. Check in which direction (LEF or SEF) the customer wants to process the original using the DADF.
3. Check in which paper size and direction the customer wants the copy.
4. Check and make a note of the Fast Scan Direction Length (X) and Slow Scan Direction Length (Y) of the original using the scale.

Adjustment

1. Enter NVM Read/Write.
2. Set the following NVM Data for customized registration detection.

NOTE: Fast Scan Direction Max </= Fast Scan Direction Min. Value $=200$ (within 20mm)
NOTE: Slow Scan Direction Max </= Slow Scan Direction Min. Value = 200 (within 20mm)

NOTE: In order to prevent incorrect detection by the Size Sensor, the following sizes cannot be entered.

- Fast Scan Direction Max: 2190~2290
- Fast Scan Direction Min.: 2810~2910

For the measurements X and Y obtained in the preparation:

- Set the data for 710-565 to 1. (Customized registration is valid.)
- Set $(X+10) \times 10$ to be resident in the data for 710-559. (Fast Scan Direction Max Value Setting)
- Set (X-10) $\times 10$ to be resident in the data for 710-560. (Fast Scan Direction Max Value Setting)
- Set $(\mathrm{Y}+10) \times 10$ to be resident in the data for 710-561. (Slow Scan Direction Max Value Setting)
- Set $(\mathrm{Y}-10) \times 10$ to be resident in the data for 710-562. (Slow Scan Direction Min. Value Setting)
- Enter the data for 710-563. (Enter the data for a paper size selected from the table below based on the size specified by the customer.)
- Enter the data for 710-564. (Enter the data for a paper size selected from the table below based on the size specified by the customer.)
The information that is related to the NVM to be entered is as follows.
Table 1 NVM List

Chain-Link	Display Data Name	Remarks
710-559	Fast Scan Direction Max Value Note 1)	Setting Range=1297~3070 in increments of 0.1 mm (Initial Value=2970)
710-560	Fast Scan Direction Min. Value Note 1)	Setting Range=1297~3070 in increments of 0.1 mm (Initial Value=2970)
710-561	Slow Scan Direction Max Value Note 2)	Setting Range=1297~4418 in increments of 0.1 mm (Initial Value=2100)
710-562	Slow Scan Direction Min. Value Note 2)	Setting Range=1297~4418 in increments of 0.1 mm (Initial Value=2100)
710-563	Specified Paper Code for Customized Registration	03: $5.5 " x 8.5 "$ 04: A5 05: B5 08: A4 09: 8"x10" 10: $8.5 " \times 11 "$ 11: $8.5 " \times 12.4 "$ 12: $8.5 " \times 13 "$ 13: $8.5 " \times 14 "$ 14: B4 15: A3 16: 11"x17" 17: 8 K 20: ILLEGAL SIZE (Initial Value=08)
710-564	Feed Direction for Original Size	0: LEF, 1: SEF (Initial Value=0)
710-565	Specified Customized Registration for DADF Original Size Detection Table	Do not use Specified Customized Registration for Original Size Detection Table: 0 Use Specified Customized Registration for Original Size Detection Table: 1 (Initial Value=0)

3. Check the NVM Data setting.
4. Feed the customized original registered in the Size Detection Table into the DADF. \rightarrow Check that the original size is detected according to the settings.
NOTE: As non-standard sized originals are handled as standard sized originals, there may be problems such as image loss in the scan data.

ADJ 15.1.4 DADF Lead Edge Registration

Purpose

To set the DADF Lead Edge Registration in side 1 and side 2.
NOTE: The following adjustments must have been completed.

- IOT Image Registration Adjustment (ADJ 9.1.1)
- IIT Lead Edge/Side Edge Registration Adjustment (ADJ 11.1.1)
- DADF Height Adjustment (ADJ 15.1.5)
- DADF Position (Skew) Adjustment (ADJ 15.1.6)

Check

1. Place the 82E8220 Test Pattern on the Document glass with the trade mark and part number as the lead edge.
2. Set up the machine to make two sided copies of the test pattern as follows:
a. On the UI Ready to Copy Screen, select the Copy tab.
b. Under Output Color select Black.
c. Under the Paper Supply select 11×17 " paper size.
d. Under 2 Sided Copying select 1 to 2 Sided.
e. Reduce / Enlarge should be set to 100%.
f. On the UI Ready to Copy Screen, select the Layout Adjustment tab, Image Shift should be Side 1 and Side 2 No Shift. Select Save.
3. Select a Quantity of 5 .
4. Press the Start button to make side 1.
5. After side 1 is made, place a small piece of paper with the words side 2 written on it, onto the Document Glass and under the 82E8220 Test Pattern.

NOTE: Side 2 can now be identified by the word "side 2" copied from the small piece of paper placed on the Document Glass under the test pattern from step 5. (Figure 1)
6. Press the Start button to make side 2.

NOTE: The 2 sided copies will be used to run duplex sets for measurement through the DADF.
7. Place the 2 sided copies into the DADF and make one set of 2 sided copies.
8. On side 1 and side 2, measure on the scale from the 10 mm line to the edge of the paper. The measurement should as follows. (Table 1)

Table 1 Specification		
Item Simplex	Duplex	
Lead Edge	$10 \pm 0.5 \mathrm{~mm}$	$10 \pm 0.5 \mathrm{~mm}$

2. Select NVM Read/Write.
3. Adjust the Lead Edge using the following NVM so that the measured value falls within specifications.
If the measured value is short: Set a smaller value.
If the measured value is long: Set a larger value.
Table 2 NVM List

Chain Link	Name	Min.	Initial	Max	Increment
$711-140$	DADF Lead Reg. Adjustment (Side 1) Replace All	80	129	230	0.458 mm
$711-141$	DADF Lead Reg. Adjustment (Side 2) Replace All	80	129	230	0.458 mm

4. After adjustment is complete, perform the check following the steps in the Check procedure.
5. Repeat the procedure until the measured value of the Lead Edge falls within the specifications.

Figure 1 Identifying side 2

Adjustment

1. Enter UI Diagnostic Mode.

ADJ 15.1.5 DADF Height Adjustment

Purpose

To correct the feeding of the original by adjusting the height of the DADF.

Check

1. Check the gap between the DADF Platen Guide tips (x 3) and the Platen Glass or DADF Platen Glass. (Figure 1)
2. The DADF Platen Guide tip at the rear is touching the DADF Platen Glass.
3. The DADF Platen Guide tips (x 2) at the front are touching the Platen Glass.

Figure 1 Checking the gap between the DADF Platen Guide and the Platen Glass

Adjustment

NOTE: DADF height adjustment is basically carried out using the Left Counter Balance. In cases where such adjustment is not possible, adjustment is carried out using the Right Counter Balance.

1. Loosen the nut of the Left/Right Counter Balance and turn the screw to adjust the height and slant of the DADF. (Figure 2)

- Turning the screw in direction A will cause the front of the DADF to rise and the rear to fall. (Direction of arrow A)
- Turning the screw in direction B will cause the front of the DADF to fall and the rear to rise. (Direction of arrow B)

$$
\text { Figure } 2 \text { Adjusting the DADF Height }
$$

NOTE: Ensure that the nut is securely tightened after adjustment.

ADJ 15.1.6 DADF Position (Skew) Adjustment

Purpose

To correct the feeding of the original by adjusting the height of the DADF. (DADF Skew)

Check

1. Place the Test Chart 82E8220 on the Platen Glass.
2. Place 11×17 " paper in Tray 1.
3. Make a copy using the following settings in Copy mode.
a. On the UI Ready to Copy Screen, select the Copy tab.
b. Under Output Color select Black.
c. Under the Paper Supply select $11 \times 17^{\prime \prime}$ paper size.
d. Under 2 Sided Copying select 1 Sided.
e. Reduce / Enlarge should be set to 100%.
f. On the UI Ready to Copy Screen, select the Layout Adjustment tab, Image Shift should be Side 1 No Shift. Select Save if necessary.
NOTE: The copy made from the Platen Glass will be used as the original in the DADF.
4. Place the copy made from the Platen Glass into the DADF and make 3 copies.
5. Check that the difference in the distance between the side and the Edges at the 100 mm mark and the 300 mm mark in the 3 copies is within 00.5 mm . (Figure 1)

Figure 1 Checking the Skew

Adjustment

1. Remove the DADF Rear Cover. (REP 15.2.4)
2. Adjust the position of the DADF by moving the DADF in direction A or B. (Figure 2)
3. Loosen the screws (5)
4. Move the DADF in direction A or B .
5. Tighten the screws (5).

j0st41559

Figure 3 Output copy after adjustment

- The DADF moved in direction B. (Figure 4)
- The DADF moved in direction A. (Figure 3)

j0st41560
Figure 4 Output copy after adjustment

3. Reinstall the DADF Rear Cover.
4. After adjustment, carry out DADF Side Edge Registration Adjustment (ADJ 15.1.1) and DADF Lead Edge Registration (ADJ 15.1.4).
Overview
ntroduction5-3
Subsystem Information 5-4
Symbology 5-5
Parts Lists
Drives
PL 1.1 Main Drive 5-7
PL 1.2 Drum Drive Assembly 5-8
Paper Transport
PL 2.1 Tray, Feeder Assembly 5-9
PL 2.2 Tray 1 -10
PL 2.3 Feeder 1 Assembly (1 of 2) 5-11
PL 2.4 Feeder 1 Assembly (2 of 2)PL 2.5 Registration.5-12
PL 2.6 Vertical Transport Cover 5-145-13
PL 2.7 Left Hand CoverROSPL 3.1 ROS5-16
Xerographics
PL 4.1 Drum Assembly, Waste Bottle Assembly 5-17
PL 4.2 Waste Bottle Guide Assembly 5-18
Developer
PL 5.1 Developer Component 5-19
PL 5.2 Developer Housing, Developer Cartridge 5-20
Transfer
PL 6.1 IBT, 2nd BTR, IBT Cleaner Assembly 5-21
PL 6.2 IBT Belt Assembly 5-22
Fuser
PL 7.1 Fuser Unit.5-23
PL 7.2 Fuser Component 5-24
Exit
PL 8.1 Exit. 5-25
PL 8.2 Exit 1 5-26
PL 8.3 L/H Upper Chute Assembly (Exit 2) 5-27
PL 8.4 Tray Guide Assembly (OCT 2) 5-28
MSIPL 9.1 MSI Assembly5-29
PL 9.2 Lower Frame Assembly 5-30
PL 9.3 MSI Tray Assembly 5-31
Duplex
PL 10.1 Duplex 5-32
PL 10.2 Inner Chute Assembly 5-33
Electrical Components
PL 11.1 Electrical 5-34
PL 11.2 ESS 5-35
PL 11.3 FAX Unit 5-36
PL 11.4 Wire Harnesses 5-37
Covers
PL 12.1 Cover-Front, Left 5-38
PL 12.2 Cover-Rear, Right 5-39
IIT
PL 13.1 Platen Cover/IIT Assembly 5-40
PL 13.2 Control Panel 5-41
L 13.3 Platen Glass. 5-42
PL 13.4 CCD PWB, Sensor. 5-43
PL 13.5 Carriage Cable/Motor 5-44
PL 13.6 Full/Half Rate Carriage 5-45
Tray Module-2TM
PL 14.1 Tray 2/3 Assembly, Feeder Assembly-2TM 5-46
PL 14.2 Tray 2/3 Assembly-2TM 5-47
PL 14.3 Feeder $1 / 2$ Assembly 2TM (1 of 2) 5-48
PL 14.4 Feeder $1 / 2$ Assembly 2TM (2 of 2) 5-49
PL 14.5 Left Cover-2TM 5-50
PL 14.6 Takeaway Roll-2TM 5-51
PL 14.7 Electrical-2TM 5-52
PL 14.8 Cover-2TM 5-53
Tray Module-TTM
PL 15.1 Tray 2/3, feeder Assembly-TTM 5-54
PL 15.2 Tray 2 Assembly-TTM. 5-55
PL 15.3 Tray 3 Assembly-TTM. 5-56
PL 15.4 Paper Feed (1 of 2)-TTM 5-57
PL 15.5 Paper Feed (2 of 2)-TTM 5-58
PL 15.6 Feeder 1 Assembly (1 of 2) 5-59
PL 15.7 Feeder 1 Assembly (2 of 2) 5-60
PL 15.8 Left Cover-TTM 5-61
PL 15.9 Electrical-TTM 5-62
PL 15.10 Cover-TTM 5-63
DADF
PL 16.1 DADF Accessory 5-64
PL 16.2 DADF Component Cover 5-65
PL 16.3 DADF Base Cover 5-66
PL 16.4 DADF Feeder Component 5-67
PL 16.5 Top Cover Componen 5-68
PL 16.6 Takeaway Pinch Roll, Nudger Motor, Nudger/Feed Roll 5-69
PL 16.7 DADF Feeder-Chute 5-70
PL 16.8 DADF Feeder-Roll 5-71
PL 16.9 Motor Unit Assembly. 5-72
PL 16.10 DADF Document Tray 5-73
Finisher
PL 17.1 Finisher Unit. 5-74
PL 17.2 H-Transport Assembly (1 of 2) 5-75
PL 17.3 H-Transport Assembly (2 of 2) -76
PL 17.4 Cover 5-77
PL 17.5 Top Open Cover and Eject Roll 5-78
PL 17.6 Paper Transport (1 of 2) 5-79
PL 17.7 Paper Transport (2 of 2) 5-80
PL 17.8 Staple Unit 5-81
PL 17.9 Compiler Tray Assembly 5-82
PL 17.10 Elevator. 5-83
PL 17.11 Exit. 5-84
PL 17.12 Electrical. 5-85
PL 17.13 LVPS 5-86
PL 17.14 Rack 5-87
PL 22.1 Finisher Assembly (Part 1 of 2) 5-88
PL 22.2 Finisher Assembly (Part 2 of 2) 5-89
PL 22.3 Stacker Base Assembly (Part 1 of 5 5-90
PL 22.4 Stacker Base Assembly (Part 2 of 5) 5-91
PL 22.5 Stacker Base Assembly (Part 3 of 5) 5-92
PL 22.6 Stacker Base Assembly (Part 4 of 5) 5-93
PL 22.7 Stacker Base Assembly (Part 5 of 5) 5-94
PL 22.8 Stacker Tray Assembly 5-95
PL 22.9 Compile Assembly (Part 1 of 2) 5-96
PL 22.10 Compile Assembly (Part 2 of 2) 5-97
Common HardwareCommon Hardware .5-98

Introduction

Overview

The Parts List section identifies all part numbers and the corresponding location of all spared subsystem components.

Organization

Parts Lists

Each item number in the part number listing corresponds to an item number in the related illustration. All the parts in a given subsystem of the machine will be located in the same illustration or in a series of associated illustrations.

Electrical Connectors and Fasteners

This section contains the illustrations and descriptions of the plugs, jacks, and fasteners used in the machine. A part number listing of the connectors is included.

Common Hardware

The common hardware is listed in alphabetical order by the letter or letters used to identify each item in the part number listing and in the illustrations. Dimensions are in millimeters unless otherwise identified.

Part Number Index

This index lists all the spared parts in the machine in numerical order. Each number is followed by a reference to the parts list on which the part may be found.

Other Information

Abbreviations

Abbreviations are used in the parts lists and the exploded view illustrations to provide information in a limited amount of space. The following abbreviations are used in this manual:

Table 1

Abbreviation	Meaning
A3	297×594 Millimeters
A4	210×297 Millimeters
A5	148×210 Millimeters
AD	Auto Duplex
AWG	American Wire Gauge
EMI	Electro Magnetic Induction
GB	Giga Byte
KB	Kilo Byte
MB	Mega Byte
MM	Millimeters
MOD	Magneto Optical Drive
NOHAD	Noise Ozone Heat Air Dirt
PL	Parts List
P/O	Part of

	Table 1
Abbreviation	Meaning
R/E	Reduction/Enlargement
REF:	Refer to
SCSI	Small Computer Systems Interface
W/	With
W/O	Without

Table 2

	Operating Companies
Abbreviation	Meaning
AO	Americas Operations
NASG - US	North American Solutions Group - US
NASG - Canada	North American Solutions Group - Canada
XE	Xerox Europe

Symbology

Symbology used in the Parts List section is identified in the Symbology section.

Service Procedure Referencing

If a part or assembly has an associated repair or adjustment procedure, the procedure number will be listed at the end of the part description in the parts lists e.g. (REP 5.1, ADJ 5.3)

Subsystem Information

Use of the Term "Assembly"

The term "assembly" will be used for items in the part number listing that include other itemized parts in the part number listing. When the word "assembly" is found in the part number listing, there will be a corresponding item number on the illustrations followed by a bracket and a listing of the contents of the assembly.

Brackets

A bracket is used when an assembly or kit is spared, but is not shown in the illustration. The item number of the assembly or kit precedes the bracket; the item numbers of the piece parts follow the bracket.

Tag

The notation "W/Tag" in the parts description indicates that the part configuration has been updated. Check the change Tag index in the General Information section of the Service Data for the name and purpose of the modification.

In some cases, a part or assembly may be spared in two versions: with the Tag and without the Tag. In those cases, use whichever part is appropriate for the configuration of the machine on which the part is to be installed. If the machine does not have a particular Tag and the only replacement part available is listed as "W/Tag", install the Tag kit or all of the piece parts. The Change Tag Index tells you which kit or piece parts you need.

Whenever you install a Tag kit or all the piece parts that make up a Tag, mark the appropriate number on the Tag matrix.

Symbology

A Tag number within a circle pointing to an item number shows that the part has been changed by the tag number within the circle (Figure 1). Information on the modification is in the Change Tag Index.

A Tag number within a circle having a shaded bar and pointing to an item number shows that the configuration of the part shown is the configuration before the part was changed by the Tag number within the circle (Figure 2).

Figure 2 Without Tag Symbol

Figure 1 With Tag Symbol

A tag number within a circle with no apex shows that the entire drawing has been changed by the tag number within the circle (Figure 3). Information on the modification is in the Change Tag Index.

A tag number within a circle with no apex and having a shaded bar shows that the entire drawing was the configuration before being changed by the tag number within the circle (Figure 4).

Figure 3 Entire Drawing With Tag Symbol

Figure 4 Entire Drawing Without Tag Symbol

PL 1.1 Main Drive

Item	Part	Description
1	007 K 93911	Drum Drive Assembly (REP 1.1.2)
2	007 K 93974	Developer Drive Assembly (REP 3
4.27 (127K48670	Fuser Motor, Developer Motor	
4	-	Upper Bracket (P/O PL 1.1 Item 2)
5	-	Harness Guard (P/O PL 1.1 Item 2)
6	-	Gear (30/27T) (P/O PL 1.1 Item 2)
7	-	Gear (55/30T) (P/O PL 1.1 Item 2)
8	-	Gear (33T) (P/O PL 1.1 Item 2)
9	-	Bearing (P/O PL 1.1 Item 2)
10	121 K36990	Dispenser Clutch
11	-	Lower Bracket (P/O PL 1.1 Item 2)
12	$007 K 93962$	Main Drive (REP 1.1.1)
13	$127 K 48660$	Main Motor (25w)
14	-	Screw (Not Spared)
15	-	Bracket (P/O PL 1.1 Item 12)
16	$423 W 06955$	Belt, Exit 1
17	-	Flange (Not Spared)

PL 1.1

PL 1.2 Drum Drive Assembly

Item	Part	Description
1	-	Drum Shaft (P/O PL 1.1 Item 1)
2	-	Gear (144T) (P/O PL 1.1 Item 1)
3	-	Bearing (P/O PL 1.1 Item 1)
4	930W00111	Photo INT Sensor
5	127 K 48680	Drum Motor
6	-	Connector Bracket (P/O PL 1.1 Item 1)
7	-	Harness Bracket (P/O PL 1.1 Item 1)
8	-	Cam Wheel (P/O PL 1.1 Item 1)
9	-	Sensor Bracket (P/O PL 1.1 Item 1)
10	-	Upper Bracket (P/O PL 1.1 Item 1)
11	-	Gear (50T) (P/O PL 1.1 Item 1)
12	-	Gear (42/23T) (P/O PL 1.1 Item 1)
13	-	Bearing (P/O PL 1.1 Item 1)
14	-	Clutch (P/O PL 1.1 Item 1)
15	-	Gear (27T) (P/O PL 1.1 Item 1)
16	-	Clutch (P/O PL 1.1 Item 1)
17	-	Gear (23T) (P/O PL 1.1 Item 1)
18	-	Bearing (P/O PL 1.1 Item 1)
19	-	Clutch (P/O PL 1.1 Item 1)
20	-	Shaft (P/O PL 1.1 Item 1)
21	-	Gear (37T) (P/O PL 1.1 Item 1)
22	-	Bearing Sleeve (P/O PL 1.1 Item 1)
23	-	Gear (80/45T) (P/O PL 1.1 Item 1)
24	-	Shaft (P/O PL 1.1 Item 1)
25	-	Gear (45T) (P/O PL 1.1 Item 1)
26	-	Gear (35T) (P/O PL 1.1 Item 1)
27	-	Bearing (P/O PL 1.1 Item 1)
28	-	Gear (72T) (P/O PL 1.1 Item 1)
29	-	Gear (144T) (P/O PL 1.1 Item 1)
30	-	Bracket (P/O PL 1.1 Item 1)
31	-	Gear (43T) (P/O PL 1.1 Item 1)
32	-	Compression Spring (P/O PL 1.1 Item 1)
33	-	IBT Auger Coupling (P/O PL 1.1 Item 1)
34	-	Gear (53T) (P/O PL 1.1 Item 1)
35	-	Bracket (Not Spared)
36	-	Coupling (P/O PL 1.1 Item 1)
37	-	Shaft (P/O PL 1.1 Item 1)

PL 1.2

PL 2.1 Tray, Feeder Assembly

Item	Part	Description
1	$003 E 61510$	Tray Stopper
2	-	Tray Spacer (Not Spared)
3	050 K 53945	Tray Assembly
4	110 K 12100	Tray Paper Size Switch
5	-	Bracket (Not Spared)
6	054 K 27051	Feeder Chute Assembly (REP
		2.1.1)
7	-	Pad (P/O PL 2.1 Item 6)
8	-	Pad (P/O PL 2.1 Item 6)
9	-	Paper Guide (P/O PL 2.1 Item 6)
10	$054 K 27520$	Feed Out Chute
11	$059 K 42524$	Tray 1 Feeder Assembly (REP
12	-	2.1.1)
13	-	Tray No. 1 Label (P/O PL 2.1 Item
14	-	15)
		Slide Lock Block (Not Spared)
15	$604 K 20550$	Label (Instruction) (P/O PL 2.1 Item
16	-	Tray Label Kit
		Cushion (Not Spared)

PL 2.2 Tray 1

Description

Tray Assembly (Not Spared)
Tray Cover (Not Spared)
Slide Lock
Label (Max) (P/O PL 2.2 Item 1)
Bottom Plate (P/O PL 2.2 Item 1)
Bottom Pad (P/O PL 2.2 Item 1)
Front Side Guide (P/O PL 2.2 Item
1, 7)
Tray Pad (P/O PL 2.2 Item 1)
Right Side Guide (P/O PL 2.2 Item
1)

Side Actuator (P/O PL 2.2 Item 1)
Side Actuator (P/O PL 2.2 Item 1)
Spring (P/O PL 2.2 Item 1)
Pinion (P/O PL 2.2 Item 1)
End Guide (P/O PL 2.2 Item 1)
Spring Guide (P/O PL 2.2 Item 1)
End Guide Actuator (P/O PL 2.2
Item 1)
End Link Guide (P/O PL 2.2 Item 1)
Gear (13) (P/O PL 2.2 Item 1, 27)
Gear (13/60) (P/O PL 2.2 Item 1
27)

Gear (60) (P/O PL 2.2 Item 1, 27)
Rear Plate (P/O PL 2.2 Item 1)
Lift Shift (P/O PL 2.2 Item 1)
Right Tray Stopper (P/O PL 2.2 Item 1)
Seal (P/O PL 2.2 Item 1)
Cassette Housing (P/O PL 2.2 Item 1)

Front Side Guide (P/O PL 2.2 Item 1)

Gear Tray Kit

PL 2.2

0502002A-ELA

PL 2.3 Feeder 1 Assembly (1 of 2)

Item	Part	Description
1	-	Upper Frame (P/O PL 2.1 Item 11)
2	127 K 38171	Tray 1 Feed Lift Motor
3	-	Drive Bracket (P/O PL 2.1 Item 11)
4	014 E 44770	Spacer
5	-	Gear (31) (P/O PL 2.1 Item 11)
6	-	Spring (P/O PL 2.1 Item 11)
7	-	Clutch (P/O PL 2.1 Item 11)
8	-	Gear (P/O PL 2.1 Item 11)
9	-	Gear (33T) (P/O PL 2.1 Item 11)
10	-	Bearing Shaft (P/O PL 2.1 Item 11)
11	-	Drive Shaft (P/O PL 2.1 Item 11)
12	-	Chute (P/O PL 2.1 Item 11)
13	$120 E 22481$	Actuator
14	$930 W 00113$	No Paper Sensor, Level Sensor
15	-	Rail (P/O PL 2.1 Item 11)
16	-	Gear (28/21) (P/O PL 2.1 Item 11)
17	-	Gear (29) (P/O PL 2.1 Item 11)
18	-	Washer (P/O PL 2.1 Item 11)
19	930 W00211	Prefeed Sensor
20	-	Harness Rear Holder (P/O PL 2.1
		Item 11)
21	-	Upper Harness Holder (P/O PL 2.1
22	-	Item 11)
		Center Harness Holder (P/O PL 2.1
		Item 11)

PL 2.4 Feeder 1 Assembly (2 of 2)

PL 2.5 Registration

Item

Item	Pa
1	-
2	-
3	-
4	-
5	059
6	121
7	130
8	-
9	054
10	130
11	-
12	-
13	-
14	103

Description

Chute (Not Spared)
Registration Bearing (P/O PL 2.5 Item 15)
Registration Chute (P/O PL 2.5 Item 15)
Adjust Skew Block (P/O PL 2.5 Item 15)
Registration Roller
Registration Clutch
Registration Sensor
Bracket (P/O PL 2.5 Item 15)
Inlet Chute
Transparency Sensor
Cap (P/O PL 2.5 Item 15)
Conductor Out (P/O PL 2.5 Item 15)

Conductor In (P/O PL 2.5 Item 15) Resistor
Registration Transport Assembly (REP 2.4.1)
Registration Harness (Not Spared)

PL 2.6 Vertical Transport Cover

Item	Part	Description
1	$013 E 29830$	Bearing
2	$413 W 77559$	Bearing
3	110 E11580	Lower L/H Cover Interlock
4	-	Left Low Rivet (Not Spared)
5	-	Lower Chute (Not Spared)
6	-	Tray 1 Takeaway Roll (Not Spared)
		(REP 2.5.1)
7	-	Left Low Handle (Not Spared)
8	-	Left Low Bracket (Not Spared)
9	-	Bearing In (Not Spared)
10	-	Bearing Out (Not Spared)
11	$059 E 98371$	Takeaway Pinch Roller
12	130 K64261	Tray 1 TA Sensor
13	-	Left Low Spring (Not Spared)
14	-	Spring-In (Not Spared)
15	962 K23460	Transport Sensor Harness
16	-	Earth Plate (Not Spared)
17	$802 E 55701$	Left Low Back Cover
18	-	Spring (Not Spared)
19	-	Gear (18T) (Not Spared)
20	$013 E 26091$	Bearing
21	$815 E 27180$	Idler Bracket
22	$807 E 14650$	Idler Gear (54T)
23	$807 E 14640$	Idler Gear (21T)
24	$807 E 14630$	Idler Gear (37T)
25	-	Gear (19T) (Not Spared)
26	-	Bracket (Not Spared)
27	-	Transport Bracket (Not Spared)
28	$013 E 26060$	Bearing
29	121 K37120	Takeaway Clutch
30	-	Transport Shaft (Not Spared)
31	-	Washer (Not Spared)
32	-	Switch Bracket (Not Spared)
		-
	-	

PL 2.6

Item	Part	Description
1	802K85352	Left Hand Upper Cover Assembly (REP 2.6.2)
2	-	Left Hand Cover (P/O PL 2.7 Item 1)
3	003E65100	Handle
4	-	Spring (P/O PL 2.7 Item 1)
5	054E23950	Cover Chute
6	-	Frame (P/O PL 2.7 Item 1)
7	-	Guide Handle (P/O PL 2.7 Item 1)
8	-	Gear (P/O PL 2.7 Item 1)
9	849E67970	Cover Support
10	054K24060	Duplex Chute
11	-	Duplex Pad (P/O PL 2.7 Item 1)
12	-	Guide (P/O PL 2.7 Item 1)
13	-	Chute Support (P/O PL 2.7 Item 1)
14	-	Spring (P/O PL 2.7 Item 1)
15	054K30340	Pinch Chute Assembly
16	-	Registration Pinch Chute (P/O PL 2.7 Item 15)
17	-	Pulley (P/O PL 2.7 Item 15)
18	059K43251	Pinch Roller, Registration
19	-	Extension Spring (P/O PL 2.7 Item 15)
20	-	Cap (P/O PL 2.7 Item 15)
21	-	Holder (P/O PL 2.7 Item 15)
22	-	Reflector (P/O PL 2.7 Item 15)
23	-	Guide (P/O PL 2.7 Item 15)
24	-	Conductor (P/O PL 2.7 Item 1)
25	-	Earth Housing (P/O PL 2.7 Item 1)
26	-	Seal (P/O PL 2.7 Item 1)
27	-	Interlock Switch Bracket (Not Spared)
28	110 E97990	L/H Upper Cover Interlock Switch
29	-	Stud (Not Spared)
30	008R13026	2nd BTR Roll Assembly

PL 3.1 ROS

Item

Part
062K16371
927 W00111
-
$-$
-
-

Description

ROS Assembly (REP 3.1.1)
ROS Fan Assembly (Not Spared) ROS Fan
Duct (P/O PL 3.1 Item 2)
Hex Screw (P/O PL 3.1 Item 2)
ROS Cleaner Assembly (Not Spared)
Cleaner Rod (P/O PL 3.1 Item 6) Cleaner Base (P/O PL 3.1 Item 6) Guide Rod (P/O PL 3.1 Item 6)

PL 3.1
2\{3-5
$6\{7-9$

PL 4.1 Drum Assembly, Waste Bottle

Assembly

Item Part
122K93890
032K98501
-
-
160K95831
$962 K 36820$
-
-
110K13041 -

Description
Lamp, Erase Assembly
Waste Bottle Guide Assembly Waste Toner Bottle (Not Spared) Holder PWB Crum (Not Spared) Xero Crum PWB (CP1) Connector (Not Spared) Harness Xerographic Drum Module (Not Spared) (REP 4.2.3) Spiral Paddle (Not Spared) Xero Interlock Switch Plate (Not Spared) Support (Not Spared)

PL 4.2 Waste Bottle Guide Assembly

Part	Description
068 K29580	Bracket Sensor Assembly
-	Bracket Sensor (P/O PL 4.2 Item 1)
-	Present Sensor (P/O PL 4.2 Item 1)
-	Toner Full Sensor (P/O PL 4.2 Item
	1)
-	Waste Bottle Guide (P/O PL 4.1
	Item 2)
-	Pipe Collector (P/O PL 4.1 Item 2)
835E02121	Toner Seal
$005 E 89320$	Middle Coupling
-	Bearing Sleeve (P/O PL 4.1 Item 2)
-	Auger Shaft (P/O PL 4.1 Item 2)
-	Auger Bearing (P/O PL 4.1 Item 2)
$807 E 12770$	Gear (22T)
-	IB Bracket (P/O PL 4.1 Item 2)
$807 E 12760$	Gear (17T)
-	Bearing Sleeve (P/O PL 4.1 Item 2)
$807 E 12750$	Gear (24T)
$807 E 12740$	Gear (26T)
-	Thrust Guide (P/O PL 4.1 Item 2)
-	Shaft Slide (P/O PL 4.1 Item 2)
$005 E 89310$	Self Locate Coupling

$\begin{aligned} \text { PL } & 4.2 \\ 1 & \{2-4\end{aligned}$

j0vr50402

PL 5.1 Developer Component

Item Part
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

802K86741
-

117K37281
-

- 930 W 00111
-
-
-

127K4886
-
-
$014 K 82501$
675K38910 675K38920 675K38940 675K38930 $130 K 69210$

Description
Toner Cartridge Door Rotary Plate (Not Spared) Cap Lock (Not Spared)
Shaft Lock (Not Spared)
Developer Wire
Rotary Assembly (Not Spared)
Rotary Holder (Not Spared)
Sensor Plate
Rotary House Sensor (P/O PL 5.1
Item 19)
Harness Cover (Not Spared)
Rotary Block (Not Spared)
Lock Spring (Not Spared)
Rotary Motor (REP 4.2.6)
Rotary Cover (Not Spared) (REP
4.1.1)

IBT Tie Cleaner Plate (Not Spared)
Toner Cartridge Door Lock
Ground Plate (Not Spared)
Developer K (REP 4.2.7)
Developer C (REP 4.2.7)
Developer Y (REP 4.2.7)
Developer M (REP 4.2.7)
Rotary Sensor Assembly

PL 5.2 Developer Housing, Developer

Cartridge

Item	Part
1	-
2	802 K 83411

Description

Rotary Frame (Not Spared) Developer K Housing (Developer not included, must order PL5.1 Item 18) (REP 4.1.1)

Developer Housing K (P/O PL 5.2 Item 2)
Front Cover K (P/O PL 5.2 Item 2)
Out Cover K (P/O PL 5.2 Item 2)
Cyan Developer Housing Assembly (Developer not included, must order PL5.1 Item 18) (REP 4.1.1) Developer Housing C (P/O PL 5.2 Item 6)
Front Cover (P/O PL 5.2 Item 6, 10, 14)

Cyan Out Cover (P/O PL 5.2 Item 6) Magenta Developer Housing Assembly (Developer not included, must order PL5.1 Item 18) (REP 4.1.1)

Magenta Developer Housing (P/O PL 5.2 Item 10)
Yellow Out Cover (P/O PL 5.2 Item 14)

Magenta Out Cover (P/O PL 5.2 Item 10)
Yellow Developer Housing Assembly (Developer not included, must order PL5.1 Item 18) (REP 4.1.1)

Yellow Developer Housing (P/O PL 5.2 Item 14)

Toner Cartridge (Yellow) (Not
Spared) (REP 4.1.2)
Toner Cartridge (Magenta) (Not Spared) (REP 4.1.2)
Toner Cartridge (Black) (Not Spared) (REP 4.1.2) Toner Cartridge (Cyan) (Not Spared) (REP 4.1.2)

PL 5.2

$$
\begin{aligned}
2 & \{3-5 \\
6 & \{7-9 \\
10 & \{8,11,13 \\
14 & \{8,12,15
\end{aligned}
$$

0505002A-ELA

PL 6.1 IBT, 2nd BTR, IBT Cleaner Assembly

PL 6.2 IBT Belt Assembly

Item

Part
064K92332
-
$-$
-
-
-
031 K93360 059K43080
-

031K93370

Description

IBT Belt (REP 4.2.5)
BT Frame (P/O PL 6.1 Item 6)
Lower Tie Plate (P/O PL 6.1 Item 6)
Bearing (P/O PL 6.1 Item 6)
BTR 1 Retract Shaft (P/O PL 6.1
Item 6)
Spacer (P/O PL 6.1 Item 6)
Contact Arm
Backup Roll
Roll Bur Housing (P/O PL 6.1 Item 6)

Ball Bearing (P/O PL 6.1 Item 6) Bias BUR Cover (P/O PL 6.1 Item 6)

Conductive BUR Bearing (P/O PL 6.1 Item 6)

Rear Contact Arm

PL 6.2

Part	Description	
015 K 71820	Exit Bracket Assembly	PL 7.1
-	Exit Sensor Holder (P/O PL 7.1	Item 1)
-	Fuser Exit Sensor (P/O PL 7.1 Item	$1\{2-5$
-	1)	$6\{7-9$
-	Exit Actuator (P/O PL 7.1 Item 1)	
-	Actuator Spring (P/O PL 7.1 Item 1)	
012 K 94820	Drive Link Assembly	
-	Link Housing (P/O PL 7.1 Item 6)	
-	Exit Link Spring (P/O PL 7.1 Item 6)	
-	Drive Link (P/O PL 7.1 Item 6)	
$008 R 13022$	Fuser Assembly (110V) (REP	
$008 R 13023$	$5.1 .1)$	
	Fuser Assembly (220V) (REP	
	$5.1 .1)$	
	Link (Not Spared)	

PL 7.2 Fuser Component

Item Part Description

- \quad Base Cover (P/O PL 7.1 Item 10)

Low Chute (P/O PL 7.1 Item 10)
Bearing (P/O PL 7.1 Item 10)
Handle (P/O PL 7.1 Item 10) Gear (15T) (P/O PL 7.1 Item 10) Bearing (P/O PL 7.1 Item 10) Exit Roll
Base Cover (P/O PL 7.1 Item 10) Fuser Frame (P/O PL 7.1 Item 10) POB/APS Long Sensor (P/O PL 7.1 tem 10)
Decurler Cover (P/O PL 7.1 Item 10)

PL 7.2

PL 8.1 Exit

Item

Description

Exit 1 Assembly (Not Spared) Exit 2 Transport Assembly (REP 6.1.1)
$050 K 51100$ Face-up Tray

- Tray Cover (Not Spared) 050E20162 Exit 2 Tray

PL 8.2 Exit 1

1
2
3

Description

Pad-Exit A (Not Spared)
Pad-Exit B (Not Spared)
Exit 1 Guide Assembly
Pad-Exit C (P/O PL 8.2 Item 3)
Paper Weight (P/O PL 8.2 Item 3) Exit 1 Tray Guide (P/O PL 8.2 Item 3)

Exit 1 Static Eliminator (P/O PL 8.2 Item 3)
Gasket (P/O PL 8.2 Item 3)
Earth Plate (P/O PL 8.2 Item 3)
_
059K44011
Exit 1 Transport Assembly
Low Chute Assembly
Low Chute (P/O PL 8.2 Item 12
Seal-V1 (P/O PL 8.2 Item 11) Seal-V2 (P/O PL 8.2 Item 11) Seal-V3 (P/O PL 8.2 Item 11) Seal-V4 (P/O PL 8.2 Item 11) Exit Gear (P/O PL 8.2 Item 10) Gear (19Z) (P/O PL 8.2 Item 10) Bearing
Bearing (P/O PL 8.2 Item 10)
Cap (P/O PL 8.2 Item 10)
Exit 1 Gate (P/O PL 8.2 Item 10)
Exit 1 Support (P/O PL 8.2 Item 10)
Pinch Exit Roller
Exit 1 Roller
Gate Spring (P/O PL 8.2 Item 10)
inch Exit Spring (P/O PL 8.2 Item 10)

Earth Plate (P/O PL 8.2 Item 10)
Gate Stopper (P/O PL 8.2 Item 10) Exit 2 Bracket (Not Spared)
Exit 1 Label (Not Spared)
Top Exit Cover (Not Spared)

PL 8.3 L/H Upper Chute Assembly

(Exit 2)

PL 8.4 Tray Guide Assembly (OCT 2)

Item	Part	Description
1	-	Tray 2 Guide (P/O PL 8.1 Item 2)
2	-	Exit 2 Eliminator (P/O PL 8.1 Item 2)
3	013E25550	Bearing
4	-	Bearing (P/O PL 8.1 Item 2)
5	-	OCT2 Chute (P/O PL 8.1 Item 2)
6	-	Earth Plate (P/O PL 8.1 Item 2)
7	059 K 26760	Exit 2 Roll
8	-	Bearing Roll (P/O PL 8.1 Item 2)
9	-	Gear (22Z) (P/O PL 8.1 Item 2)
10	-	Exit Pinch Roll (P/O PL 8.1 Item 2)
11	-	Exit Pinch Spring (P/O PL 8.1 Item 2)
12	003E60171	Latch
13	809E50210	Front Latch Spring
14	-	Front Plate (P/O PL 8.1 Item 2)
15	-	Earth 2 Plate (P/O PL 8.1 Item 2)
16	-	Earth 3 Plate (P/O PL 8.1 Item 2)
17	120E22451	Exit Actuator
18	110E11580	Exit 2 Interlock Switch
19	-	Offset 2 Gear (P/O PL 8.1 Item 2)
20	-	Rear Plate (P/O PL 8.1 Item 2)
21	809E52100	Rear Latch Spring
22	-	Link (P/O PL 8.1 Item 2)
23	121 K 32370	Face Up Gate Solenoid
24	-	Gear (33Z) (P/O PL 8.1 Item 2)
25	-	Gear Shaft (P/O PL 8.1 Item 2)
26	-	Gear (16/47Z) (P/O PL 8.1 Item 2)
27	-	Pinch In Spring (P/O PL 8.1 Item 2)
28	-	Exit Gate Link (P/O PL 8.1 Item 2)
29	121 K 37100	Solenoid
30	127K37951	Offset Motor
31	-	Pinch Roll (P/O PL 8.1 Item 2)
32	-	Actuator Roller (P/O PL 8.1 Item 2)
33	-	Lower Chute (P/O PL 8.1 Item 2)
34	809E37332	Actuator Spring
35	930W00113	Photo Sensor
36	-	Wire Harness (P/O PL 8.1 Item 2)
37	127 K 48890	Exit 2 Motor
38	-	Label (P/O PL 8.1 Item 2)
39	127 K 39420	CCD Fan
40	-	Inner Cover (P/O PL 8.1 Item 2)

PL 9.1 MSI Assembly

Item Pa

930W00113
-
050K56600
962K13120
-
-
-
604K20410
120E22231
801K22671
-
-
604K20520 -
-

Description

MSI Feeder Assembly (Not Spared)
(REP 7.1.1)
MSI Paper Detact Sensor
Upper Frame (P/O PL 9.1 Item 1)
Gear Bracket (P/O PL 9.1 Item 1)
MSI Tray Assembly
MSI Harness
Pinch Chute (P/O PL 9.1 Item 1)
Pinch Shaft (P/O PL 9.1 Item 1)
Spring Spacer (P/O PL 9.1 Item 1) pinch Guide (P/O PL 9.1 Item 1)
Kit 2 Roller 2
Pinch Spring (P/O PL 9.1 Item 1 Actuator
ower Frame Assembly
MSI Spring (P/O PL 9.1 Item 1)
MSI Front Cover (Not Spared)
MSI Rear Cover (Not Spared)
MSI Label Kit
Label (P/O PL 9.1 Item 18)
Label (Max) (P/O PL 9.1 Item 18)

PL 9.1
$1\{2-15$
$18\{19,20$

j0vr50901

PL 9.2 Lower Frame Assembly

PL 9.2
$30\{16-21$

PL 9.3 MSI Tray Assembly

Item Part Description

1	-	Pinion Gear (P/O PL 9.1 Item 5)
2	-	Front Rack (P/O PL 9.1 Item 5)
3	-	Rear Rack (P/O PL 9.1 Item 5)
4	-	Link (P/O PL 9.1 Item 5)
5	-	Front Side Guide (P/O PL 9.1 Item
		$5)$
6	-	Rear Side Guide (P/O PL 9.1 Item
		5)
7	-	Tray MSI (P/O PL 9.1 Item 5)
8	-	Exit Tray (P/O PL 9.1 Item 5)
9	-	Tray Cover (P/O PL 9.1 Item 5)
10	-	Sensor Spring (P/O PL 9.1 Item 5)
11	-	MSI Harness
12	$962 K 13120$	

PL 10.1 Duplex

Part

059K44291
127K48381
-
-
849E13740
110E11580
-
-
-
011E14582
-
011E14590
-
120E21261
930W00113
809E37280
960K16431
-
$-$
$-$
-

962K19011
-
Description
Duplex Transport Assembly
Duplex Cover (P/O PL 10.1 Item 1)
Duplex Motor Assembly
Duplex Fan (P/O PL 10.1 Item 3) Duplex Motor (P/O PL 10.1 Item 3 Motor Bracket
Switch
Gear (28) (P/O PL 10.1 Item 1)
Gear (33) (P/O PL 10.1 Item 1)
Gear (42T) (P/O PL 10.1 Item 1)
Gear (33/74) (P/O PL 10.1 Item 1)
atch Lever (Rear)
Latch Plate (P/O PL 10.1 Item 1)
Front Latch Lever
Spring (P/O PL 10.1 Item 1)
Actuator
Paper Detact Sensor
Actuator Spring
Duplex PWB
Lower Chute (P/O PL 10.1 Item 1) Inner Chute Assembly (P/O PL 10.1 tem 1)
Duplex SNR Harness (P/O PL 10.1 tem 1)
Duplex Motor Harness (P/O PL
10.1 Item 1)

Duplex Harness
Duplex UI Label (P/O PL 10.1 Item 1)

Duplex Duct (P/O PL 10.1 Item 1)

PL 10.2 Inner Chute Assembly

Description

003E59821
Stopper

013E22671 Bearing
029E32580 Pin
054E23872 Outer Chute
$059 K 36880$
059K36890 604K20460

Inner Chute (P/O PL 10.1 Item 21)
Duplex Roller
Duplex Roller
4 Roller 1 Kit
Duplex Pinch Spring (P/O PL 10.1 Item 21)

PL 11.1 Electrical

105E16410
110E11230
-
$-$
-
$-$

105E16382
105E16392
-
_

104E94890 101K52640 -

908W01201
-
-
-
-

960K09570
960K09388 927W00144 927W00121 130K69060

Description

PSHV-04A1
Main Power Switch
Bracket (Not Spared)
Main Switch AC Harness (Not Spared)
Main Switch DC Harness (Not Spared)
Power (120v) Chassis Assembly, Unit (240v) Chassis Assembly (Not Spared) (REP 9.2.3)
Power Unit (120v) (REP 9.2.3)
Power Unit (240v) (23/28CPM) Chassis (P/O PL 11.1 Item 6) LVPS Front Bracket (P/O PL 11.1 tem 6)
LVPS Rear Bracket (P/O PL 11.1 tem 6) (33CPM)
Choke Coil (220 Only)
AC Chassis Assembly
AC Chassis (P/O PL 11.1 Item 12)
Outlet (P/O PL 11.1 Item 12)
GFI
FG 1 VRN Harness (P/O PL 11.1 Item 12)
FG 2 VRN Harness (P/O PL 11.1 Item 12)
Screw (P/O PL 11.1 Item 12) AC Power VRN Harness (P/O PL
11.1 Item 12)

PWB Relay
PWB Support
MCU PWB (REP 9.1.1)
Fan-Fuser
Fan-Rear (REP 10.3.1)
Sensor Bar Assembly (REP 4.3.1)

PL 11.2 ESS

Part

101K52632
-
-
-
-
-

960K18345
133K24720
$133 K 24740$
-
540K02665
960K16132
-
-
-

Description

Printer Chassis Assembly
Printer Panel (P/O PL 11.2 Item 1)
Printer PWB (P/O PL 11.2 Item 1)
Rail Printer Bracket (P/O PL 11.2
Item 1)
Base Chassis (Not Spared)
Panel (Not Spared)
Blind Chassis Bracket (Not Spared)
Blind Dsub Bracket
Blind PSW Bracket (Not Spared)
Lock Screw (Not Spared)
EVE Color PWB Assembly (Not Spared) (REP 9.2.1)
ESS PWB
DDR DIMM 256mb
PC133 So-0DIMM (128MB)
ESS Chassis (Not Spared)
HDD Bracket (P/O PL 11.2 Item 18) PS DIMM (Option)
HDD Chassis Assembly
Eden2 PWB (P/O PL 11.2 Item 18) IDE Harness (P/O PL 11.2 Item 18) Screw (P/O PL 11.2 Item 18)
Bumper (P/O PL 11.2 Item 18) IDE HDD (40gb) (P/O PL 11.2 Item 18)

0511002A-ELA

PL 11.3 FAX Unit

Item	Part	Description 1
	-	FAX Chassis Box (P/O PL 11.3 Item 13)
2	-	Panel (P/O PL 11.3 Item 13) 3
4	-	Speaker (P/O PL 11.3 Item 13)
speaker Bracket (P/O PL 11.3 Item		
	-	$13)$
5	$960 K 24942$	FCB PWB (XC)
-	$960 K 24952$	FCB PWB (XE)
-	$960 K 24962$	FCB PWB (ARZ)
6	$960 K 28320$	EMB PWB
7	$960 K 15962$	G3B PWB (XC)
-	960 K 18771	G3B PWB (XE)
8	-	Back Left Fax Cover (P/O PL 11.3
9	-	Item 13)
		Snap Fax Cover (P/O PL 11.3 Item
10	-	13)
11	-	Tel Cable (Not Spared)
12	$117 K 37370$	1CH Snap Fax Cover (Not Spared)
13	-	Fax Cable Box Unit (Not Spared)

PL 11.3

PL 11.4 Wire Harnesses

Item	Part
1	-
2	-
3	-
4	-
5	-
6	-
7	-

Description

Front Harness (Not Spared)
Exit Harness (Not Spared) Switch Harness (Not Spared)
P/H Harness (Not Spared)
Fuser AC Harness (Not Spared)
ROS Harness (Not Spared)
Exit Sensor Harness (Not Spared)

PL11.4

PL 12.1 Cover-Front, Left

PL 12.2 Cover-Rear, Right

Item	Part	Description
1	-	Right Upper Cover (Not Spared) (REP 10.2.3)
2	-	Right Lower Cover (Not Spared)
3	-	ESS Right Cover (Not Spared)
4	008R13025	PR Filter
5	-	ESS Cover (P/O PL 12.2 Item 4) (REP 10.2.1)
6	-	ESS Cover (P/O PL 12.2 Item 4)
7	-	Screw (P/O PL 12.2 Item 4)
8	-	Cushion (P/O PL 12.2 Item 4)
9	-	Rear Lefthand Upper Cover (Not Spared) (REP 10.2.1)
10	802E88700	Filter Cover
11	-	Rear Lower Cover (Not Spared) (REP 10.2.1)
12	-	Cap MCU Cover (Not Spared) (REP 10.2.1)
13	-	Fax Cover (Not Spared) (REP 10.2.1)
14	-	Blind Fax Cover (Not Spared)
15	-	Rear Low Lefthand Cover (Not Spared)
16	-	Data Plate (MN 120/220) (Not Spared)
17	-	Outlet Label (120/220) (Not Spared)
18	-	Rear Foot (Not Spared)
19	-	Filter Duct (Not Spared)
20	-	Fan Motor (Not Shown)
21	604K33510	Ozone Filter Kit (120V)

PL 12.2

0512002B-ELA

PL 13.1 Platen Cover/IIT Assembly

AF Platen Cover Assembly
A Platen Cover
Counter Balance (P/O PL 13.1 Item 1)

Interlock Magnet (P/O PL 13.1 Item
1)

Platen A Cover (P/O PL 13.1 Item
1)

004E13450
-
-

062 K 16326
-

Hinge Cover (Not Spared Platen Cushion (REP 11.1.1) IIT Left Cover (Not Spared) IIT Right Cover (Not Spared) Top Rear Cover (Not Spared) Exit Guide (Not Spared)
Main IIT Assembly Console Assembly (REP 11.1.2) HB Cable (Not Spared) Ul Bracket (Not Spared) IT Rear Cover (Not Spared) Name Label (Not Spared)

PL 13.2 Control Panel

Item	Part	Description
1	802K60062	Panel (Left)
2	-	Case 560 Panel Assembly (P/O PL 13.1 Item 13)
3	-	Case 560 Panel (P/O PL 13.2 Item 2)
4	-	Ul560 Plate (P/O PL 13.2 Item 2)
5	-	Base Case Panel (P/O PL 13.2 Item 2)
6	-	Base Case Panel (P/O PL 13.1 Item 13)
7	110 K 11610	Touch Panel
8	123K94951	Display
9	-	PWB Support Bracket (P/O PL 13.1 Item 13)
10	160K91631	Inverter PWB
11	960K02444	IF PWB
12	-	Support (P/O PL 13.1 Item 13)
13	-	Control Panel PWB (P/O PL 13.1 Item 13)
14	-	Wire Harness (P/O PL 13.1 Item 13)
15	-	Wire Harness (P/O PL 13.1 Item 13)
16	-	Wire Harness (P/O PL 13.1 Item 13)
17	-	Wire Harness (P/O PL 13.1 Item 13)
18	-	Contrast PWB (P/O PL 13.1 Item 13)
19	802E91581	Panel (Center)
20	802E55532	Panel (Right)

PL 13.3 Platen Glass

Item
1
2

3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18

Part	Description
090K02332	Platen Glass (REP 11.3.1)
-	Right Side Plate (P/O PL 13.1 Item 12)
-	IPS Cover (P/O PL 13.1 Item 12)
960K16486	IIT/IPS PWB (REP 11.3.2)
-	IIT/IPS PWB (P/O PL 13.3 Item 4)
-	IIT/IPS Bracket (P/O PL 13.3 Item 4)
-	Screw (P/O PL 13.3 Item 4)
117E26161	FFC CCD
-	IIT Harness (P/O PL 13.1 Item 12)
090K93011	Platen Cover
-	Support Glass (P/O PL 13.1 Item 12)
-	Lock Screw (P/O PL 13.1 Item 12)
-	Screw (P/O PL 13.1 Item 12)
-	Filter
-	Front Support Bracket (P/O PL 13.1 Item 12)
-	Rear Support Bracket (P/O PL 13.1 Item 12)
-	Bracket (P/O PL 13.1 Item 12)
17K3724	ESS Cable

PL 13.4 CCD PWB, Sensor

Item	Part	Description
1	-	Lens Cover (P/O PL 13.1 Item 12)
2	-	Lens (P/O PL 13.4 Item 14)
3	-	CCD PWB (P/O PL 13.4 Item 14)
4	-	Lens Plate Base (P/O PL 13.4 Item 14) (REP 11.4.1)
5	-	APS Sensor (P/O PL 13.1 Item 12)
6	-	APS Bracket (P/O PL 13.1 Item 12)
7	130 K 64150	APS Sensor
8	-	Screw (P/O PL 13.1 Item 12)
9	110K11960	Platen Open Switch
10	130 E 87280	IIT Registration Sensor, Platen Angle Sensor
11	-	Actuator Support (P/O PL 13.1 Item 12)
12	-	Platen Actuator Sensor (P/O PL 13.1 Item 12)
13	-	Extension Spring (P/O PL 13.1 Item 12)
14	604 K 29710	Lens Kit (220V)
-	604K29711	Lens Kit (120V)

PL 13.5 Carriage Cable/Motor

Item	Part	Description
1	-	Capstan Pulley (P/O PL 13.1 Item 12)
2	-	Drive Shaft (P/O PL 13.1 Item 12)
3	-	Front Carriage Cable (P/O PL 13.5 Item 15)
4	-	Rear Carriage Cable (P/O PL 13.5 Item 15) (REP 11.5.1)
5	-	Extension Spring (P/O PL 13.1 Item 12) (REP 11.5.1)
6	020E37030	Pulley
7	604K20440	Spring Kit
8	-	Tape (P/O PL 13.1 Item 12)
9	-	Tape (P/O PL 13.1 Item 12)
10	-	Bearing (P/O PL 13.1 Item 12)
11	023E26430	Belt
12	127 K 49532	IIT Motor Assembly (120V)
-	127 K 49530	IIT Motor Assembly (220V)
13	-	Carriage Motor (P/O PL 13.5 Item 12) (REP 11.5.2)
14	-	Motor Bracket (P/O PL 13.5 Item 12)
15	604K20510	IIT Cable Kit

PL 13.6 Full/Half Rate Carriage

Description

Full Rate Carriage Assembly Full Rate Carriage (P/O PL 13.6 Item 1)
117E26350
062E10040
-
-
$122 K 93910$ 105E16700

Flat Cable (REP 11.6.2)
Cord Guide (P/O PL 13.6 Item 1) Mirror No. 1 Mirror Clip (P/O PL 13.6 Item 1) Insulator (P/O PL 13.6 Item 1) Lamp (REP 11.6.1) Exposure Lamp Power Supply Cable Guide (P/O PL 13.6 Item 1) Pad (P/O PL 13.6 Item 1) Half Rate Carriage Assembly No. 2 Mirror, No. 3 Mirror (P/O PL 3.6 Item 12)

Cord Holder (Not Spared)
Half Rate Carriage (P/O PL 13.6 Item 12)
Pulley (P/O PL 13.6 Item 12)
Pulley
Cord Guide (P/O PL 13.6 Item 12)

0513006A-ELA

PL 14.1 Tray 2/3 Assembly, Feeder

Assembly-2TM

Item	Part	Description
1	-	Tray 2/3 Assembly (Not Spared)
2	604K20550	Kit Tray Label
3	-	Paper Size Switch (Not Spared) (REP 12.6.1)
4	014E51110	Tray Spacer
5	003E61510	Tray Stopper
6	059K42930	Feeder Assembly
7	059K42524	Tray 2 Feeder (REP 12.1.1), Tray 3 Feeder (REP 12.1.2)
8	054E22622	Chute
9	-	Sensor Cover (P/O PL 14.1 Item 6)
10	059K42940	Final Feeder Assembly
11	-	Cushion (Not Spared)
12	-	Feeder Out Chute (P/O PL 14.1 Item 10)
13	-	Sensor Cover (P/O PL 14.1 Item 10)
14	-	Feeder Cover (P/O PL 14.1 Item 10)
15	-	Label (Not Spared)
16	-	Slide Lock Block (Not Spared)
17	-	Paper Size Switch (Not Spared) (REP 12.6.1)

PL 14.2 Tray 2/3 Assembly-2TM

Description
Tray Gear Kit
ray Cover (Not Spared)
Slide Lock (P/O PL 14.2 Item 26)
Label (Max) (Not Spared)
Bottom Plate (P/O PL 14.1 Item 1) Bottom Pad (P/O PL 14.1 Item 1) Front Side Guide (P/O PL 14.2 Item 26)

Tray Pad (P/O PL 14.1 Item 1)
Rear Side Guide (P/O PL 14.1 Item
1)

Side Guide Actuator (P/O PL 14.1
Item 1)
Side Actuator (P/O PL 14.1 Item 1)
Spring (P/O PL 14.1 Item 1)
Pinion Gear (P/O PL 14.1 Item 1)
End Guide (P/O PL 14.1 Item 1)
Spring Guide (P/O PL 14.1 Item 1) End Guide Actuator (P/O PL 14.1 tem 1)

Link (P/O PL 14.1 Item 1)
Coupling Gear (13T) (P/O PL 14.2
Item 1)
Gear (13T/60T) (P/O PL 14.2 Item 1)

Gear (60T) (P/O PL 14.2 Item 1) Rear Plate (P/O PL 14.1 Item 1) Lift Up Shaft (P/O PL 14.1 Item 1) Stopper (P/O PL 14.1 Item 1) Seal (P/O PL 14.1 Item 1) Cassette Housing (P/O PL 14.1 Item 1)
Front Side Guide (P/O PL 14.1 Item 1)

PL 14.2
1 \{18-20
$26\{3,7$

PL 14.3 Feeder 1/2 Assembly 2TM (1

of 2)

Item	Part	Description
1	-	Upper Frame (Not Spared)
2	127 K 38171	Stepper Motor
3	-	Drive Bracket (Not Spared)
4	014 E44770	Spacer
5	-	Gear (Not Spared)
6	-	Spring (Not Spared)
7	-	Clutch (Not Spared)
8	-	Gear (Not Spared)
9	-	Gear Spur (33T) (Not Spared)
10	-	Bearing Shaft (Not Spared)
11	-	Drive Shaft (Not Spared)
12	-	Chute (Not Spared)
13	$120 E 22481$	SNR Actuator
14	$930 W 00113$	Photo In-Level Sensor, Photo In-No
15	-	Paper Sensor
16	-	Harness Rear Holder (Not Spared)
17	-	Gear (28/21) (Not Spared)
18	-	Gear (29T) (Not Spared)
19	$930 W 00211$	Washer (Not Spared)
20	-	Reflection Sensor
21	-	Rail (Not Spared)
		Upper Harness Holder (Not
22	-	Spared)
		Center Harness Holder (Not
		Spared)

PL 14.4 Feeder 1/2 Assembly 2TM (2

of 2)

Item

Part	Description
-	Spring (Not Spared)
-	Roll (P/O PL 14.4 Item 24)
005 K05890	Clutch
005 K06760	Clutch
-	Bearing (Not Spared)
-	Feed Shaft (Not Spared)
054 E 23170	Feed In Chute
-	Retard Spring (Not Spared)
005 K07010	Friction Clutch
-	Retard Support (Not Spared)
-	Roll (P/O PL 14.4 Item 24)
-	Spacer (Not Spared)
-	Gear (13T) (Not Spared)
-	Nudger Support (Not Spared)
-	Roll (P/O PL 14.4 Item 24)
-	Gear (25T) (Not Spared)
$962 K 18912$	Feed Harness
-	Rear Frame (Not Spared)
-	Bearing Sleeve (Not Spared)
-	Gear (34T) (Not Spared)
-	Lever (Not Spared)
-	Holder (Not Spared)
-	Spring (Not Spared)
$604 K 20360$	Tray Feed Roll Kit (REP 12.3.1)

tem	802K
2	-
3	-
4	-
5	-
6	-
7	-
8	-
9	-
10	-
11	-
12	-
13	059
14	830

059E98190 830E45710 110E12220

Description
Left Lower Cover Assembly Shaft Latch (P/O PL 14.5 Item 1) Hook (P/O PL 14.5 Item 1) Handle (P/O PL 14.5 Item 1) Left Cover (P/O PL 14.5 Item 1) Chute (P/O PL 14.5 Item 1) Actuator (P/O PL 14.5 Item 1) Latch Spring (P/O PL 14.5 Item 1) Pinch Bracket (P/O PL 14.5 Item 1) Pinch Spring (P/O PL 14.5 Item 1) Bearing (P/O PL 14.5 Item 1) Bearing (P/O PL 14.5 Item 1) Pinch Roll
Lefthand Cover Support
Left Cover Interlock Switch Interlock Bracket (Not Spared) Pivot Bracket (Not Spared)

PL 14.6 Takeaway Roll-2TM

Item Part Description

Item	Part	De
1	-	Chu
2	-	Co
3	130 K 64121	Tra
4	962 K 18171	Wir
5	-	Chu
6	130 K 64471	Fee
7	962 K 18900	Fee
8	$059 K 40370$	Tak
9	-	Bea

Chute (Not Spared)

Cover Sensor (Not Spared)
Tray 2 Feed Out Sensor
Wire Harness
Chute (Not Spared)
Feed Out Tray 3 Sensor Feeder Harness
Takeaway Roll
Bearing (Not Spared)

PL 14.7 Electrical-2TM

Description

2Tray Module PWB (REP 12.6.1)
Clutch
Clutch Bracket (Not Spared)
Clutch Shaft (Not Spared) Bearing (Not Spared) Gear (38T) (Not Spared) Takeaway Motor Gear (22T/40T) (Not Spared) Gear (126T) (Not Spared) Gear (60T) (Not Spared) Gear (37T) (Not Spared) Gear (32T) (Not Spared)
SLC Harness
Gasket (Not Spared)
Bearing Kit

PL 14.8 Cover-2TM

Item	Part
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	-
9	-
10	-
11	-
12	-

Description

Top Cover (Not Spared) Foot Cover (Not Spared) Right Cover (Not Spared) eft Cover (Not Spared) Rear Cover (Not Spared) Caster (Stopper) (Not Spared) Caster (Not Spared) oot (Not Spared) Foot Cover (Not Spared) Docking Bracket (Not Spared) Screw (Not Spared) OT Support Bracket (Not Spared)

PL 15.1 Tray 2/3, feeder

Assembly-TTM

Item Part
050K53962 Tray 2 Assembly (REP 13.1.1)
Label (2) (Not Spared)
050K53952
-
-
-
110K11820 059E98210

Tray 3 Assembly (REP 13.1.2) Stop Spring (Not Spared) Label (TTM) (Not Spared) Label (3) (Not Spared) Bracket Stopper (Not Spared) Paper Size Switch (REP 13.8.1) Roller
Shaft (Not Spared)
Roll Bracket (Not Spared)
Label (Instruction) (Not Spared)

PL 15.2 Tray 2 Assembly-TTM

Item	Part	Description
1	-	Left Tray Cover (P/O PL 15.1 Item 1)
2	-	Handle Tray (P/O PL 15.1 Item 1)
3	020E36821	Pulley Cable
4	006K23014	Lift Shaft
5	020E36560	Pulley
6	032E20890	Cable Guide
7	604K20730	Pulley
8	604K20740	Cable Guide
9	-	Left Rear Cable (P/O PL 15.2 Item 30) (REP 13.3.1)
10	-	Left Front Cable (P/O PL 15.2 Item 30) (REP 13.3.1)
11	-	Left Cable (P/O PL 15.2 Item 30)
12	-	Bottom Plate (P/O PL 15.1 Item 1)
13	-	Pad (P/O PL 15.1 Item 1)
14	-	Front Side Guide (P/O PL 15.1 Item 1)
15	-	Knob (P/O PL 15.1 Item 1)
16	-	Knob (P/O PL 15.1 Item 1)
17	-	Spring (P/O PL 15.1 Item 1)
18	-	Rear Side Guide (P/O PL 15.1 Item 1)
19	-	Side 1 Guide Bracket (P/O PL 15.1 Item 1)
20	-	Gear Rack (P/O PL 15.1 Item 1)
21	-	Pinion (P/O PL 15.1 Item 1)
22	003E49861	Stopper
23	030K75541	Brake Bracket
24	-	Rail Spacer (P/O PL 15.1 Item 1)
25	-	Spacer (P/O PL 15.1 Item 1)
26	-	Actuator (P/O PL 15.1 Item 1)
27	-	Pad (P/O PL 15.1 Item 1)
28	-	Tray Base (P/O PL 15.1 Item 1)
29	-	Label (Max) (Not Spared)
30	604K20750	Cable Guide Kit

PL 15.3 Tray 3 Assembly-TTM

Item	Part	Description
1	-	Tray Cover (P/O PL 15.1 Item 3)
2	059K26340	Transport Assembly
3	-	Frame (P/O PL 15.1 Item 3)
4	006K23014	Shaft
5	020E36821	Pulley
6	-	Pulley (P/O PL 15.1 Item 3)
7	-	Cable Guide (P/O PL 15.1 Item 3)
8	-	Right Rear Cable (P/O PL 15.2 Item 30) (REP 13.3.1)
9	-	Right Front Cable (P/O PL 15.2 Item 30) (REP 13.3.1)
10	-	Bottom Plate (P/O PL 15.1 Item 3)
11	-	Pad (P/O PL 15.1 Item 3)
12	-	Front Side Guide (P/O PL 15.1 Item 3)
13	-	Knob (P/O PL 15.1 Item 3)
14	-	Knob (P/O PL 15.1 Item 3)
15	-	Spring (P/O PL 15.1 Item 3)
16	-	Brake Bracket (P/O PL 15.1 Item 3)
17	007E78390	Gear
18	-	Rack Gear (P/O PL 15.1 Item 3)
19	-	Pinion (P/O PL 15.1 Item 3)
20	-	Bracket (P/O PL 15.1 Item 3)
21	-	Rail Roll (P/O PL 15.1 Item 3)
22	-	Shaft (P/O PL 15.1 Item 3)
23	003E49861	Stopper
24	-	Actuator (P/O PL 15.1 Item 3)
25	-	Pad (P/O PL 15.1 Item 3)
26	-	Tray Base (P/O PL 15.1 Item 3)
27	-	Rear Side Guide (P/O PL 15.1 Item 3)
28	-	Label (Max) (P/O PL 15.1 Item 3)
29	604K20750	Tray Cable Kit

Description

Tray Cover (P/O PL 15.1 Item 3)
ransport Assembly
Frame (P/O PL 15.1 Item 3)

Pulley (P/O PL 15.1 Item 3) Cable Guide (P/O PL 15.1 Item 3) Right Rear Cable (P/O PL 15.2

Right Front Cable (P/O PL 15.2 Item 30) (REP 13.3.1) Bottom Plate (P/O PL 15.1 Item 3) ront Side Guide (P/O PL 15.1 Item 3)

Knob (P/O PL 15.1 Item 3)

Spring (P/O PL 15.1 Item 3)
Brake Bracket (P/O PL 15.1 Item 3) Gear

Pinion (P/O PL 15.1 Item 3) Bracket (P/O P Rail Roll (P/O PL 15.1 Item 3) Shaft (P/O PL 15.1 Item 3)

Actuator (P/O PL 15.1 Item 3) Pad (P/O PL 15.1 Item 3) Tray Base (P/O PL 15.1 Item 3) 3) Label (Max) (P/O PL 15.1 Item 3) 604K20750 Tray Cable Kit

PL 15.4 Paper Feed (1 of 2)-TTM

059K42960

 059K42524 -
Description

Guide Rail (P/O PL 15.3 Item 2)
Guide (P/O PL 15.3 Item 2)
Transport Assembly
Upper Chute (P/O PL 15.4 Item 3) Takeaway Roll
Bearing
pinch Cover (P/O PL 15.4 Item 3)
Pinch Roll
Bearing (P/O PL 15.4 Item 3) Spring (P/O PL 15.4 Item 3) Bearing (P/O PL 15.4 Item 3) Transport Rail (P/O PL 15.4 Item 3) Low Chute (P/O PL 15.4 Item 3)
Feeder Assembly
Tray 3 Feeder (REP 13.4.1) Bracket (P/O PL 15.4 Item 14) Cover (P/O PL 15.4 Item 14)
930 W 00212
Sensor
Upper Chute (P/O PL 15.4 Item 14) Lower Chute (P/O PL 15.4 Item 14) Bracket (P/O PL 15.4 Item 14) Harness (P/O PL 15.4 Item 14) Harness (Not Spared)

PL 15.5 Paper Feed (2 of 2)-TTM

Tray 2 Feeder (REP 13.5.1) Cover (P/O PL 15.5 Item 11) Feed Out Chute Feed Low Chute (Not Spared) Sensor Cover (Not Spared) Chute (Not Spared) Harness Feed Out Sensor Transport Roll Bearing (Not Spared) Feeder Assembly

PL 15.6 Feeder 1 Assembly (1 of 2)

0515006A-ELA

PL 15.7 Feeder 1 Assembly (2 of 2)

PL 15.8 Left Cover-TTM

Part
 Description

802K70854
-
-
802K53489
-
-
-
$-$

059E98190 830E45710 110E12220 Left Cover Pinch Roll

Interlock Switch

Left Lower Cover Assembly Shaft Latch (P/O PL 15.8 Item 1) Hook (P/O PL 15.8 Item 1) Handle (P/O PL 15.8 Item 1)

Chute (P/O PL 15.8 Item 1)
Actuator (P/O PL 15.8 Item 1)
Latch Spring (P/O PL 15.8 Item 1) Pinch Bracket (P/O PL 15.8 Item 1) Pinch Spring (P/O PL 15.8 Item 1) Bearing (P/O PL 15.8 Item 1) Bearing (P/O PL 15.8 Item 1)
efthand Cover Support
Interlock Bracket (Not Spared) Pivot Bracket (Not Spared)

PL 15.9 Electrical-TTM

Item

Pa
-
-
-
-
-
1
-
-
-
-
-
-
-
-

Description

Gear Bracket (Not Spared)
Gear Bracket (Not Spared)
Takeaway Motor
Gear (22T/40T) (Not Spared)
Tray Module PWB
Gear Bracket Cover (Not Spared) Clutch
Clutch Bracket (Not Spared) Bearing (Not Spared) Gear (38T) (Not Spared) Shaft (Not Spared) Gear (37T) (Not Spared) Gear (32T) (Not Spared) Gear (60T) (Not Spared) Gear (60T) (Not Spared) Transport Bracket (Not Spared)
TTM Harness
Gasket (Not Spared)
Gasket (Not Spared) Bearing (Not Spared)

PL 15.10 Cover-TTM

Item	Part
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	-
9	-
10	-
11	-
12	-

Description
Right Cover (Not Spared) Top Cover (Not Spared) Foot Cover (Not Spared) Rear Lower Cover (Not Spared) Left Cover (Not Spared) Caster (Stopper) (Not Spared) Caster (Not Spared)
oot (Not Spared)
Foot Cover (Not Spared) Docking Bracket (Not Spared)
Screw (Not Spared)
OT Support Bracket (Not Spared)

PL 16.1 DADF Accessory

Item
1

Feeder Assembly (REP 15.1.1) Label (Not Spared)
Frame Side Velcro Kit

PL16.1
 $5\{2$

jovr51601B

PL 16.2 DADF Component Cover

PL 16.3 DADF Base Cover

Item	Part	Description
1	960K02756	DADF PWB (REP 15.3.1)
2	962K19793	Harness
3	-	Ground Wire (P/O PL 16.2 Item 1)
4	-	PWB Bracket (P/O PL 16.2 Item 1)
5	-	Open Type Bush (P/O PL 16.2 Item 1)
6	801K22541	Frame Assembly
7	-	DADF Base Frame (P/O PL 16.3 Item 6)
8	-	Gate Pad (P/O PL 16.3 Item 6)
9	-	Tape (P/O PL 16.3 Item 6)
10	-	Magnet (Interlock) (P/O PL 16.3 Item 6)
11	-	Magnet Screw (P/O PL 16.3 Item 6)
12	-	Exit Shaft (P/O PL 16.3 Item 6)
13	-	Exit Holder (P/O PL 16.3 Item 6)
14	-	Pinch Roll (Exit) (P/O PL 16.3 Item 6)
15	-	Bearing (P/O PL 16.3 Item 6)
16	-	Exit Spring (P/O PL 16.3 Item 6)
17	-	Pinch Shaft (P/O PL 16.3 Item 6)
18	-	Registration Pinch Roll (P/O PL 16.3 Item 6)
19	-	Registration Pinch Roll (P/O PL 16.3 Item 6)
20	-	Registration Spring (P/O PL 16.3 Item 6)
21	-	P-Clamp (P/O PL 16.2 Item 1)
22	117E27450	DADF IIT Cable
23	-	Spring (P/O PL 16.3 Item 6)
24	-	Sensor Pad (P/O PL 16.3 Item 6)
25	-	Registration Cover (P/O PL 16.3 Item 6)
26	028E94260	KL-Clip
27	-	Solenoid Lever (P/O PL 16.2 Item 1)
28	-	Rear Cap Cover (P/O PL 16.2 Item 1)
29	036 K 91551	Left Counter Balance (REP 15.3.2)
30	036 K 91561	Right Counter Balance (REP 15.3.3)

0516003A-ELA

PL 16.4 DADF Feeder Component

Item	Part	Description
1	-	Hinge Stud (P/O PL 16.2 Item 2)
2	-	Bracket (P/O PL 16.4 Item 4)
3	-	Harness Guide (P/O PL 16.4 Item
		4)
4	$059 K 45213$	Upper Feed Assembly
5	$059 K 45231$	DADF Feeder Assembly
6	-	Retard Chute (P/O PL 16.4 Item 5)
7	-	Retard Housing (P/O PL 16.4 Item
		5)
8	$059 K 44920$	Retard Roll (REP 15.4.1)
9	$019 K 98770$	Brake
10	-	Retard Shaft (P/O PL 16.4 Item 5)
11	-	Retard Spring (P/O PL 16.4 Item 5)
12	-	Pad (P/O PL 16.4 Item 5)
13	$019 K 99070$	Actuator Pad
14	-	Seal (P/O PL 16.4 Item 5)
15	-	C-Clip (P/O PL 16.4 Item 5)
16	-	Retard Guide (P/O PL 16.4 Item 5)
17	-	Label (Retard) (P/O PL 16.4 Item 5)
18	-	Front Seal (Not Spared)
19	-	Retard Seal (Not Spared)
20	-	FE Harness (Not Spared)
21	-	Harness (Not Spared)
22	-	Harness (Not Spared)
23	-	Harness Guide (Not Spared)
24	-	Damper Roll (Not Spared)
25	-	Motor Assembly (Not Spared)
26	-	Harness Guide (Not Spared)
27	-	Screw (Not Spared)
28	$604 K 20780$	DADF Belt Kit
29	121 K31912	Solenoid
30	$160 K 97600$	LED PWB
31	-	DADF Feeder (P/O PL 16.4 Item 5)
		-
	-	

PL 16.5 Top Cover Component

Item	Part	Description
1	-	Cover (P/O PL 16.4 Item 4) (REP 15.4.2)
2	-	Handle Lever (P/O PL 16.4 Item 4)
3	-	Actuator (Feed Out) (P/O PL 16.4 Item 4)
4	-	Feeder Bracket (Front) (P/O PL 16.4 Item 4)
5	-	Feeder Bracket (Rear) (P/O PL 16.4 Item 4)
6	059 K 31291	Takeaway Pinch Roll
7	127K38411	DADF Nudger Motor
8	-	DADF Nudger Sensor (P/O PL 16.4 Item 4)
9	-	Nudger Harness (P/O PL 16.4 Item 4)
10	-	Harness Guide (P/O PL 16.4 Item 4)
11	-	Front Guide-Set (P/O PL 16.4 Item 4)
12	059K45220	Feeder Assembly
13	-	Harness Guide (P/O PL 16.4 Item 4)
14	-	Label (Size) (P/O PL 16.4 Item 4)
15	-	Label (Jam Clear) (P/O PL 16.4 Item 4)
16	028E94260	KL-Clip
17	-	Rear Guide Set (P/O PL 16.4 Item 4)
18	-	Exit Spring (P/O PL 16.4 Item 4)
19	-	Actuator (Set) (P/O PL 16.4 Item 4)
20	-	Chute (P/O PL 16.4 Item 4)
21	-	Actuator Pad (P/O PL 16.4 Item 4)
22	-	Ground Wire (P/O PL 16.4 Item 4)
23	-	Harness Seal (P/O PL 16.4 Item 4)

PL 16.6 Takeaway Pinch Roll, Nudger

Motor, Nudger/Feed Roll

Item	Part	Description
1	-	Bracket (P/O PL 16.5 Item 6)
2	-	Shaft (Takeaway Pinch Roll) (P/O PL 16.5 Item 6)
3	-	Roll (P/O PL 16.5 Item 6)
4	-	Roll (P/O PL 16.5 Item 6)
5	-	Bracket (P/O PL 16.5 Item 6)
6	-	Spring (P/O PL 16.5 Item 6)
7	-	Bracket (P/O PL 16.5 Item 7)
8	-	Gear (18T/19T) (P/O PL 16.5 Item 7)
9	-	Gear (36T/19T) (P/O PL 16.5 Item 7)
10	-	Gear (36T/16T) (P/O PL 16.5 Item 7)
11	-	Lift Motor (P/O PL 16.5 Item 7)
12	-	Lift Bracket (P/O PL 16.5 Item 7)
13	-	Motor Bracket (P/O PL 16.5 Item 7)
14	-	Nudger Housing (P/O PL 16.5 Item 12)
15	-	Gear (28T) (P/O PL 16.5 Item 12)
16	-	Idler Gear (36T) (P/O PL 16.5 Item 12)
17	-	Nudger Shaft (P/O PL 16.5 Item 12)
18	-	Nudger Gear (34T) (P/O PL 16.5 Item 12)
19	-	Nudger Roll (P/O PL 16.6 Item 30) (REP 15.6.1)
20	-	Nudger Shaft (P/O PL 16.5 Item 12)
21	-	Set Stopper (P/O PL 16.5 Item 12)
22	-	Feed Shaft (P/O PL 16.5 Item 12)
23	807E00550	Feed Gear (26T)
24	-	Feed Roll (P/O PL 16.6 Item 30) (REP 15.6.1)
25	-	C-Clip (P/O PL 16.5 Item 12)
26	-	Rear Nudger/Feed Spring (P/O PL 16.5 Item 12)
27	-	Front Nudger/Feed Spring (P/O PL 16.5 Item 12)
28	-	Bearing (P/O PL 16.5 Item 12)
29	007K88751	Feed Gear (20T)
30	604K20760	DADF Roll Kit (Feeder/Nudger/Retard)

PL 16.7 DADF Feeder-Chute

Item	Part	Description
1	-	Lower Chute (P/O PL 16.4 Item 5)
2	-	Chute (Scan Position) (P/O PL 16.4 Item 5)
3	-	Spring (P/O PL 16.4 Item 5)
4	-	Invert Guide (P/O PL 16.4 Item 5)
5	962K19722	FE Harness
6	-	CVT Spring (P/O PL 16.4 Item 5)
7	-	Feed Frame (Front) (P/O PL 16.4 Item 5)
8	110K11981	DADF Interlock Switch
9	-	Feed Frame (Rear) (P/O PL 16.4 Item 5)
10	-	Guide Sensor (P/O PL 16.4 Item 5)
11	-	Registration Sensor Bracket (P/O PL 16.4 Item 5)
12	930W00111	DADF APS 1 Sensor, DADF APS 2 Sensor, DADF APS 3 Sensor, DADF Preregistration Sensor, DADF Invert Sensor
13	930W00211	Registration Sensor
14	-	Seal (P/O PL 16.4 Item 5)
15	-	Seal (P/O PL 16.4 Item 5)
16	-	Eliminator (P/O PL 16.4 Item 5)
17	-	Eliminator (P/O PL 16.4 Item 5)
18	-	Feeder Chute (P/O PL 16.4 Item 5)
19	-	Actuator (Preregistation) (P/O PL 16.7 Item 27)
20	-	Actuator (APS 1) (P/O PL 16.7 Item 27)
21	-	Actuator (APS 2) (P/O PL 16.7 Item 27)
22	-	Actuator (APS3) (P/O PL 16.7 Item 27)
23	-	Actuator (Invert) (P/O PL 16.7 Item 27)
24	-	Torsion Spring (P/O PL 16.4 Item 5)
25	-	Front Chute Bracket (P/O PL 16.4 Item 5)
26	-	Chute Bracket (Rear) (P/O PL 16.4 Item 5)
27	604K20770	DADF Actuator Kit

PL 16.8 DADF Feeder-Roll

Part DAD Feeder=RD

Item	Part	Description
1	-	Registration Roll (P/O PL 16.4 Item
		5) (REP 15.8.1)
2	-	Out Roll (P/O PL 16.4 Item 5)
3	-	Exit Roll (P/O PL 16.4 Item 5)
4	-	Takeaway Roll (P/O PL 16.4 Item 5)
5	-	Ball Bearing (P/O PL 16.4 Item 5)
6	-	Exit Bearing (P/O PL 16.4 Item 5)
7	-	Bearing (P/O PL 16.4 Item 5)
8	-	Pulley (Registration) (P/O PL 16.4
		Item 5)
9	-	Pulley (Out) (P/O PL 16.4 Item 5)
10	-	Pulley (Exit) (P/O PL 16.4 Item 5)
11	-	Gear (Takeaway) (P/O PL 16.4 Item
		Flange Pulley (P/O PL 16.4 Item 5)
12	-	Belt (P/O PL 16.4 Item 5)
13	-	Handle Pulley (P/O PL 16.4 Item 5)
14	-	Belt (P/O PL 16.4 Item 5)
15	-	Tension Bracket (P/O PL 16.4 Item
16	-	Tension Roller (P/O PL 16.4 Item 5)
17	-	Tension Spring
18	$809 E 50762$	Idler Pulley (P/O PL 16.4 Item 5)
19	-	Belt
20	$023 E 25640$	DADF Document Set Sensor
21	$930 W 00111$	KL-Clip (P/O PL 16.4 Item 5)
22	-	Tension Bracket (P/O PL 16.4 Item
23	$028 E 94260$	KL-Clip
24	-	5)
25	$604 K 20780$	DADF Belt Kit
26	-	Exit Spring (P/O PL 16.4 Item 5)

PL 16.9 Motor Unit Assembly

Item Part
 Description

Motor Bracket (P/O PL 16.8 Item
15)

Gear Pulley (20/50) (P/O PL 16.8 Item 15)
Gear Pulley (14/32/37) (P/O PL
16.8 Item 15)

DADF Feed Motor
127 K 38440 930W00111

423W08055 423W29955 127K38460 OAD Sensor Spring (P/O PL 15.8 Item 15) Takeaway Belt (4mm) Feed Belt (6 mm) DADF Registration Motor Spring (Not Spared)

PL16.9

PL 16.10 DADF Document Tray

Item	Part	Description
1	-	Hinge Tray (P/O PL 16.2 Item 3)
2	-	Side Guide (Rear) (P/O PL 16.2 Item 3)
3	-	Side Guide (Front) (P/O PL 16.2 Item 3)
4	-	Rack Gear (P/O PL 16.2 Item 3)
5	-	Pinion Gear (P/O PL 16.2 Item 3)
6	120 E 22370	Rack Gear and Actuator
7	809E51860	Rack Spring
8	-	Tray Upper Cover (P/O PL 16.2 Item 3)
9	-	Sensor Bracket (P/O PL 16.2 Item 3)
10	-	Tray Spring (P/O PL 16.2 Item 3)
11	-	Roller (P/O PL 16.2 Item 3)
12	930W00111	DADF Tray Set Guide Sensor 1, DADF Tray Set Guide Sensor 2, DADF Tray Set Guide Sensor 3
13	-	Harness Guide (P/O PL 16.2 Item 3)
14	-	Tray Lower Cover (P/O PL 16.2 Item 3)
15	130E89950	DADF Tray Size 1 Sensor, DADF Tray Size 2 Sensor (P/O PL 16.2 Item 3)
16	962K19712	Tray Wire Harness
17	105E06910	Eliminator
18	-	Earth Bracket (P/O PL 16.2 Item 3)
19	-	Label (Installation) (P/O PL 16.2 Item 3)
20	-	Label (Max) (P/O PL 16.2 Item 3)

PL 17.1 Finisher Unit

Item Part

1
2
3

4
5
6
7
8
9
10

-	Cover (Not Spared)	PL17.1
022K73591	H-Transport Assembly (REP	
	16.1.1)	
-	Finisher Assembly (Not Spared)	
	(REP 16.1.2)	
-	Finisher Knob Kit (Not Spared)	
-	Rack Assembly (Not Spared)	
-	Right Cover (Not Spared)	
050E19620	Stacker Tray	
-	Screw (Not Spared)	
-	Bracket (Not Spared)	
-	Screw (Not Spared)	

PL 17.2 H-Transport Assembly (1 of 2)

Item	Part	Description 1	-
2	-	Top Door (P/O PL 17.1 Item 2) Hinge Assembly (P/O PL 17.1 Item	PLI7.2
3	-	2)	
		Hinge Assembly (P/O PL 17.1 Item 2)	10\{6-8

PL 17.3 H-Transport Assembly (2 of 2)

PL 17.4 Cover

Item Part

1
1
2
802E28560
-
-
802E28550
-
-

Description

Front Cover (REP 16.4.1) Rear Cover (Not Spared) (REP 6.4.2) Top Cover (Not Spared) Left Cover (Not Spared) Front Door Left Panel (Not Spared) Hinge (Not Spared) Magnet (Not Spared) Label (Not Spared) abel (Not Spared)

PL 17.5 Top Open Cover and Eject

Roll

Item

Part	Description
802 K 28571	Top Open Cover Assembly
-	Arm Assembly (Not Spared)
-	Bearing (Not Spared)
-	Bracket (Not Spared)
-	Spring (Not Spared)
-	Support (Not Spared)
-	Bracket (Not Spared)
-	Shaft (Not Spared)
022 K61480	Eject Pinch Roll
-	Eject Chute (Not Spared)
130 K61920	Stack Height Sensor Assembly
	(REP 16.5.1)
-	Actuator (P/O PL 17.5 Item 11)
-	Bracket (P/O PL 17.5 Item 11)
-	Stack Height Sensor (P/O PL 17.5
-	Item 11)
-	Shaft (Not Spared)
-	Actuator (Not Spared)
-	Set Clamp Clutch
121 K34190	Bearing (Not Spared)
-	Collar (Not Spared)
-	Eject Roll (P/O PL 17.5 Item 25)
-	(REP 16.5.2)
$007 K 86910$	Gear (20T)
-	Bearing (Not Spared)
-	Eject Shaft (P/O PL 17.5 Item 25)
$006 K 23710$	Eject Roll Assembly
-	Link (Not Spared)
$022 K 67800$	Eject Pinch Roll (Front)

PL 17.6 Paper Transport (1 of 2)

PL 17.7 Paper Transport (2 of 2)

Item	Part	Description
1	068 K49000	Cam Bracket Assembly
2	020 E 34970	Pulley
3	-	Gear (15T) (P/O PL 17.7 Item 1)
4	-	Paper Eject Belt (P/O PL 17.6 Item
		14) (REP 16.7.1)
5	-	Gear (30T) (P/O PL 17.7 Item 1)
6	-	Collar (P/O PL 17.7 Item 1)
7	-	Gear Pulley (P/O PL 17.7 Item 1)
8	127 K39930	Eject Motor
9	$007 E 67800$	Cam Gear
10	130 K88780	Set Clamp Home Sensor, Eject
		Clamp Home Sensor
11	-	Stopper (P/O PL 17.7 Item 1)
12	-	Bracket (P/O PL 17.7 Item 1)
13	$962 K 45980$	Wire Harness
14	-	Gear (42/27T) (Not Spared)
15	-	Plate (Not Spared)
16	-	Spring (Not Spared)
17	-	Bracket (Not Spared)
18	-	Bracket (Not Spared)

0517007A-ELA

PL 17.8 Staple Unit

Part

041K94260
-

127 K 32860
$130 K 88780$
$-$
-
-
029K03720
050K48750

Description

Carriage Assembly
Bracket Assembly (P/O PL 17.8 Item 1)
Staple Move Motor
Gear (P/O PL 17.8 Item 1)
Staple Move Sensor, Staple Front Corner Sensor
Roll (P/O PL 17.8 Item 1)
Wire Harness (Not Spared)
Plate (Not Spared)
Staple Unit Rail (Not Spared) (REP 16.8.1)

Staple Assembly (REP 16.8.2) Staple (P/O PL 17.8 Item 10)
Staple Cartridge
Bracket (Not Spared)

PL 17.9 Compiler Tray Assembly

Item

Part

127K39920
$130 K 88770$
-
-
-
-
130K88780 120E24490 -
-
-
$-$
-

Description

ompiler Tray Assembly (REP
6.9.1)

Front/Rear Tamper Motor
Plate (P/O PL 17.9 Item 1)
Front/Rear Tamper Home Sensor Rack (P/O PL 17.9 Item 1) Actuator (P/O PL 17.9 Item 1) Tamper Assembly (P/O PL 17.9 Item 1)
Finger (P/O PL 17.9 Item 1) Spring (P/O PL 17.9 Item 1) Compiler Paper Sensor
Actuator
Paper Guide (P/O PL 17.9 Item 1)
Spring (P/O PL 17.9 Item 1) Wire Harness (P/O PL 17.9 Item 1) End Guide (P/O PL 17.9 Item 1) Finger (P/O PL 17.9 Item 1)

-
-
-
-
-
-
-
-
-
-
-
-
$127 K 39910$
16.10.1) (

Elevator Bracket (Front) (Not Spared)
-
$007 E 67830$
-
007E67840
-
$-$
$015 K 51640$ $130 K 88770$

Stacker Motor Assembly (REP
lamp (Not Spared)
Bearing (Not Spared)
Gear (Rear)
Actuator (Not Spared)
Gear (Front)
Stacker Tray Bracket Assembly (Not Spared)
Rack (Not Spared)
Tray Guide (Not Spared) Stack Paper Sensor Assembly Stack Paper Sensor, Stacker Upper

Description

 Limit/Stack A/Stack B Sensor Actuator (P/O PL 17.10 Item 11) Bracket (P/O PL 17.10 Item 11) Spring (P/O PL 17.10 Item 11) Cover (P/O PL 17.10 Item 11)Bracket (Not Spared)
Bracket (Not Spared)
Bracket (Not Spared)
Pin (Not Spared)
Bearing (Not Spared)
Shaft (Not Spared)
Rivet (Not Spared)
Elevator Belt (Not Spared) (REP 16.10.2)

0517010A-ELA

PL 17.11 Exit

Item
Part
-
-
-
-
-
-
$006 K 23730$
-
-
-
$022 K 65140$
$022 K 67460$
-
-
-

Description

Gear (46Z) (Not Spared)
Bearing (Not Spared)
Exit Shaft (Not Spared)
Collar (Not Spared)
Gear (32Z/18T) (Not Spared)
Bearing (Not Spared)
Paddle Gear Shaft (REP 16.11.1)
Paddle Bearing (Not Spared) Lower Exit Chute (Not Spared) Eliminator (Not Spared) Pinch Roll (Exit 1) Pinch Roll (exit R)
Upper Exit Chute (Not Spared) Compiler Entrance Sensor (Not Spared)
Bracket (Not Spared)

PL 17.12 Electrical

Item
Description
960K15771 Finisher PWB (REP 16.12.1)
537K68531
539E02401
-

110E97990 -

962K27330 962K45100

ROM
Finisher IC Prom
PWB Bracket (Not Spared)
Bracket (Not Spared)
Top Cover/Front Door Interlock Switch
Bracket (Not Spared)
I/F Harness
I/F Harness
PL17.1

PL 17.13 LVPS

Item Part

1
2
3
4
$962 K 27340$

Description

LVPS Frame (Not Spared) LVPS (100V) (REP 16.12.2) Cover (Not Spared)
Power Cord

PL17.13

jOvr51713

PL 17.14 Rack

Item Part

1	-
2	-
3	-
4	-

Description

Rear Rack (Not Spared) Front Rack (Not Spared) Bottom Plate (Not Spared) Foot (Not Spared)

PL17.14

PL 22.1 Finisher Assembly (Part 1 of
2)

Item
Part
802K85541
-

802E95552
068K29870
068K29880 802 K 85550
-
$-$
-
802E95570
-
042E92330

Description

Front Cover Assembly Front Cover (P/O PL 22.1 Item 1) Bracket (P/O PL 22.1 Item 1) Magnet (P/O PL 22.1 Item 1) Label (P/O PL 22.1 Item 1) Front Inner Cover
Hinge Hinge
Top Cover Assembly Top Cover (P/O PL 22.1 Item 9) Bracket (P/O PL 22.1 Item 9) Stopper (P/O PL 22.1 Item 9) Magnet (P/O PL 22.1 Item 9) Rear Cover
Hinge (Not Spared)
TT Cover (Not Spared) Eliminator

PL 22.2 Finisher Assembly (Part 2 of
2)

Item	Part	Description
1	-	Bottom Cover (Not Spared)
2	-	Spacer (Not Spared)
3	-	Tray Cover (Not Spared)
4	802 E95582	Left Cover
5	-	Support (Not Spared)
6	-	Rear Bracket (Not Spared)
7	$962 K 42291$	Wire Harness
8	$050 K 55890$	Stacker Tray Assembly (REP
		22.8 .1)
9	-	Stacker Base Assembly (Not
		Spared)
10	-	Bracket (Not Spared)
11	-	Screw (Not Spared)

PL22. 2

PL 22.3 Stacker Base Assembly (Part 1 of 5)

Item	Part
1	$003 E 65500$
2	005 E 89470
3	$423 W 10454$
4	012 K 94850
5	-
6	012 E 14913
7	-
8	-
9	$423 W 06054$
10	$413 W 75959$
11	020 K 13900
12	005 E 89490
13	807 E 13260
14	120 E 27240
15	802 K 85560
16	-
17	-
18	012 K 94840
19	-
20	130 K 88780
21	110 K 12980
21	-
22	-
23	-
24	-
25	-
26	-
27	121 K 34620
28	-

Description
Knob
Collar
Belt
Link Shaft Assembly
Link Shaft (P/O PL 22.3 Item 4)
Support
Sub Paddle Shaft Assembly (P/O
PL 22.3 Item 4)
Bearing (P/O PL 22.3 Item 4)
Paddle Belt (REP 22.3.1)
Bearing
Pulley
Collar
Gear (21T)
Actuator
Knob Cover Assembly
Knob Cover (P/O PL 22.3 Item 15)
Spring (P/O PL 22.3 Item 15) Sub Paddle Solenoid Assembly Bracket (Not Spared)
Finisher Top Cover Interlock Sensor
Finisher Top Cover Interlock +24V Switch
Support (P/O PL 22.3 Item 18) Cushion (P/O PL 22.3 Item 18) Link (P/O PL 22.3 Item 18) Arm (P/O PL 22.3 Item 18) Bracket (P/O PL 22.3 Item 22) Sub Paddle Solenoid (REP 22.3.2) Spring (P/O PL 22.3 Item 18)

PL 22.4 Stacker Base Assembly (Part 2 of 5)

Item	Part	Description
1	050K55880	Compile Assembly (REP 22.9.1)
2	$029 K 92350$	(SCC) Staple Assembly (REP 3
4	-	22.4.2) Cartridge (P/O PL 22.4 Item 2) 5
6	-	Stapler (P/O PL 22.4 Item 2)
7	-	Bracket (Not Spared)
	$930 W 00111$	Support (Not Spared)
8	962 Set Clamp Home Sensor (REP	
9	022 K72790	22.4.3)
10	-	Wire Harness
11	$004 E 15340$	Exit Roll Assembly (REP 22.4.1)
12	$004 E 15330$	Damper (P/O PL 22.4 Item 9)
13	-	Center Damper
14	$007 K 94220$	Onewing (Not Spared)
15	$005 E 89470$	Collar
16	$807 E 13230$	Gear Pulley (16T/18T)
17	$127 K 49800$	Finisher Transport Motor
18	$423 W 06954$	Belt

jOfa52204

PL 22.5 Stacker Base Assembly (Part 3 of 5)

Item	Part	Description
1	807 E 13250	Gear Pulley (37T/45T)
2	005 E89480	Collar
3	$413 W 75959$	Bearing
4	006 K25001	Main Paddle Shaft Assembly (REP
		$22.5 .4)$
5	$423 W 09854$	Belt
6	-	Shaft (Not Spared)
7	$413 W 77559$	Bearing
8	020 E43500	Pulley (19T)
9	$054 K 30360$	Lower Chute Assembly (REP
		$22.5 .5)$
10	-	Lower Chute (P/O PL 22.5 Item 9)
11	022 K73190	Pinch Roll (REP 22.5.1)
12	$809 E 65931$	Spring
13	-	Support (Not Spared)
14	-	Bracket (Not Spared)
15	-	Bracket (Not Spared)
16	$130 K 93251$	Compile Exit Sensor (REP 22.5.3)
17	$807 E 13240$	Gear (27T)
18	-	Bracket (Not Spared)
19	$130 K 88190$	Finisher Entrance Sensor (REP
		$22.5 .2)$

PL 22.6 Stacker Base Assembly (Part 4 of 5)

Item	Part
1	068 K 29930
2	068 K 29940
3	054 K 30600
4	-
5	042 E 92241
6	022 K 72782
7	031 E 97041
8	031 E 97020
9	$413 W 66250$
10	-
11	042 E 92330
12	-

Description
Bracket
Bracket
Upper Chute Assembly (REP 22.6.2) Upper Chute (P/O PL 22.6 Item 3) Eliminator ENT Roll Assembly (REP 22.6.1) Arm Arm
Ball Bearing
Spring (Not Spared)
Eliminator
Guide Paper (P/O PL 22.6 Item 3)

PL22.6

j0ra52206

PL 22.7 Stacker Base Assembly (Part

 5 of 5)| Item | Part |
| :---: | :--- |
| 1 | $960 K 2606$ |
| 2 | $055 K 3085$ |
| 3 | - |
| 4 | - |
| 5 | - |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | 110 E9799 |

Description
Finisher PWB (REP 22.7.1) Connector Bracket Harness Guide (Not Spared) PWB Bracket (Not Spared) Wire Harness (Drive) Wire Harness (Stapler) Wire Harness (Interlock) Wire Harness (Front Sensor) Wire Harness (Compile) Wire Harness (Stacker) Bracket (Not Spared) Finisher Front Interlock Switch

PL22.7

PL 22.8 Stacker Tray Assembly

Item	Part	Description
1	-	Bearing (Not Spared)
2	-	Top Tray (Not Spared)
3	-	bracket (Not Spared)
4	-	Plate (Not Spared)
5	-	Bracket (Not Spared)
6	-	Base Tray (Not Spared)
7	-	Base Bracket (Not Spared)
8	006 K25031	Stacker Shaft Assembly (REP
		$22.8 .2)$
9	$127 K 49420$	Stacker Motor (REP 22.8.3)
10	-	Pulley (60) (Not Spared)
11	-	Worm Gear (Not Spared)
12	-	Gear (16T/32T) (Not Spared)
13	-	Stud (Not Spared)
14	-	Bracket (Not Spared)
15	-	Bearing (Not Spared)
16	$423 W 07354$	Belt
17	-	Bracket (Not Spared)
18	$930 W 00111$	Stacker Stack Sensor 1 (Q1),
		Sensor 2 (Q2) (REP 22.8.4)
19	-	Actuator (Not Spared)
20	-	Wire Harness (Not Spared)

PL 22.9 Compile Assembly (Part 1 of

PL 22.10 Compile Assembly (Part 2 of

Item	Part	Description
1	068K30510	Bracket Assembly
2	-	Bracket (P/O PL 22.10 Item 1)
3	-	Wire Harness (P/O PL 22.10 Item 1)
4	050E94302	Compile Tray
5	-	Support (Not Spared)
6	930W00111	(SCC) Front Tamper Home Sensor (REP 22.10.2)
7	038E34860	Paper Guide
8	-	Bracket (Not Spared)
9	-	Stack Height Sensor (REP 22.10.4)
-	930 W 00212	Eject Home Sensor (P/O PL 22.10 Item 7) (REP 22.10.3)
10	962K42270	Wire Harness
11	-	bracket (P/O PL 22.10 Item 10)
12	-	Wire Harness (P/O PL 22.10 Item 10)
13	038 K 88990	Tamper Guide, Rear
-	-	Stack Height Sensor (P/O PL 22.10 Item 10) (REP 22.10.4)
14	068K30740	(SCC) Front/Rear Tamper Motor Assembly (REP 22.10.1)
15	-	Front / Rear Tamper Motor (P/O PL 22.10 Item 14)
16	-	Bracket (P/O PL 22.10 Item 14)
17	001 E 0981	Rail
18	038 K 89260	Tamper Guide, Front

Common Hardware			BB	112W27659	Screw (M3 $\times 6$)
			BC	113W16051	Screw (M2 x 10)
Item	Part	Description	BD	113W20688	Screw (M2.5 $\times 6$)
A	112W27677	Screw (Red) (M3 $\times 6$)	BE	113W27551	Screw (M3 $\times 5$)
B	112W27678	Screw (M3 $\times 8$)	BF	141W27451	Setscrew (M3 x 4)
C	112W27851	Screw (M3 x 8)	BG	153W15888	Tapping Screw (M4 x 12)
D	112W27898	Screw (M3 $\times 8$)	BH	153W16288	Tapping Screw (M4 $\times 12$)
E	113W15488	Screw (M2 x 4)	BJ	158W35878	Screw (M4 x 8)
F	113W20678	Screw (M3 $\times 6$)	BK	271W16050	Dowel Pin (2×10)
G	113W20857	Screw (M3 x 8)	BL	285W16051	Spring Pin (2×10)
H	113W21278	Screw (M3 x 12)	BM	153W17655	Tapping Screw (M3 $\times 6$)
J	113W21778	Screw (M3 $\times 18$)	BN	153W17855	Tapping Screw (M3 x 8)
K	113W27688	Screw (M3 $\times 6$)	BP	252W29450	Nylon Washer (t1) (8)
L	113W36278	Screw (M4 x 12)	BQ	158W36255	Screw ($\mathrm{M} 4 \times 12$)
M	114W27678	Screw (M3 $\times 6$)	BR	354W26251	E-Clip (5)
N	141W35651	Set Screw (M4 x 6)	BS	153W27855	Tapping Screw (M3 x 8)
P	153W17688	Tapping Screw (M3 $\times 6$)	BT	113W20457	Screw (M3 $\times 4$)
Q	153W17888	Tapping Screw (M3 $\times 8$)	BU	113W27451	Screw (M3 $\times 4$)
R	153W18088	Tapping Screw (M3 $\times 10$)	BV	113W20657	Screw (M3 $\times 6$)
S	153W27678	Tapping Screw (M3 $\times 6$)	BW	112W35651	Screw (M4 x 6)
T	153W27878	Tapping Screw (M3 x 8)	BX	112W27859	Screw (M3 x 8)
U	158W27655	Screw (M3 x 6)	BY	158W28678	Screw (M3 $\times 16$)
V	158W27663	Screw (M3 x 6)	BZ	285W21851	Spring Pin (2.5×20)
w	158W27677	Screw (Red) (M3 x 6)	CA	252W26450	Nylon Washer (t1) (5)
X	158W27678	Screw (M3 $\times 6$)	CB	251W19278	Washer (t0.5) (2.5)
Y	158W27855	Screw (M3 x 8)	CC	113W21478	Screw (M3 x 14)
Z	158W27863	Screw (M3 $\times 8$)	CD	113W21078	Screw (M3 x 10)
AA	158W27878	Screw (M3 $\times 8$)	CE	354W13278	E-Clip (1.5)
AB	158W28078	Screw (M3 x 10)	CF	158W27688	Screw (M3 $\times 7$)
AC	158W28255	Screw (M3 $\times 12$)	CG	113W35878	Screw (M4 x 8)
AD	158W28278	Screw (M3 x 12)	CH	158W27888	Screw (M3 $\times 9$)
AE	158W35678	Screw (M4 x 6)	CJ	113W20878	Screw (M3 x 8)
AF	220W21278	Nut (M3)	CK	252W24278	Nylon Washer (6)
AG	271W21250	Dowel Pin (2.5 x 12)	CL	252W29350	Washer
AH	285W16251	Spring Pin (2×12)	CM	271W20850	Dowel Pin (2.5×12)
AJ	285W28051	Spring Pin (3×10)	CN	271W28650	Dowel Pin (2.5 x 12)
AK	354W15251	E-Clip (2)	CP	158W45078	Screw
AL	354W15278	E-Clip (2)	CQ	113W16088	Screw (M2 x 10)
AM	354W21251	E-Clip (2)	CR	113W27588	Screw (M3 $\times 5$)
AN	354W21278	E-Clip (3)	CS	113W20478	Screw (M3 $\times 4$)
AP	354W24251	E-Clip (4)	CT	252W31350	Washer (10) (t0.5)
AQ	354W24254	KL-Clip (4)	CU	252W31250	Washer (10) (t0.25)
AR	354W24278	E-Clip (4)	CV	112 W 27878	Screw-DT (M3 $\times 8$)
AS	354W26278	E-Clip (5)	cW	113W27488	Pan Head Screw
AT	354W27251	E-Clip (6)			
AU	354W27254	KL-Clip (6)			
AV	354W27278	E-Clip (6)			
AW	354W28278	E-Clip (7)			
AX	354W29251	E-Clip (8)			
AY	354W29278	E-Clip (8)			
AZ	251W21278	Washer T. 05 (3)			
BA	113W27651	Screw (M3 $\times 6$)			

How to use UI Diagnostics
UI Diagnostic Mode.
Various Reports
Jam Report. 6-5
Failure Report 6-5
Shutdown Report 6-6
Diagnostics (NVM Read/Write)
NVM Read/Write 6-7
Diagnostics (NVM Read/Write)
OT NVM List. 6-9
Diagnostics (NVM Read/Write)
IIT NVM List 6-75
Diagnostics (NVM Read/Write)
Controller \& Fax NVM List 6-91
Diagnostics (NVM Read/Write)
Job Flow Service 6-169
Analog Monitor 6-170
Diagnostics (Others)
Serial Number/Billing Meter Data 6-171
Printing HFSI 6-171
Initialize HFSI Counters 6-172
Adjust Toner Density 6-175
MSI Guide Adjustment 6-175
Initialize NVM 6-176
Component Control 6-177
Hard Disk Diagnostic Program 6-196
Test Pattern Print 6-196
Webpage Administrator Password 6-197
Center Tray Offsetting 6-198
E-Mail Icon 6-198
FAX Output Separation 6-199
General Procedures
GP 1 Intermittent Problem RAP 6-201
GP 2 Fax Diagnostics 6-202
GP 3 Resetting the Administrator Password 6-204
GP 4 Replacing Billing PWBs 6-204
GP 5 Printing Report 6-205
GP 6 Special Boot Modes 6-206
GP 7 Country Code Setting 6-207
GP 8 Firmware Version 6-207
GP 9 Save and Restore 6-208
GP 10 Loading And Upgrading Software 6-209
GP 11Software Option Installation and Removal 6-210
GP 12 Elan Boot Sequence 6-212
GP 13 Network Scanning Template Removal and Repository Reset Procedure 6-213
General Information
space Requirements 6-215
Product Specs 6-216
Common Tools 6-218
Product Tools and Test Patterns 6-219
Log Book Storage 6-219
Cleaning Materials 6-220
Machine Consumables 6-220
Glossary of Terms 6-221
Change Tag InformationChange Tag Introduction.6-225
IOT/Processor (P) Tags 6-225

UI Diagnostic Mode

Procedure

Access UI Diagnostics by following the procedures below.

Entering UI Diagnostics

1. At the Control Panel, press and hold the $\mathbf{0}$ key for 5 seconds, then press the Start button while still pressing the 0 key.
The CE Mode - Password Entry screen will appear.
2. Enter the Access Number 6789 and press Confirm.

The colors on the display are reversed to indicate that UI Diagnostics mode is active.

Accessing Diagnostic routines

1. Press the Log In/Out button on the Control Panel.
2. Select System Settings
3. Select Common Settings.
4. Select Maintenance/Diagnostics.
5. The following Diagnostics Routines can be accessed from the UI screen. (Figure 1)
a. NVM Read/Write

- Follow the instructions on the screen. If one or more NVM locations is changed, the machine will reboot upon exit.
b. Component Control
c. Sub System
- Initialize Hard Disk
- Delete All Data
- Software Options
- Fax Diagnostics
d. Print Test Pattern
e. Initialize NVM
f. Adjustment/Others
- Machine ID/Billing Data
- Initialize HFSI Counter
- Adjust Toner Density
- Tray 5(Bypass) Guide Adjustment (Tray 5=MPT)

j0el6101a
Figure 1 Maintenance/Diagnostics

Printing Service Reports

1. To access Service reports, follow the Entering UI Diagnostics procedure.
2. After entering the Access Number, press the Machine Status button on the Control Panel.
3. Select the Billing Meter/Print Reports tab on the display.
4. Press the Print Reports/List button.
5. Press the $\mathbf{C E}$ button.
6. The following reports can be printed

- Debug Log Report
- HFSI Report
- Jam Report
- Shutdown Report
- Failure Report
- Protocol Monitor Report

7. Select the required report and press the Start button. The selected report will be printed.

Exiting UI Diagnostics

CAUTION

Ensure that the machine is not inadvertently left in UI Diagnostics.
There are three ways to exit from UI Diagnostics.

- Switch the power off and on.
- Perform the following:
- Press Close to exit any of the service screens that were opened.
- When the System Settings screen is displayed, press Exit.
- When the reversed-color Copy Mode screen is displayed, press the Start button while the $\mathbf{0}$ key is pressed.
- If the Restart button is displayed on the screen, pressing the button will exit UI Diagnostics and restart the operation.

Jam Report

Purpose

To check the frequency of jams.

Print Contents

Perform following to print Jam Report

1. Enter UI Diagnostics (Entering UI Diagnostics).
2. Press the Machine Status button on the Control Panel.
3. Select the Billing Meter/Print Reports tab on the display
4. Select the Print Reports/List button.
5. Select the Jam Report button.
6. Press the Start button to print Jam Report

Failure Report

Purpose

To display the frequency of failures.

Print Contents

Report Name: Failure Report
Perform following to print Failure Report.

1. Enter UI Diagnostics (Entering UI Diagnostics).
2. Press the Machine Status button on the Control Panel.
3. Select the Billing Meter/Print Reports tab on the display.
4. Select the Print Reports/List button.
5. Select the Failure Report button.
6. Press the Start button to print Failure Report.

Shutdown Report

Purpose

To output the history that was registered in advance.

Print Contents

Perform following to print Shutdown Report.

1. Enter UI Diagnostics (Entering UI Diagnostics).
2. Press the Machine Status button on the Control Panel.
3. Select the Billing Meter/Print Reports tab on the display.
4. Select the Print Reports/List button.
5. Select the CE button (may have to scroll down).
6. Select the Shutdown Report button.
7. Press the Start button to print Shutdown Report.

NVM Read/Write

Purpose

Reads, sets or changes the NVM data.

Procedure

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics in UI Diagnostic Mode).
b. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
2. Select Maintenance/Diagnostics
3. Select NVM Read/Write

Reading NVM

1. Input Chain-Link number(6 digits) on NVM Read/Write screen.
2. Select Confirm/Change
3. Current Value appears in Current Value column.

Writing NVM

1. Input New number in New Value column
2. Select Save.
3. New number appears on Current Value column.

Table 1 Component VS Chain number		
Component Item IOT/IT/Controller Chain Number Allocation ESS IF IOT 740 Recycle IOT 740 Billing IOT 740 Drive IOT 741 NOHAD IOT 741 PH IOT $740,742,760$ EXIT IOT 742,764 Tray IOT 742 Fuser IOT 744 ROS IOT 749 Process Control IOT $751,752,753$ Xero IOT 751 CRU IOT 751 Finisher IIT 764 DADF IIT 711 IISS (DADF) IIT 710 IISS IIT 715 IISS (Config) Controller 719 Common Controller 700 Meter Counter Controller 720 Stored Data $731,732,733,734$		

IOT NVM List

Chain 740-xxx IOT Manager

Chain-Link	Name	Default	Range	Read/Write	Description
740-003	CycleDownTimer for SheetEmpty	0	0~5000	RW	Cycle Down Timer (in steps of 1 ms) for the state in which Tray is empty. Timer measuring time from the time Tray becomes empty during printing to the start of Cycle Down. When having a failure or instructed to stop, the M/C immediately starts to cycle down without using this Timer.
740-004	IOT-PL Number	0	0~255	R	IOT-PL management number written in ROM built in CPU. At Power On, IOT-PL info is checked and stored in this NVM. $0-255$: IOT-PL management number available
740-006	Comm Fail History ID	1	0~255	RW	Where to connect in the event of a fail: 0x00: Controller 0x01: No occurrence
740-007	Comm Fail History State	0	0~255	RW	```Communication Fail Type 1: Send Queue NG 2: No ACK 3: Receive Queue Full```
740-008	Comm Fail History Tx State	0	0~255	RW	Transmission status in the event of a fail: 0 : Idling (waiting) 1: Sending Msg 2: Waiting for Ack to sent Msg 3: Waiting for Ack to sent Sync 4: Checking Send Queue after sending Msg
740-009	Comm Fail History Rx State	0	0~255	RW	Reception status in the event of a fail: 0 : Idling (waiting) 1: Waiting for Msg Length 2: Waiting for ClientData/BCC 3: Waiting to receive Command to Establish Sync. 4: Finished receiving Msg 5: Finished receiving Command to Establish Sync.
740-010	Comm Fail History Uart Tx Use	0	0~255	RW	For what Physical Layer is used in the event of a fail: 0 : Send physical layer used to send Msg 1: Send physical layer used to send Ack
740-011	Comm Fail History Rx Func Use	0	0~255	RW	How the M/C waits for a Receive Function in the event of a fail: 0: Clear the use of Receive Function 1: Set the use of Receive Function
740-012	FPGA Video Version	0	0~255	R	Version of FPGA Video Module
740-013	FPGA I/O Version	0	0~255	R	Version of FPGA I/O Module
740-014	Logic Fail Information	0	0~255	RW	$\begin{aligned} & \text { Type 0-99: IM } \\ & \text { Type 100-: Library/DD-Num } \end{aligned}$
740-015	Logic Fail Information	0	0~255	RW	Detail 1
740-016	Logic Fail Information	0	0~255	RW	Detail 2
740-017	Logic Fail Information	0	0~255	RW	Detail 3

Table 1 Chain 740-xxx IOT Manager

Chain-Link	Name	Default	Range	Read/Write	Description
740-018	M/C Type	-	0~255	R	M/C Type 0: 1MFrom/16KEEPROM 1: 2MFrom/64KEEPROM Set at Power ON and NVM Initialization.
740-019	Product Type	10	0~255	R	Product Identification MN/MNPL: 0 (unused) IBG: 10 (fixed)
740-020	Range Over Chain Link	0	0~255	RW	Memorizes Link (high byte) that was over the range in Reading at Power On.
740-021	Range Over Chain Link	0	0~255	RW	Memorizes Link (low byte) that was over the range in Reading at Power On.
740-022	Range Over Chain Link	0	0~255	RW	Memorizes abnormal value of Chain Link that was over the range in Reading at Power On. (higher bits in 1-byte data/2-byte data; highest bit in 4-byte data)
740-023	Range Over Chain Link	0	0~255	RW	Memorizes abnormal value of Chain Link that was over the range in Reading at Power On. (lower bits in 2-byte data; middle and higher bits in 4-byte data)
740-024	Range Over Chain Link	0	0~255	RW	Memorizes abnormal value of Chain Link that was over the range in Reading at Power On. (middle and lower bits in 4-byte data)
740-025	Range Over Chain Link	0	0~255	RW	Memorizes abnormal value of Chain Link that was over the range in Reading at Power On. (lowest bit in 4-byte data)
740-026	Range Over Chain Link	0	0~255	RW	a specified number (n) of Links that were over their ranges in Reading at Power On
740-027	Range Over Chain Link	0	0~255	RW	the number of Chain Links that were over their ranges in Reading at Power On
740-055	CRUM Mode Information	0	0~1	R	Stores how to control CRUM: 1: 3rd Party Mode (no communication with CRUM) any except 1: Xerox Mode (communication with CRUM
740-056	CRUM Mode Switch	0	0~1	RW	Switch to change 3rd Party Mode to Xerox Mode 0: N/A 1: transfer to Xerox Mode
740-060	CRUM Comm Fail Information	0	0~255	RW	At what command CRUM Comm Fail occurred 0: No occurrence 1: at REQ RX Command 2: at ATTRIB Command 3: at CSPWD Command 4: Normally at Read/Write Command
740-061	Status Regi Information	0	0~255	RW	State of Status Register in the event of a CRUM Comm Fail The content of Register in the event of a fail is stored. NOTE: However, the above is not applicable in the following cases: Data error internal to FIFO occurs: OxFF will be stored. Data Length error occurs: OxFE will be stored (applicable also when FIFOBL exceeds 35).

Table 1 Chain 740-xxx IOT Manager

Chain-Link	Name	Default	Range	Read/Write	Description
740-062	CRUM ASIC Comm Fail Information	0	0~255	RW	What CRUM ASIC Comm Fail occurred: 0 : No occurrence 1: WUP_REQ Busy Err 2: REQ_RX Busy Err 3: REQ_RX CRC Err 4: ATTRIB Busy Err 5: ATTRIB CRC Err 6: CSPWD Busy Err 7: CRPWD CRC Err 8: RSB Busy Err 9: RSB CRC Err 10: RMB Busy Err 11: RMB CRC Err 12: WSB Busy Err 13: WSB CRC Err 14: at I2C Write SDA Line not open 15: I2C Write No ACK 16: I2C Write No ACK 17: at I2C Read SDA Line not open 18: I2C Read No ACK
740-064	CRUM Deve Access Time Read/Write	5000	0~65535	RW	Max waiting time (ms) for CRUM R/W operation (ms) at Read/Write
740-065	CRUM Deve Access Time Write	3000	0~65535	RW	Waiting time (ms) before CRUM Write at Write Only
740-067	Non CRUM Drum Event	2	1~8	RW	Drum CRUM event to be reported in No CRUM mode 1: CRUM disconnected 2: the same CRUM 4: old CRUM 8: new CRUM
740-068	Non CRUM Toner Y Event	2	1~8	RW	Toner Y CRUM event to be reported in No CRUM mode 1: CRUM disconnected 2: the same CRUM 4: old CRUM 8: new CRUM
740-069	Non CRUM Toner M Event	2	1~8	RW	Toner M CRUM event to be reported in No CRUM mode 1: CRUM disconnected 2: the same CRUM 4: old CRUM 8: new CRUM
740-070	Non CRUM Toner C Event	2	1~8	RW	Toner C CRUM event to be reported in No CRUM mode 1: CRUM disconnected 2: the same CRUM 4: old CRUM 8: new CRUM
740-071	Non CRUM Toner K Event	2	1~8	RW	Toner K CRUM event to be reported in No CRUM mode 1: CRUM disconnected 2: the same CRUM 4: old CRUM 8: new CRUM

Table 1 Chain 740-xxx IOT Manager

Chain-Link	Name	Default	Range	Read/Write	Description
$740-084$	FPGA Video Version	0	$0 \sim 65535$	R	Version of FPGA Video Module
$740-085$	FPGA I/O Version	0	$0 \sim 65535$	R	Version of FPGA I/O Module

Chain 741-xxx Drive/MQ/NOHAD

Table 2 Drive/MQ/NOHAD

Chain-Link	Name	Default	Range	Description
741-001	DRUM/IBT MOTOR HIGH PULSE	20	0~40	Fine Adjustment of Drum/IBT Motor speed (standard) [Table No.]
741-002	DRUM/IBT MOTOR LOW PULSE	20	0~40	Fine Adjustment of Drum/IBT Motor speed (half speed) [Table No.]
741-003	DRUM/IBT MOTOR REVERSE TIME	20	0~40	Drum/IBT Motor Reverse Rotation Time [50msec]
741-004	MAIN MOTOR HIGH PULSE	9722	$\begin{aligned} & 8736 \sim 1073 \\ & 6 \end{aligned}$	Fine Adjustment of Main Motor speed (standard) [division ratio]
741-005	MAIN MOTOR LOW PULSE	19476	$\begin{aligned} & \hline 17474 ~ 214 \\ & 74 \end{aligned}$	Fine Adjustment of Main Motor speed (half speed) [division ratio]
741-006	DEVE MOTOR PULSE	20	0~40	Fine Adjustment of DEVE Motor speed [Table No.]
741-007	AUGER MOTOR PULSE	20	0~40	Fine Adjustment of Auger Motor speed [Table No.]
741-008	FUSER FAN DELAY TIME	1	0~120	Fuser Fan's delay in turning Off. [15sec]
741-009	REAR FAN DELAY TIME	1	0~120	Rear Fan's delay in turning Off. [15sec]
741-011	DEW MODE TEMPERATURE OF POWERON	12	0~30	Dew Mode Threshold Temperature [degree C]
741-012	DEW MODE TIME FOR POWERON	90	1~120	Dew Mode Time [min]
741-013	FUSER FAN FAIL BYPASS	0	0~1	FUSER FAN FAIL Prevention 0 : Normal Mode 1: FAN FAIL Prevention
741-014	REAR FAN FAIL BYPASS	0	0~1	REAR FAN FAIL Prevention 0: Normal Mode 1: FAN FAIL Prevention
741-015	DEODORANT FILTER SW	0	0~1	Sets whether or not Deodorant Filter is present. 0: No Deodorant Filter 1: Deodorant Filter present
741-016	DEW MODE TEMPERATURE OF PRINT	14	0~30	Dew Mode Threshold Temperature at the start of print [degree C]
741-017	DEW MODE TIME FOR PRINT	60	15~180	How long Fan maintains its low-speed rotation in Dew Mode at the start of print [sec]
741-018	DRUM MOTOR DELAY TIME	130	1~255	DRUM MOTOR's delay in turning OFF corresponding to FPOT [10msec]

Table 2 Drive/MQ/NOHAD

Chain-Link	Name	Default	Range	Description
$741-019$	MAIN MOTOR HIGH PULSE	9742	$8736 \sim 1073$ 6	Fine Adjustment of Main Motor speed (standard/heavy 1) [division ratio]
$741-020$	MAIN MOTOR HIGH PULSE	9742	$8736 \sim 1073$ 6	Fine Adjustment of Main Motor speed (standard/label) [division ratio]
$741-021$	MAIN MOTOR LOW PULSE	19476	$17474 \sim 214$ 74	Fine Adjustment of Main Motor speed (half speed/heavy 2) [division ratio]
$741-022$	MAIN MOTOR LOW PULSE	19476	$17474 \sim 214$ 74	Fine Adjustment of Main Motor speed (half speed/label) [division ratio]
$741-023$	MAIN MOTOR LOW PULSE	19476	$17474 \sim 214$ 74	Fine Adjustment of Main Motor speed (half speed/transparency) [division ratio] $741-024$ MAIN MOTOR LOW PULSE

Chain 742-xxx Paper Handling

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-001	ROS Write Position (All)	0	-25~25	0.2 mm	RW	Base Adjustment of Side Regi in fast scan direction (affects all the trays/paper types/color modes)
742-002	ROS Write Position (Tray 1/Plain Paper/Common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/plain paper/common)
742-003	ROS Write Position (Trays 1-3/heavy 1, coated 1/B)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/heavy 1, coated 1/B)
742-004	ROS Write Position (Trays 1-3/heavy 1, coated 1/color)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/heavy 1, coated 1/color)
742-005	ROS Write Position (Trays 1-3/heavy 2, coated 2/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/heavy 2, coated 2/common)
742-006	ROS Write Position (Trays 1-3/abel/B)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/label/B)
742-007	ROS Write Position (Trays1-3/label/color)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/label/color)
742-008	ROS Write Position (Trays 1-3/transparency/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Trays 1-3/transparency/common)
742-009	ROS Write Position (MSI/plain paper/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/plain paper/common)
742-010	ROS Write Position (MSI/heavy 1, coated 1/B)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/heavy 1, coated 1/B)
742-011	ROS Write Position (MSI/heavy 1, coated 1/color)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/heavy 1, coated 1/color)
742-012	ROS Write Position (MSI/heavy 2, coated 2/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/heavy 2, coated 2/common)
742-013	ROS Write Position (MSI/Iabel/B)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/label/B)
742-014	ROS Write Position (MSI/label/color)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/label/color)
742-015	ROS Write Position (MSI/transparency/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (MSI/transparency/common)
742-016	ROS Write Position (Duplex All/plain paper/common)	0	-25~25	1 ms	RW	Side Regi ADJ in fast scan direction (Duplex All/plain paper/common)
742-017	ROS Write Position (Duplex All/heavy 1, coated 1/B)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan direction (Duplex All/heavy 1, coated 1/B)
742-018	ROS Write Position (Duplex, feed from Tray 1/plain/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan (Duplex, feed from Tray 1/plain paper/common)
742-019	ROS Write Position (Duplex, feed from Tray 2/plain/common)	0	-25~25	0.2mm	RW	Side Regi ADJ in fast scan (Duplex, feed from Tray 2/plain paper/common)

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-020	ROS Write Position (Duplex, feed from Tray 3/plain/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan (Duplex, feed from Tray 3/plain paper/common)
740-021	ROS Write Position (Duplex, feed from MSI/plain/com- mon)	0	-25~25	0.2mm	RW	Side Regi ADJ in fast scan (Duplex, feed from MSI/plain paper/common)
742-022	ROS Write Position (Tray 2/plain paper/common)	0	-25~25	0.2mm	RW	Side Regi ADJ in fast scan direction (Tray2/plain paper/common)
742-023	ROS Write Position (Tray 3/plain paper/common)	0	-25~25	0.2 mm	RW	Side Regi in fast scan direction (Tray 3/plain paper/common)
742-024	ROS Write Position (whole Tray Module/plain/common)	0	-25~25	0.2 mm	RW	Side Regi ADJ in fast scan (whole Tray Module/plain paper/common)
742-031	Timing of Starting Registration Operation (All)	56	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (affects all the trays/paper types/color modes)
742-032	Timing of Starting Registration Operation (MSI/full speed/plain paper)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/full speed/plain paper)
742-033	Timing of Starting Registration Operation (MSI/full speed/heavy 1)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/full speed/heavy 1)
742-034	Timing of Starting Registration Operation (MSI/half speed/heavy 1)	92	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/heavy 1, coated $1 /$ color)
742-035	Timing of Starting Registration Operation (MSI/half speed/heavy 2)	92	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/half speed/heavy 2)
742-036	Timing of Starting Registration Operation (MSI/full speed/label)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/full speed/label)
742-037	Timing of Starting Registration Operation (MSI/half speed/label)	92	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/half speed/label)
742-038	Timing of Starting Registration Operation (MSI/half speed/transparency)	92	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/half speed/transparency)
742-039	Timing of Starting Registration Operation (Trays 1-3/full speed/plain paper)	80	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/full speed/plain paper)
742-040	Timing of Starting Registration Operation (Trays 1-3/full speed/heavy 1)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/full speed/heavy 1)
742-041	Timing of Starting Registration Operation (Trays 1-3/half speed/heavy 1)	92	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays $1-3 /$ half speed/heavy 1)
742-042	Timing of Starting Registration Operation (Trays 1-3/half speed/heavy 2)	92	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays $1-3 /$ half speed/heavy 2)
742-043	Timing of Starting Registration Operation (Trays 1-3/full speed/label)	80	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/full speed/label)
742-044	Timing of Starting Registration Operation (Trays $1-3 /$ half speed/label)	92	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/half speed/label)
742-045	Timing of Starting Registration Operation (Trays $1-3 /$ half speed/transparency)	92	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/transparency/common)
742-046	Timing of Starting Registration Operation (Duplex/full speed/plain paper)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (Duplex/full speed/plain paper)
742-047	Timing of Starting Registration Operation (Duplex/full speed/heavy 1)	80	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (Duplex/full speed/heavy 1)
742-048	Timing of Starting Registration Operation (MSI/half speed/plain paper)	92	0~160	1mc	RW	Base Adjustment of Lead Regi in slow scan direction (MSI/half speed/plain paper)

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-049	Timing of Starting Registration Operation (Trays 1-3/half speed/plain paper)	92	0~160	1 mc	RW	Base Adjustment of Lead Regi in slow scan direction (Trays 1-3/half speed/plain paper)
742-055	Timing of Starting MSI Feed Control (MSI/full speed/plain) ('PH standard signal' to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting MSI Feed (full speed/plain paper)
742-056	```Timing of Starting MSI Feed Control (MSI/full speed/non- plain) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting MSI Feed (full speed/any other than plain paper)
742-057	```Timing of Starting MSI Feed Control (MSI/half speed/ plain) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting MSI Feed (half speed/plain paper)
742-058	```Timing of Starting MSI Feed Control (MSI/half speed/non- plain) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting MSI Feed (half speed/except plain paper)
742-059	Timing of Starting Tray Feed Control (Tray 1/full speed/B/ $8.5 \times 11 \mathrm{LEF}-\mathrm{G}$) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (full speed/B/8.5x11LEF-G)
742-060	Timing of Starting Tray Feed Control (Tray 1/full speed/B/ A4SEF-G~11x17SEF-G) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (full speed/B/A4SEF-G to 11x17SEFG)
742-061	Timing of Starting Tray Feed Control (Tray 1/full/color/side A) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (full speed/color/side A)
742-062	Timing of Starting Tray Feed Control (Tray 1/full/color/side B) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (full speed/color/side B)
742-063	Timing of Starting Tray Feed Control (Tray 1/half speed/ except transparency/B/8.5x11LEF-G) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/except transparency/B/ 8.5×11 LEF-G)
742-064	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (Tray 1/half speed/ } \\ & \text { except transparency/B/A4SEF-G } \sim 11 \times 17 \text { SEF-G) } \\ & \text { ("PH standard signal" to Feed Start) } \end{aligned}$	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/except transparency/B/ A4SEF-G to 11×17 SEF-G)
742-065	```Timing of Starting Tray Feed Control (Tray 1/half speed/ except transparency/color/side A) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/except transparency/ color/side A)
742-066	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (Tray 1/half speed/ } \\ & \text { except transparency/color/side B) } \\ & \text { ("PH standard signal" to Feed Start) } \end{aligned}$	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/except transparency/ color/side B)
742-067	```Timing of Starting Tray Feed Control (Tray 1/half speed/ transparency/B/side A) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/transparency/B/side A)
742-068	```Timing of Starting Tray Feed Control (Tray 1/half speed/ transparency/B/side B) ("PH standard signal" to Feed Start)```	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/transparency/B/side B)

Chain-Link	Name	Default	Range	$\begin{aligned} & \text { Step } \\ & \text { (mm) } \end{aligned}$	Read/ Write	Description
742-069	Timing of Starting Tray Feed Control (Tray 1/half speed/ transparency/color/side A) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/transparency/color/side A)
742-070	Timing of Starting Tray Feed Control (Tray 1/half speed/ transparency/color/side B) ("PH standard signal" to Feed Start)	10	-100~100	2 ms	RW	Adjusts the timing of starting Tray 1 Feed (half speed/transparency/color/side B)
742-071	Timing of Starting Tray Feed Control (2TM Tray 2/full speed/B/8.5x11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100	2 ms	RW	Adjustment of Start Feed signal (2TM Tray 2)
742-072	Timing of Starting Tray Feed Control (2TM Tray 2/full speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-073	Timing of Starting Tray Feed Control (2TM Tray 2/full speed/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-074	Timing of Starting Tray Feed Control (2TM Tray 2/full speed/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-075	Timing of Starting Tray Feed Control (2TM Tray 2/half speed/except transparency/B/8.5x11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-076	Timing of Starting Tray Feed Control (2TM Tray 2/half speed/except transparency/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-077	Timing of Starting Tray Feed Control (2TM Tray 2/half speed/except transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-078	Timing of Starting Tray Feed Control (2TM Tray 2/half speed/except transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-079	Timing of Starting Tray Feed Control (2TM Tray 2/transparency/B/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-080	Timing of Starting Tray Feed Control (2TM Tray 2/transparency $/ \mathrm{B} /$ side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-081	Timing of Starting Tray Feed Control (2TM Tray 2/transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-082	Timing of Starting Tray Feed Control (2TM Tray 2/transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-083	Timing of Starting Tray Feed Control (TTM Tray 2/full speed/B/8.5×11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100	2 ms	RW	Start Feed signal Adjustment (TTM Tray 2)

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-084	Timing of Starting Tray Feed Control (TTM Tray 2/full speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-085	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (TTM Tray 2/full } \\ & \text { speed/color/side A) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \\ & \hline \end{aligned}$	10	-100~100		RW	ditto
742-086	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (TTM Tray 2/full } \\ & \text { speed/color/side B) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \end{aligned}$	10	-100~100		RW	ditto
742-087	Timing of Starting Tray Feed Control (TTM Tray 2/half speed/except transparency/B/8.5x11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-088	Timing of Starting Tray Feed Control (TTM Tray 2/half speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-089	Timing of Starting Tray Feed Control (TTM Tray 2/half speed/except transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-090	Timing of Starting Tray Feed Control (TTM Tray 2/half speed/except transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-091	```Timing of Starting Tray Feed Control (TTM Tray 2/trans- parency/B/side A) (Start Feed signal to Regi Clutch On signal)```	10	-100~100		RW	ditto
742-092	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (TTM Tray 2/trans- } \\ & \text { parency/B/side B) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \end{aligned}$	10	-100~100		RW	ditto
742-093	```Timing of Starting Tray Feed Control (TTM Tray 2/trans- parency/color/side A) (Start Feed signal to Regi Clutch On signal)```	10	-100~100		RW	ditto
742-094	```Timing of Starting Tray Feed Control (TTM Tray 2/trans- parency/color/side B) (Start Feed signal to Regi Clutch On signal)```	10	-100~100		RW	ditto
742-095	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (2TM Tray 3/full } \\ & \text { speed/B/8.5x11LEF-G) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \end{aligned}$	10	-100~100	2 ms	RW	Start Feed signal Adjustment (2TM Tray 3)
742-096	Timing of Starting Tray Feed Control (2TM Tray 3/full speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-097	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (2TM Tray 3/full } \\ & \text { speed/color/side A) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \end{aligned}$	10	-100~100		RW	ditto
742-098	$\begin{aligned} & \text { Timing of Starting Tray Feed Control (2TM Tray 3/full } \\ & \text { speed/color/side B) } \\ & \text { (Start Feed signal to Regi Clutch On signal) } \\ & \hline \end{aligned}$	10	-100~100		RW	ditto

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-099	Timing of Starting Tray Feed Control (2TM Tray 3/half speed/except transparency/B/8.5x11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-100	Timing of Starting Tray Feed Control (2TM Tray 3/half speed/except transparency/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-101	Timing of Starting Tray Feed Control (2TM Tray 3/half speed/except transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-102	Timing of Starting Tray Feed Control (2TM Tray 3/half speed/except transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-103	```Timing of Starting Tray Feed Control (2TM Tray 3/trans- parency/B/side A) (Start Feed signal to Regi Clutch On signal)```	10	-100~100		RW	ditto
742-104	Timing of Starting Tray Feed Control (2TM Tray 3/transparency/B/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-105	Timing of Starting Tray Feed Control (2TM Tray 3/transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-106	Timing of Starting Tray Feed Control (2TM Tray 3/transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-107	Timing of Starting Tray Feed Control (TTM Tray 3/full speed/B/8.5×11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100	2 ms	RW	Start Feed signal Adjustment (TTM Tray 3)
742-108	Timing of Starting Tray Feed Control (TTM Tray 3/full speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-109	Timing of Starting Tray Feed Control (TTM Tray 3/full speed/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-110	Timing of Starting Tray Feed Control (TTM Tray 3/full speed/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-111	Timing of Starting Tray Feed Control (TTM Tray 3/half speed/except transparency/B/8.5x11LEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-112	Timing of Starting Tray Feed Control (TTM Tray 3/half speed/B/A4SEF-G~11x17SEF-G) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-113	Timing of Starting Tray Feed Control (TTM Tray 3/half speed/except transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-114	Timing of Starting Tray Feed Control (TTM Tray 3/half speed/except transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-115	Timing of Starting Tray Feed Control (TTM Tray 3/transparency $/ \mathrm{B} /$ side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-116	Timing of Starting Tray Feed Control (TTM Tray 3/transparency $/ \mathrm{B} /$ side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-117	Timing of Starting Tray Feed Control (TTM Tray 3/transparency/color/side A) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-118	Timing of Starting Tray Feed Control (TTM Tray 3/transparency/color/side B) (Start Feed signal to Regi Clutch On signal)	10	-100~100		RW	ditto
742-119	Tray1 Feed Off Timing (full speed) (From \#1 Feed Out Snr On)	0	-10~10	10ms	RW	Adjusts the timing of turning Off Feed Motor after \#1 Feed Out SNR ON (full speed)
742-120	Tray 1 Feed Off Timing (half speed) (From \#1 Feed Out Snr On)	0	-20~20	10ms	RW	Adjusts the timing of turning Off Feed Motor after \#1 Feed Out SNR ON (half speed)
742-136	T/A CL ON Timing at Feed Adjustment (full speed) (Start MSI Feed signal)	0	-5~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from MSI. (full speed)
742-137	T/A CL ON Timing at Feed Adjustment (half speed) (Start MSI Feed signal)	0	-10~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from MSI. (half speed)
742-138	T/A CL ON Timing at Feed Adjustment (full speed) (from Start \#1Feed signal)	0	-15~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from Tray 1. (full speed)
742-139	T/A CL ON Timing at Feed Adjustment (half speed) (from Start \#1Feed signal)	0	-5~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from Tray 1. (half speed)
742-140	T/A CL ON Timing at Feed Adjustment (full speed) (from Start 2TM \#2 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from 2TM Tray 2. (full speed)
742-141	T/A CL ON Timing at Feed Adjustment (half speed) (from Start 2TM \#2 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from 2TM Tray 2 (half speed)
742-142	T/A CL ON Timing at Feed Adjustment (full speed) (from Start 2TM \#3 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from 2TM Tray 3 (full speed)
742-143	T/A CL ON Timing at Feed Adjustment (half speed) (from Start 2TM \#3 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from 2TM Tray 3 (half speed)
742-144	T/A CL ON Timing at Feed Adjustment (full speed) (from Start TTM \#2 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from TTM Tray 2 (full speed)
742-145	T/A CL ON Timing at Feed Adjustment (half speed) (from Start TTM \# 2Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from TTM Tray 2 (half speed)
742-146	T/A CL ON Timing at Feed Adjustment (full speed) (from Start TTM \#3 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from TTM Tray 3 (full speed)
742-147	T/A CL ON Timing at Feed Adjustment (half speed) (from Start TTM \#3 Feed signal)	0	-20~20	10ms	RW	Adjusts the timing of connecting Take Away Clutch after feed from TTM Tray 3 (half speed)

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-148	```T/A CL OFF Timing at Regi Loop Formation (MSI/full speed/plain paper) RegiSnrOn to TA Clutch Off```	-6	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/full speed/plain paper)
742-149	```T/A CL OFF Timing at Regi Loop Formation (MSI/full speed/heavy 1) RegiSnrOn to TA Clutch Off```	-13	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/full speed/heavy 1)
742-150	T/A CL OFF Timing at Regi Loop Formation (MSI/half speed/heavy 1) RegiSnrOn to TA Clutch Off	-25	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/half speed/heavy 1)
742-151	T/A CL OFF Timing at Regi Loop Formation (MSI/half speed/heavy 2) RegiSnrOn to TA Clutch Off	-25	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/half speed/heavy 2)
742-152	```T/A CL OFF Timing at Regi Loop Formation (MSI/full speed/label) RegiSnrOn to TA Clutch Off```	-19	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/full speed/label)
742-153	T/A CL OFF Timing at Regi Loop Formation (MSI/half speed/label) RegiSnrOn to TA Clutch Off	-38	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/half speed/label)
742-154	T/A CL OFF Timing at Regi Loop Formation (MSI/half speed/transparency) RegiSnrOn to TA Clutch Off	-13	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/half speed/transparency)
742-155	T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/full speed/plain paper) RegiSnrOn to TA Clutch Off	0	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/full speed/plain paper)
742-156	```T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/full speed/heavy 1) RegiSnrOn to TA Clutch Off```	0	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/full speed/heavy 1)
742-157	```T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/ half speed/heavy 1) RegiSnrOn to TA Clutch Off```	0	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/half speed/heavy 1)
742-158	T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/ half speed/heavy 2) RegiSnrOn to TA Clutch Off	-24	-100~100	2 ms	RW	Loop Amount Adjustment (Trays1-3/half speed/heavy 2)
742-159	T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/full speed/label) RegiSnrOn to TA Clutch Off	-6	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/full speed/label)
742-160	```T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/ half speed/label) RegiSnrOn to TA Clutch Off```	-13	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/half speed/label)
742-161	```T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/ half speed/transparency) RegiSnrOn to TA Clutch Off```	0	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/half speed/transparency)
742-162	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/full speed/plain paper) (RegiClutchOn signal to TA Clutch On)	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays 1-3, MSI/full speed/plain paper)

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-163	```T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/full speed/heavy 1) (RegiClutchOn signal to TA Clutch On)```	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays 1-3, MSI/full speed/heavy 1)
742-164	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/half speed/heavy 1) (RegiClutchOn signal to TA Clutch On)	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays $1-3, \mathrm{MSI} /$ half speed/heavy 1)
742-165	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/half speed/heavy 2) (RegiClutchOn signal to TA Clutch On)	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays $1-3, \mathrm{MSI} /$ half speed/heavy 2)
742-166	```T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/full speed/label) (RegiClutchOn Signal ~TA Clutch On)```	13	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays 1-3, MSI/full speed/label)
742-167	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/half speed/label) (RegiClutchOn signal to TA Clutch On)	25	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays 1-3, MSI/half speed/label)
742-168	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/half speed/transparency) (RegiClutchOn signal to TA Clutch On)	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays1-3, MSI/half speed/transparency)
742-169	T/A CL OFF Timing (full speed/B) (From RegiSnrOff)	0	-50~100	1 ms	RW	Adjusts the timing of stopping Take Away Clutch after Regi projection (full speed/B)
742-170	T/A CL OFF Timing (full speed/color) (From RegiSnrOff)	0	-50~100	1 ms	RW	Adjusts the timing of stopping Take Away Clutch after Regi projection (full speed/color)
742-171	T/A CL OFF Timing (half speed/B) (From RegiSnrOff)	0	-50~100	1 ms	RW	Adjusts the timing of stopping Take Away Clutch after Regi projection (half speed/B)
742-172	T/A CL OFF Timing (half speed/color) (From RegiSnrOff)	0	-50~100	1 ms	RW	Adjusts the timing of stopping Take Away Clutch after Regi projection (half speed/color)
742-175	T/A CL OFF Timing at Regi Loop Formation (MSI/half speed/plain paper) RegiSnrOn to TA Clutch Off	-13	-100~100	2 ms	RW	Loop Amount Adjustment (MSI/half speed/plain paper)
742-176	```T/A CL OFF Timing at Regi Loop Formation (Trays 1-3/ half speed/plain paper) RegiSnrOn to TA Clutch Off```	0	-100~100	2 ms	RW	Loop Amount Adjustment (Trays 1-3/half speed/plain paper)
742-179	T/A CL ON Timing at Regi Projection (Trays 1-3, MSI/half speed/plain paper) (Regi Clutch On signal to TA Clutch On)	0	0~200	1 ms	RW	Adjusts the timing of connecting Take Away Clutch after Regi Clutch ON (Trays $1-3, \mathrm{MSI} /$ half speed/plain paper)
742-181	[TM] TA Clutch ON Timing (2TM)-in Full Speed mode	0	-75~75	2 ms	RW	Adjusts time from Feed to the start of TA Clutch ON.
742-182	[TM] TA Clutch ON Timing (2TM) -half speed/except transparency	0	-75~75		RW	ditto
742-183	[TM] TA Clutch ON Timing (2TM) -half speed/in Transparency mode	0	-25~75		RW	ditto
742-184	[TM] TA Clutch ON Timing (TTM-Tray 2) -in Full Speed mode	0	-75~75		RW	ditto
742-185	[TM] TA Clutch ON Timing (TTM-Tray 2) -half speed/except transparency	0	-75~75		RW	ditto

Chain-Link	Name	Default	Range	$\begin{aligned} & \text { Step } \\ & \text { (mm) } \end{aligned}$	Read/ Write	Description
742-186	[TM] TA Clutch ON Timing (TTM-Tray2) -half speed/in Transparency mode	0	-75~75		RW	ditto
742-187	[TM] TA Clutch ON Timing (TTM-Tray 3) -in Full Speed mode	0	-75~75		RW	ditto
742-188	[TM] TA Clutch ON Timing (TTM-Tray3) -half speed/except Transparency	0	-75~75		RW	ditto
742-189	[TM] TA Clutch ON Timing (TTM-Tray3) -half speed/in Transparency mode	0	-75~75		RW	ditto
742-190	[TM] TA Clutch OFF Timing (TM) at Arrival at Regi -in Full Speed mode	0	-100~100	2 ms	RW	Adjusts time from F/O Snr \#2 On to the start of TA Clutch Off. (Control of post-T/A pushing)
742-191	[TM] TA Clutch OFF Timing (TM) at Arrival at Regi -in Half Speed mode	0	-100~100		RW	ditto
742-192	[TM] Feed Stop OFF Timing (post-Regi pushing) -in Full Speed mode	0	0~30	1ms	RW	Adjusts time from Regi Clutch On (Feed Stop) to the start of TA Clutch On. (Clearance of post-T/A pushing)
742-193	[TM] Feed Stop OFF Timing (post-Regi pushing) -in Half Speed mode	0	0~30		RW	ditto
742-194	[TM] Wait TA Clutch OFF Timing(2TM) -in Full Speed mode	35	1~69	1 ms	RW	Adjusts time from F/O Snr On to the start of TA Clutch Off. (Control of temporarily stopping T/A)
742-195	[TM] Wait TA Clutch OFF Timing(2TM) -in Half Speed mode	85	25~145		RW	ditto
742-196	[TM] Wait TA Clutch OFF Timing(TTM) -in Full Speed mode	30	2~60		RW	ditto
742-197	[TM] Wait TA Clutch OFF Timing(TTM) -in Half Speed mode	75	15~135		RW	ditto
742-198	Feed Stop OFF Timing (no preceding paper/2TM Tray 2) -in Full Speed mode	0	-100~100	1ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-199	Feed Stop OFF Timing (no preceding paper/2TM Tray 2) -half speed/except transparency/B	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-200	Feed Stop OFF Timing (no preceding paper/2TM Tray 2) -half speed/except transparency/color	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-201	Feed Stop OFF Timing (no preceding paper/2TM Tray 2) -in Half Speed and Transparency mode	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A) ADJ Unit: $1[\mathrm{~ms} / \mathrm{step}]$
742-202	Feed Stop OFF Timing (no preceding paper/2TM Tray 3) -in Full Speed mode	0	-100~100	1 ms	RW	Adjusts time Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A) ADJ Unit: $1[\mathrm{~ms} / \mathrm{step}$]
742-203	Feed Stop OFF Timing (no preceding paper/2TM Tray 3) -half speed/except transparency/B	0	-100~100	1ms	RW	Adjusts time from Tray 3 Feed to the start of TA Clutch ON (Clearance of temporarily stopping T/A) 1[ms/step] adjustment
742-204	Feed Stop OFF Timing (no preceding paper/2TM Tray 3) -half speed/except transparency/color	0	-100~100	1ms	RW	Adjusts Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A) ADJ Unit: 1 [$\mathrm{ms} / \mathrm{step}$]
742-205	Feed Stop OFF Timing (no preceding paper/2TM Tray 3) -in Half Speed and Transparency mode	0	-100~100	1ms	RW	Adjusts Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)

Table 3 Paper Handling

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-206	Feed Stop OFF Timing (no preceding paper/TTM Tray 2) -in Full Speed mode	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-207	Feed Stop OFF Timing (no preceding paper/TTM Tray 2) -half speed/except transparency/B	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-208	Feed Stop OFF Timing (no preceding paper/TTM Tray 2) -half speed/except transparency/color	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-209	Feed Stop OFF Timing (no preceding paper/TTM Tray 2) -in Half Speed and Transparency mode	0	-100~100	1 ms	RW	Adjusts time from Tray 2 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-210	Feed Stop OFF Timing (no preceding paper/TTM Tray 3) -in Full Speed mode	0	-100~100	1 ms	RW	Adjusts time from Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-211	Feed Stop OFF Timing (no preceding paper/TTM Tray 3) -half speed/except transparency/B	0	-100~100	1 ms	RW	Starts time from Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-212	Feed Stop OFF Timing (no preceding paper/TTM Tray 3) -half speed/except transparency/color	0	-100~100	1 ms	RW	Adjusts time from Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-213	Feed Stop OFF Timing (no preceding paper/TTM Tray 3) -in Half Speed and Transparency mode	0	-100~100	1 ms	RW	Adjusts time from Tray 3 Feed to the start of TA Clutch ON. (Clearance of temporarily stopping T/A)
742-231	Timing of Stopping Registration Operation -full speed	76	0~246	1 ms	RW	Adjusts the timing of stopping Regi Clutch after Regi projection. (full speed)
742-232	Timing of Stopping Registration Operation -half speed	76	0~246	2 ms	RW	Adjusts the timing of stopping Regi Clutch after Regi projection (half speed)
742-233	Size-in-Feed-direction Detection Coefficient T1	0	-20~20	2 ms	RW	Adjusts the parameter in the formula for detecting a size in feed direction
742-236	Paper Inverting Operation Timing of Stopping Forward Rotation (full speed/plain paper)	60	0~200	1 ms	RW	Adjusts the timing of stopping the forward rotation to invert the paper after paper turns Off Exit Sensor 1. (plain paper)
742-237	Paper Inverting Operation Timing of Stopping Forward Rotation (full speed/heavy 1)	60	0~200	1 ms	RW	Adjusts the timing of stopping the forward rotation to invert the paper after paper turns Off Exit Sensor 1. (heavy 1)
742-238	Paper Inverting Operation Timing of Starting Reverse Rotation (L<=216/Exit1)	100	0~200	1 ms	RW	Adjusts the timing of starting to invert paper after Regi Clutch On for it. The paper waiting to be inverted is small-sized and will be output from Exit 1.
742-239	Paper Inverting Operation Timing of Starting Reverse Rotation (L<=216/Exit2, Side Tray)	100	0~200	1 ms	RW	Adjusts the timing of starting to invert paper after Regi Clutch On for it. The paper waiting to be inverted is small-sized and will be output from Exit 2/Side Tray.
742-240	Paper Inverting Operation Timing of Adjusting Regi Loop (plain paper/L>216)	64	0~164	1 ms	RW	Adjusts the timing of stopping Exit Motor after Regi Sensor ON, in correcting and controlling Duplex Regi Feed. (plain paper)
742-241	Paper Inverting Operation Timing of Adjusting Regi Loop (heavy 1/L>216)	64	0~164	1 ms	RW	Adjusts the timing of stopping Exit Motor after Regi Sensor ON, in correcting and controlling Duplex Regi Feed. (heavy 1)
742-242	Paper Inverting Operation Timing of Starting Post-Regi Pushing (plain paper/L>216)	0	0~200	1 ms	RW	Adjusts time from Regi Projection to Exit Motor On, in correcting and controlling Duplex Post-Regi-Projection Pushing. (plain paper)
742-243	Paper Inverting Operation Timing of Starting Post-Regi Pushing (heavy 1/L>216)	0	0~200	1 ms	RW	Adjusts time from Regi Projection to Exit Motor On, in correcting and controlling Duplex Post-Regi-Projection Pushing (heavy 1)
742-244	Timing of Starting Duplex Transporting Operation (full speed)	30	0~60	10 ms	RW	Timing of turning On Duplex Motor to pull in paper to invert it (Exit2 Motor CCW On to Duplex Motor On) ADJ Unit: 10 [$\mathrm{ms} / \mathrm{step}$]

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-245	Timing of Temporarily Stopping Duplex Transporting Operation (color/L<=216mm)	87	0~174	1.5 ms	RW	Timing of turning Off Duplex Motor to stop paper at the Wait Station (Duplex Wait Sensor ON to Duplex Motor OFF)
742-246	Timing of Starting Duplex Feed Operation (Exit1/color/L<=216mm)	67	0~134	1.5 ms	RW	Timing of turning On Duplex Motor to restart feeding paper
742-247	Duplex Regi Loop Adjustment Timing (plain paper)	43	0~110	1.5 ms	RW	Loop Amount Adjustment (Dup/plain paper) Time from Regi Snr On to Dup Motor Off
742-248	Duplex Regi Loop Adjustment Timing (heavy 1)	43	0~110	1.5 ms	RW	Loop Amount Adjustment (Dup/heavy 1) Time from Regi Snr On to Dup Motor Off
742-249	Timing of Starting Duplex Post-Regi Pushing (plain paper)	0	0~134	1.5 ms	RW	Adjusts the timing of activating Duplex Motor for Regi projection. (Dup/plain paper/common)
742-250	Timing of Starting Duplex Post-Regi Pushing (heavy 1)	0	0~134	1.5 ms	RW	Adjusts the timing of activating Duplex Motor for Regi projection (Dup/heavy 1, coated 1/B)
742-251	Timing of Starting Duplex Post-Regi Pushing (L<=216)	20	0~40	10.5 ms	RW	Adjusts the timing of stopping Duplex Motor after Regi projection (small size)
742-252	Timing of Starting Duplex Post-Regi Pushing (L>216)	20	0~40	10.5 ms	RW	Adjusts the timing of stopping Duplex Motor after Regi projection (large size)
742-261	OCT Operation Limit	0	0~1		RW	BAM 0: Operation permitted 1: Operation prohibited
742-262	Timing of Starting OCT Initializing Operation	30	0~60	10 ms	RW	Adjusts the timing of starting to initialize OCT. (From Regi Start to \#2Offset Motor Homing On)
742-263	Timing of Starting Offset Operation (full speed/L<=216)	23	0~30	10 ms	RW	Adjusts the timing of starting Offset Operation. (full speed/L<=216) (From Exit2 Snr Off to Offset Motor On)
742-264	Timing of Starting Offset Operation (full speed/L>216)	0	0~30	10 ms	RW	Adjusts the timing of starting Offset Operation. (full speed/L>216) (From Exit Snr2 Off to Offset Motor On)
742-265	Timing of Starting Offset Operation (half speed/L<=216)	30	0~40	20 ms	RW	Adjusts the timing of starting Offset Operation. (half speed/L<=216) (From Exit2 Snr Off to Offset Motor On)
742-266	Timing of Starting Offset Operation (half speed/L>216)	0	0~30	20 ms	RW	Adjusts the timing of starting Offset Operation. (half speed/L>216) (From Exit Snr2 Off to Offset Motor On)
742-267	Timing of Starting Return Operation (full speed/L<=216)	15	0~60	10 ms	RW	Adjusts the timing of starting Return-to-Offset Operation. (full speed/L<=216) (From Exit2 Snr Off to Offset Motor On)
742-268	Timing of Starting Return Operation (full speed/L>216)	15	0~60	10 ms	RW	Adjusts the timing of starting Return-to-Offset Operation. (full speed/L>216) (From Exit Snr2 Off to Offset Motor On)
742-269	Timing of Starting Return Operation (half speed/L<=216)	17	0~60	20 ms	RW	Adjusts the timing of starting Return-to-Offset Operation. (half speed/L<=216) (From Exit2 Snr Off to Offset Motor On)
742-270	Timing of Starting Return Operation (half speed/L>216)	17	0~60	20 ms	RW	Adjusts the timing of starting Return-to-Offset Operation. (half speed/L>216) (From Exit Snr2 Off to Offset Motor On)
742-271	Limit on Countermeasure against Condensation	0	0~1		RW	Sets whether or not to rotate \#2 Exit Drive Motor in outputting paper from \#1Exit in Simplex mode. 0 : enabled 1: disabled
742-272	Timing of Starting Countermeasure Operation against Condensation	1	1~250	1ñá	RW	Timing of starting to rotate \#2 Exit Drive Motor; Adjusts the number of a series of sheets for which the countermeasure against condensation is intended, in order to start the control.

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-273	Timing of Finishing Countermeasure Ope against Condensation (full speed)	14	0~50	100 ms	RW	Timing of stopping Exit 2 Motor after Exit Sensor 1Off (full speed)
742-274	Timing of Finishing Countermeasure Ope against Condensation (half speed)	27	0~50	100ms	RW	Timing of stopping Exit 2 Motor after Exit Sensor 1Off (half speed)
742-281	MSI-Feed Paper Qty	0	0~1500000		R	It is time to replace the periodic replacement part: TA Roll
742-282	Tray 1-Feed Paper Qty	0	0~1500000		R	It is time to replace the periodic replacement part: TA Roll
742-283	Tray 2-Feed Paper Qty	0	0~600000		R	It is time to replace periodic replacement parts: Nudger/Feed/Retard Roll
742-284	Tray 3-Feed Paper Qty	0	0~600000		R	It is time to replace periodic replacement parts: Nudger/Feed/Retard Roll
742-285	Qty of Tray 1 Lifter Adjustments	0	0~100		R	Counts Tray 1 Lifter adjustments. Every time Lifter is adjusted after it lifts up, 1 is added. (for reference)
742-286	Tray 1 Lift Up Time	0	0~3000		R	Stores Tray 1 Lift Up time. (for reference)
742-287	Tray 2 Lift Up Time	0	0~15000		R	Stores Tray 2 Lift Up time. (for reference)
742-288	Tray 3 Lift Up Time	0	0~15000		R	Stores Tray 3 Lift Up time. (for reference)
742-289	Count Coefficient for Remaining Paper Qty Detection (Tray 1) (Remaining Qty Correction Time in adjusting Lifter)	30	0~100	1 ms	RW	Coefficient for detecting and calculating what quantity of paper remains in Tray 1. (time taken to adjust Lifter)
742-290	Count Coefficient for Remaining Paper Qty Detection (2TM-Tray 2) (Remaining Qty Correction Time in adjusting Lifter)	30	0~100	1 ms	RW	Coefficient for detecting and calculating what quantity of paper remains in 500sheet Tray. (time taken to adjust Lifter)
742-291	Count Coefficient for Remaining Paper Qty Detection (2TM-Tray 3) (Remaining Qty Correction Time in adjusting Lifter)	30	0~100	1 ms	RW	Coefficient for detecting and calculating what quantity of paper remains in 500sheet Tray. (time taken to adjust Lifter)
742-292	Count Coefficient for Remaining Paper Qty Detection (TTM-Tray 2) (Remaining Qty Correction Time in adjusting Lifter)	34	0~100	1 ms	RW	Coefficient for detecting and calculating what quantity of paper remains in TTM Tray 2. (time taken to adjust Lifter)
742-293	Count Coefficient for Remaining Paper Qty Detection (TTM-Tray 3) (Remaining Qty Correction Time in adjusting Lifter)	34	0~100	1 ms	RW	Coefficient for detecting and calculating what quantity of paper remains in TTM Tray 3. (time taken to adjust Lifter)
742-294	MSI Size Guide minimum position	963	904~1023		RW	Stores min. data in correcting Size Sensor.
742-295	MSI Size Guide maximum position	194	0~258		RW	Stores max. data in correcting Size Sensor.
742-301	OHP Sensor PWM default value (at Power On)	1000	0~1000	0.1\%	RW	Default to execute auxiliary operation that controls variations in OHP Sensor. (used with Power On)
742-302	OHP Sensor Correction Operation standard value	1000	0~1000	0.1\%	RW	Default to execute auxiliary operation that controls variations in OHP Sensor
742-303	OHP Sensor target value	155	60~330	1	RW	Adjusts threshold to correct OHP PWM output value in OHP correction operation.
742-304	Sampling Qty (in OHP correction operation)	2	1~5	2	RW	Adjusts how many samples of OHP Sensor Value to take in OHP correction operation.
742-305	Sampling Qty (detection of paper type)	10	1~20	1	RW	Adjusts how many samples of OHP Sensor Value to take in detecting paper type.
742-306	Delay in sampling (in OHP correction operation)	3	1~10	1 ms	RW	Adjusts how long to delay sampling OHP Sensor value after PWM output in OHP correction operation.

Chain-Link	Name	Default	Range	Step (mm)	Read/ Write	Description
742-307	OHP Sensor PWM Step	1	1~30	0.1\%	RW	Adjusts in steps of what amount OHP Sensor PWM Output should be decreased.
742-308	Timing of Starting Paper Type Detection (full speed)	95	0~255	1 ms	RW	Timing of starting paper type detection after Regi Clutch ON (full speed)
742-309	Timing of Starting Paper Type Detection (half speed)	95	0~255	2 ms	RW	Timing of starting paper type detection after Regi Clutch ON (half speed)
742-310	Threshold for Judging Paper Type	620	0~1023	1	RW	Adjusts threshold used to judge paper to be transparent in paper type detection.
742-311	OHP Sensor Fail Judgment Value	125	0~200	0.5\%	RW	Adjusts, in OHP correction operation, value used to judge from OHP PWM output that OHP Sensor failed.
742-312	Timing of Detecting OHP Sensor Fail	40	0~90	10ms	RW	Adjusts the timing of trying to detect OHP Sensor Fail.
742-314	OHP Sensor Standard Value Adjustment Range	20	1~250	0.1\%	RW	Value used to adjust standard value in OHP correction operation
742-319	No Paper Run \& Jam Bypass	0	0~15		RW	0: Normal mode 1: Jam Bypass 2: No Paper Run 3: Check IBT
742-320	Selecting where to output Test Print	0	0~4		RW	Switch where to output Test Print 0: Face Down Tray \#1 / Finisher Stacker 1: Face Down Tray \#2 2: Face Up Tray
742-321	Selecting whether/how to offset-output Test Print	0	0~2		RW	Offset selection 0 : No Offset 1: Front Offset 2: Rear Offset Applies only when Output Tray is Face Down Tray \#2
742-322	Component Control Feed /Lift Up Motor Speed (all the trays)	17	0~17		RW	Specifies the speed of Feed/Lift Up Motor in Component Control.
742-323	Pre Feed SNR ON Jam Timer (all the trays)	0	-20~20	10 ms	RW	Jam Timer Value Adjustment
742-324	Feed Out SNR ON Jam Timer (all the trays)	0	-30~30	10 ms	RW	Jam Timer Value Adjustment

Chain 744-xxx FUSER

Table 4 Fuser							
Chain-Link	Name	Default	Range	Step	Read/ Write	Description	
$744-001$	Control Temperature in Low Power Mode	140	$0 \sim 200$	1 deg C	RW	Target temperature of NCS-Center in Low Power Mode	
$744-004$	Failure Detection Flag	0	$0 \sim 3$		RW	0: Normal 1: Abnormal high temp of NCS-Center detected 2: Abnormal high temp of STS-Front detected 3: Abnormal temp of NCS/STS	
$744-005$	Abnormal-Amplified-Difference Detection Flag	0	$0 \sim 1$		RW	0: Normal 1: Abnormal amplified difference detected	
$744-008$	Ready Temperature 1	150	$100 \sim 200$	1 deg C	RW		
$744-009$	Ready Temperature 2	165	$100 \sim 200$	1 deg C	RW		
$744-010$	Standby Temperature	175	$100 \sim 200$	1 deg C	RW		

Chain-Link	Name	Default	Range	Step	Read/ Write	Description
744-111	B/W Plain Paper SEF Setup Temperature	5	0~5		RW	Control Table No. $0: 1-1$ $1: 1-2$ $2: 1-3$ $3: 2-1$ $4: 2-2$ $5: 2-3$
744-112	B/W Heavy 1 SEF Setup Temperature	1	0~2		RW	Control Table No. 0: 3-1 heavy 1 (setup temp-low) 1: 3-2 heavy 1 (standard) 2: 3-3 heavy 1 (setup temp-high)
744-113	B/W Heavy 2 SEF Setup Temperature	2	0~2		RW	Control Table No. $0: 4-1$ $1: 4-2$ $2: 4-3$
744-114	F/C Plain Paper SEF Setup Temperature	5	0~5		RW	Control Table No. $0: 6-1$ $1: 6-2$ $2: 6-3$ $3: 7-1$ $4: 7-2$ $5: 7-3$
744-115	F/C Heavy 1 SEF Setup Temperature	1	0~2		RW	Control Table No. o: 8-1 heavy 1 (setup temp-low) 1: 8-2 heavy 1 (standard) 2: 8-3 heavy 1 (setup temp-high)
744-116	F/C Heavy 2 SEF Setup Temperature	2	0~2		RW	Control Table No. 0:9-1, 1:9-2, 2:9-3
744-125	Environment Temp Correction Coefficient	5	0~5		RW	Max. correction temp based on Environment Sensor-detected temp 0 : No correction 1: 2 degrees C 2: 4 degrees C 3: 6 degrees C 4: 8 degrees C 5: 10 degrees C
744-127	Environment Correction Operating Temp	35	20~50	1 deg C	RW	Reads Environment Sensor temp if NCS-Center temp equals or is lower than NVM value.
744-139	Temp Shift Time at Power On	15	0~30	1 min	RW	Time taken to increase 5 degrees C at Power On
744-140	Individual Action mode for Plain Paper BW Mode Poor Fusing	0	0~1		RW	0: Individual action OFF 1: Individual action ON
744-141	Individual Action mode for Poor Fusing: Shift Temp	2	0~10		RW	Shift temp in relation to Run temp
744-181	Condensation Prevention Mode	0	0~15	1 min	RW	how long to wait since the attainment of Ready Temp in Condensation Prevention mode
744-196	Fine Adjustment of Fuser Mot Speed: plain paper	10292	9770~11172		RW	158mm/s (-1.2\%)
744-197	Fine Adjustment of Fuser Mot Speed: heavy 1 B/W	10292	9770~11172		RW	158mm/s (-1.2\%)
744-198	Fine Adjustment of Fuser Mot Speed: heavy 1 F/C	20480	19540~22344		RW	79mm/s (-0.7\%)

Chain-Link	Name	Default	Range	Step	Read/ Write	Description
744-199	Fine Adjustment of Fuser Mot Speed: heavy 2	20376	19540~22344		RW	79mm/s (-0.2\%)
744-200	Fuser Mot Off Time	200	0~255	10 msec	RW	Detects Exit SNR OFF.
744-201	Fuser Mot Off Time half speed	82	0~255	10msec	RW	Detects Exit SNR OFF.
744-266	Fine Adjustment of Fuser Mot Speed coated paper 1 B/W	10235	9770~11172		RW	158mm/s(-0.7\%)
744-267	Fine Adjustment of Fuser Mot Speed coated paper 1 F/C	20440	19540~22344		RW	79mm/s(-0.5\%)

Chain 746-xxx Chain 747-xxx Xfer

Chain-Link	Name	Default	Range	Description
746-001	Environment control execution switch	1	0~1	Environment control execution switch
746-002	Compulsory designated environment NO	5	0~9	Compulsory designated environment NO
746-003	The relative temperature threshold value to specify environment NO. \#0	22	0~100	The relative temperature threshold value to specify environment NO. \#0
746-004	absolute humidity AH threshold value to specify environment NO. \#0	3	0~20	absolute humidity AH threshold value to specify environment NO. \#0
746-005	Storage of calculated value of absolute humidity	10	0~255	Stores a calculated value of absolute humidity.
746-006	Storage of selected Environment No.	5	0~9	Stores a selected Environment No.
746-007	1st BTR On Timing	60	0~200	1st BTR On Timing
746-008	1st BTR Output changeover Timing ($\mathrm{Y}->\mathrm{M}->\mathrm{C}$)	45	0~200	1st BTR Output changeover Timing ($\mathrm{Y}->\mathrm{M}->\mathrm{C}$)
746-009	1st BTR Output changeover Timing (full->half)	0	0~50	1st BTR Output changeover Timing (full->half)
746-010	1st BTR Off Timing (full)	56	0~200	1st BTR Off Timing (full Speed)
746-011	1st BTR Off Timing (half)	464	300~550	1st BTR Off Timing (halfSpeed)
746-012	The amount of a film compensation electric current	2	0~20	The amount of a film compensation electric current
746-013	A film decreases, compensation electric current calculation result storage	0	0~255	A film decreases, compensation electric current calculation result storage
746-014	1st BTR Mode environment revise (BW_Side1)	100	0~200	1st BTR Mode environment revise (BW_Side1)
746-015	1st BTR Mode environment revise (BW_Side2)	100	0~200	1st BTR Mode environment revise (BW_Side2)
746-016	1st BTR Mode environment revise (FC_Side1)	100	0~200	1st BTR Mode environment revise (FC_Side1)
746-017	1st BTR Mode environment revise (FC_Side2)	100	0~200	1st BTR Mode environment revise (FC_Side2)
746-018	1st BTR Halfspeed time output compensation coefficient	50	0~200	1st BTR Halfspeed time output compensation coefficient
746-020	1st BTR Environment compensation coefficient NotUsually (environment NO.1-3_K)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.1-3_K)
746-021	1st BTR Environment compensation coefficient NotUsually (environment NO.4-6_K)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.4-6 K)
746-022	1st BTR Environment compensation coefficient NotUsually (environment NO.7_K)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.7_K)
746-023	1st BTR Environment compensation coefficient NotUsually (environment NO.8-9_K)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.8-9_K)
746-024	1st BTR Environment compensation coefficient NotUsually (environment NO.O_YMC)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.O_YMC)

Chain-Link	Name	Default	Range	Description
746-025	1st BTR Environment compensation coefficient NotUsually (environment NO.1-3_YMC)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.1-3_YMC)
746-026	1st BTR Environment compensation coefficient NotUsually (environment NO.4-6_YMC)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.4-6_YMC)
746-027	1st BTR Environment compensation coefficient NotUsually (environment NO.7_YMC)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.7_YMC)
746-028	1st BTR Environment compensation coefficient NotUsually (environment NO.8-9_YMC)	100	0~200	1st BTR Environment compensation coefficient NotUsually (environment NO.8-9_YMC)
746-029	1st BTR Environment compensation coefficient (Full_environment NO.O_K_Side1)	150	0~200	1st BTR Environment compensation coefficient (Full_environment NO.O_K_Side1)
746-30	1st BTR Environment compensation coefficient (Full_environment NO.1-3_K_Side1)	120	0~200	1st BTR Environment compensation coefficient (Full_environment NO.1-3_K_Side1)
746-031	1st BTR Environment compensation coefficient (Full_environment NO.4-6_K_Side1)	110	0~200	1st BTR Environment compensation coefficient (Full_environment NO.4-6_K_Side1)
746-032	1st BTR Environment compensation coefficient (Full_environment NO.7_K_Side1)	120	0~200	1st BTR Environment compensation coefficient (Full_environment NO.7_K_Side1)
746-033	1st BTR Environment compensation coefficient (Full_environment NO.8-9_K_Side1)	150	0~200	1st BTR Environment compensation coefficient (Full_environment NO.8-9_K_Side1)
746-034	1st BTR Environment compensation coefficient (Full_environment NO.O_YMC)	100	0~200	1st BTR Environment compensation coefficient (Full_environment NO.O_YMC)
746-035	1st BTR Environment compensation coefficient (Full_environment NO.1-3_YMC)	100	0~200	1st BTR Environment compensation coefficient (Full_environment NO.1-3_YMC)
746-036	1st BTR Environment compensation coefficient (Full_environment NO.4-6_YMC)	100	0~200	1st BTR Environment compensation coefficient (Full_environment NO.4-6_YMC)
746-037	1st BTR Environment compensation coefficient (Full_environment NO.7_YMC)	100	0~200	1st BTR Environment compensation coefficient (Full_environment NO.7_YMC)
746-038	1st BTR Environment compensation coefficient (Full_environment NO.8-9_YMC)	100	0~200	1st BTR Environment compensation coefficient (Full_environment NO.8-9_YMC)
746-039	1st BTR Environment compensation coefficient (Full_environment NO.0_K_Side2)	160	0~200	1st BTR Environment compensation coefficient (Full_environment NO.0_K_Side2)
746-040	1st BTR Environment compensation coefficient (Full_environment NO.1-3_K_Side2)	110	0~200	1st BTR Environment compensation coefficient (Full_environment NO.1-3_K_Side2)
746-041	1st BTR Environment compensation coefficient (Full_environment NO.4-6_K_Side2)	120	0~200	1st BTR Environment compensation coefficient (Full_environment NO.4-6_K_Side2)
746-042	1st BTR Environment compensation coefficient (Full_environment NO.7_K_Side2)	130	0~200	1st BTR Environment compensation coefficient (Full_environment NO.7_K_Side2)
746-043	1st BTR Environment compensation coefficient (Full_environment NO.8-9_K_Side2)	160	0~200	1st BTR Environment compensation coefficient (Full_environment NO.8-9_K_Side2)
746-044	1st BTR Environment compensation coefficient (Half_environment NO.0_K_Side1)	150	0~200	1st BTR Environment compensation coefficient (Half_environment NO.0_K_Side1)
746-045	1st BTR Environment compensation coefficient (Half_environment NO.1-3_K_Side1)	120	0~200	1st BTR Environment compensation coefficient (Half_environment NO.1-3_K_Side1)
746-046	1st BTR Environment compensation coefficient (Half_environment NO.4-6_K_Side1)	110	0~200	1st BTR Environment compensation coefficient (Half_environment NO.4-6_K_Side1)

Table 5 Xfer
\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Chain-Link } & \text { Name } & \text { Default } & \text { Range } & \text { Description } \\
\hline 746-047 & \begin{array}{l}\text { 1st BTR Environment compensation coefficient } \\
\text { (Half_environment NO.__K_Side1) }\end{array} & 120 & 0 \sim 200 & \begin{array}{l}\text { 1st BTR Environment compensation coefficient } \\
\text { (Half_environment NO.7_K_Side1) }\end{array} \\
\hline 746-048 & \begin{array}{l}\text { 1st BTR Environment compensation coefficient } \\
\text { (Half_environment NO.8-9_K_Side1) }\end{array} & 150 & 0 \sim 200 & \begin{array}{l}\text { 1st BTR Environment compensation coefficient } \\
\text { (Half_environment NO.8-9_K_Side1) }\end{array} \\
\hline 746-049 & \begin{array}{l}\text { 1st BTR Environment compensation coefficient } \\
\text { (Half_environment NO.0_YMC) }\end{array} & 100 & 0 \sim 200 \\
\text { (Half_environment NO.0_YMC) }\end{array}
$$\right] \begin{array}{l}1st BTR Environment compensation coefficient

(Half_environment NO.1-3_YMC)\end{array}\right\}\)| 1st BTR Environment compensation coefficient |
| :--- |
| (Half_environment NO.4-6_YMC) |

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-089	2nd BTR output is changed only to the tip.(half speed heavy paper FC)	150	0~500	2nd BTR output is changed only to the tip.(half speed heavy paper FC)
746-090	2nd BTR output is changed only to the tip.(half speed film paper BW)	150	0~500	2nd BTR output is changed only to the tip.(half speed film paper BW)
746-091	2nd BTR output is changed only to the tip.(half speed film paper FC)	150	0~500	2nd BTR output is changed only to the tip.(half speed film paper FC)
746-092	2nd BTR output is changed only to the tip.(half speed coat paper BW)	150	0~500	2nd BTR output is changed only to the tip.(half speed coat paper BW)
746-093	2nd BTR output is changed only to the tip.(half speed coat paper FC)	150	0~500	2nd BTR output is changed only to the tip.(half speed coat paper FC)
746-095	2nd BTR output is changed only to the tip.(half speed usually paper FC)	150	0~500	2nd BTR output is changed only to the tip.(half speed usually paper FC)
746-096	2nd BTR output is changed only to the tip.(full speed usually paper BW)	0	0~500	2nd BTR output is changed only to the tip.(full speed usually paper BW)
746-097	2nd BTR output is changed only to the tip.(full speed usually paper FC)	0	0~500	2nd BTR output is changed only to the tip.(full speed usually paper FC)
746-098	2nd BTR output is changed only to the tip.(full speed heavy paper BW)	0	0~500	2nd BTR output is changed only to the tip.(full speed heavy paper BW)
746-099	2nd BTR output is changed only to the tip.(full speed coat paper BW)	0	0~500	2nd BTR output is changed only to the tip.(full speed coat paper BW)
746-100	2nd BTR Mode environment revise (BW_Side1)	100	0~200	2nd BTR Mode environment revise (BW_Side1)
746-101	2nd BTR Mode environment revise (BW_Side2)	100	0~200	2nd BTR Mode environment revise (BW_Side2)
746-102	2nd BTR Mode environment revise (FC_Side1)	100	0~200	2nd BTR Mode environment revise (FC_Side1)
746-103	2nd BTR Mode environment revise (FC_Side2)	100	0~200	2nd BTR Mode environment revise (FC_Side2)
746-112	2nd BTR Final output storage (Side1)	0	0~600	2nd BTR Final output storage (Side1)
746-113	2nd BTR Final output storage (Side2)	0	0~600	2nd BTR Final output storage (Side2)
746-117	Chosen 2nd BTR CLN (-) output storage	0	0~600	Chosen 2nd BTR CLN (-) output storage
746-118	2nd BTR CLN (-) output (environment NO.0)	60	0~600	2nd BTR CLN (-) output (environment NO.0)
746-119	2nd BTR CLN (-) output (environment NO.1-3)	50	0~600	2nd BTR CLN (-) output (environment NO.1-3)
746-120	2nd BTR CLN (-) output (environment NO.4-6)	60	0~600	2nd BTR CLN (-) output (environment NO.4-6)
746-121	2nd BTR CLN (-) output (environment NO.7)	60	0~600	2nd BTR CLN (-) output (environment NO.7)
746-122	2nd BTR CLN (-) output (environment NO.8-9)	60	0~600	2nd BTR CLN (-) output (environment NO.8-9)
746-123	DTS reference voltage (full speed)	30	0~30	DTS reference voltage (full speed)
746-124	DTS reference voltage (halfspeed)	30	0~30	DTS reference voltage (halfspeed)
746-125	DTS Mode environment revise (BW_Side1)	100	0~100	DTS Mode environment revise (BW_Side1)
746-126	DTS Mode environment revise (BW_Side2)	0	0~100	DTS Mode environment revise (BW_Side2)
746-127	DTS Mode environment revise (FC_Side1)	100	0~100	DTS Mode environment revise (FC_Side1)
746-128	DTS Mode environment revise (FC_Side2)	0	0~100	DTS Mode environment revise (FC_Side2)
746-129	DTS Environment compensation coefficient (environment NO.0)	100	0~100	DTS Environment compensation coefficient (environment NO.0)
746-130	DTS Environment compensation coefficient (environment NO.1-3)	100	0~100	DTS Environment compensation coefficient (environment NO.1-3)
746-131	DTS Environment compensation coefficient (environment NO.4-6)	100	0~100	DTS Environment compensation coefficient (environment NO.4-6)
746-132	DTS Environment compensation coefficient (environment NO.7)	100	0~100	DTS Environment compensation coefficient (environment NO.7)
746-133	DTS Environment compensation coefficient (environment NO.8-9)	100	0~100	DTS Environment compensation coefficient (environment NO.8-9)
746-134	DTS The extreme last train pressure storage (Side1)	0	0~30	DTS The extreme last train pressure storage (Side1)
746-135	DTS The extreme last train pressure storage (Side2)	0	0~30	DTS The extreme last train pressure storage (Side2)
746-136	Chosen DTS reference voltage storage (Side1)	0	0~30	Chosen DTS reference voltage storage (Side1)
746-137	Chosen DTS reference voltage storage (Side2)	0	0~30	Chosen DTS reference voltage storage (Side2)
746-139	1st BTR Resistance detection V monitor result storage (Ave)	0	0~6500	1st BTR Resistance detection V monitor result storage (Ave)
746-140	1st BTR Resistance detection V monitor result storage (data1)	0	0~6500	1st BTR Resistance detection V monitor result storage (data1)
746-141	1st BTR Resistance detection V monitor result storage (data2)	0	0~6500	1st BTR Resistance detection V monitor result storage (data2)
746-142	1st BTR Resistance detection V monitor result storage (data3)	0	0~6500	1st BTR Resistance detection V monitor result storage (data3)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-143	1st BTR Resistance detection V monitor result storage (data4)	0	0~6500	1st BTR Resistance detection V monitor result storage (data4)
746-144	1st BTR Resistance detection V monitor result storage (data5)	0	0~6500	1st BTR Resistance detection V monitor result storage (data5)
746-145	1st BTR Resistance detection V monitor result storage (data6)	0	0~6500	1st BTR Resistance detection V monitor result storage (data6)
746-147	IBT CLN Auger Clutch On Timing (full speed)	0	0~255	IBT CLN Auger Clutch On Timing (full speed)
746-148	IBT CLN Auger Clutch On Timing (half speed)	0	0~255	IBT CLN Auger Clutch On Timing (half speed)
746-149	IBT CLN Auger Clutch Off Timing (BW_ full speed)	0	0~255	IBT CLN Auger Clutch Off Timing (BW_ full speed)
746-150	IBT CLN Auger Clutch Off Timing (FC_ full speed)	0	0~255	IBT CLN Auger Clutch Off Timing (FC_ full speed)
746-151	IBT CLN Auger Clutch Off Timing (BW_ half speed)	0	0~255	IBT CLN Auger Clutch Off Timing (BW_ halfspeed)
746-152	IBT CLN Auger Clutch Off Timing (FC_ half speed)	0	0~255	IBT CLN Auger Clutch Off Timing (FC_ halfspeed)
746-153	toner splash countermeasure (full speed)	0	0~3	toner splash countermeasure (full speed)
746-154	toner splash countermeasure (half speed)	0	0~3	toner splash countermeasure (halfspeed)
746-155	Flag is Over System Register Max Value	0	0~1	Flag is Over System Register Max Value $0: R>R n$ $1: R>R n$
746-156	The concentration of the transcription Initial toner band	60	0~100	The concentration of the transcription Initial toner band
746-157	The concentration of the transcription toner band	60	0~100	The concentration of the transcription toner band
746-158	toner band execution environment NO. threshold value	0	0~9	toner band execution environment NO. threshold value
746-162	Transcription belt reverse execution switch (Job End)	1	0~1	Transcription belt reverse execution switch (Job End)
746-163	Transcription belt reverse environment NO. threshold value (Common)	5	0~9	Transcription belt reverse environment NO. threshold value (Common)
746-164	Transcription belt reverse quantity (at the time of usual)	50	0~100	Transcription belt reverse quantity (at the time of usual)
746-167	Resistance detection execution switch	1	0~1	Resistance detection execution switch
746-168	1st BTR Resistance detection standard electric current	200	0~800	1st BTR Resistance detection standard electric current
746-169	1st BTR fixed standard output I alpha Y	200	0~800	1st BTR fixed standard output I alpha Y
746-170	1st BTR fixed standard output I alpha M	200	0~800	1st BTR fixed standard output I alpha M
746-171	1st BTR fixed standard output I alpha C	200	0~800	1st BTR fixed standard output I alpha C
746-172	1st BTR fixed standard output I alpha K	350	0~800	1st BTR fixed standard output I alpha K
746-203	2nd BTR Resistance detection appropriate voltage	100	0~600	2nd BTR Resistance detection appropriate voltage
746-204	The second transcription department composition resistance calculation result storage	0	0~10000	The second transcription department composition resistance calculation result storage
746-205	The chosen the second transcription coefficient: alpha storage	0	0~6000	The chosen the second transcription coefficient: alpha storage
746-206	The chosen the second transcription coefficient: beta storage	0	0~6000	The chosen the second transcription coefficient: beta storage
746-207	2nd BTR resistance detection I monitor result storage (average)	0	0~6000	2nd BTR resistance detection I monitor result storage (average)
746-260	1st BTR Output (at the time of Diag)	200	0~800	1st BTR Output (at the time of Diag)
746-261	2nd BTR Output (at the time of Diag)	100	0~600	2nd BTR Output (at the time of Diag)
746-262	DTS Output (at the time of Diag)	30	0~30	DTS Output (at the time of Diag)
746-263	HFSI Life (IBT Unit_Life)	480000	0~1000000	HFSI Life (IBT Unit_Life)
746-264	HFSI Life (2nd BTR Unit_Life)	150000	0~1000000	HFSI Life (2nd BTR Unit_Life)
746-265	HFSI Life (IBT CLN Unit_Life)	100000	0~1000000	HFSI Life (IBT CLN Unit_Life)
746-266	Near End Warning (IBT Unit)	478500	0~1000000	Near End Warning (IBT Unit)
746-267	Near End Warning (2nd BTR Unit)	148500	0~1000000	Near End Warning (2nd BTR Unit)
746-268	Near End Warning (IBT CLN Unit)	98500	0~1000000	Near End Warning (IBT CLN Unit)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-269	HFSI Counter storage (IBT Unit)	0	0~1000000	HFSI Counter storage (IBT Unit)
746-270	HFSI counter storage (2nd BTR Unit)	0	0~1000000	HFSI counter storage (2nd BTR Unit)
746-271	HFSI counter storage (IBT CLN Unit)	0	0~1000000	HFSI counter storage (IBT CLN Unit)
746-272	2nd BTR Paper kind compensation coefficient (usually, paper_full)	106	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.0_S1)
746-273	2nd BTR Paper kind compensation coefficient (usually, paper_Half)	85	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.1_S1)
746-274	2nd BTR Paper kind compensation coefficient usually	85	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.2_S1)
746-275	2nd BTR Paper kind compensation coefficient usually	85	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.3_S1)
746-276	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.4_S1)
746-277	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.5_S1)
746-278	2nd BTR Paper kind compensation coefficient usually	106	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.6_S1)
746-279	2nd BTR Paper kind compensation coefficient usually	106	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.7_S1)
746-280	2nd BTR Paper kind compensation coefficient usually	106	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.8_S1)
746-281	2nd BTR Paper kind compensation coefficient usually	124	0~255	2nd BTR Paper kind compensation coefficient(A_BW_Full_Env.9_S1)
746-282	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.0_S1)
746-283	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.1_S1)
746-284	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.2_S1)
746-285	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.3_S1)
746-286	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.4_S1)
746-287	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.5_S1)
746-288	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.6_S1)
746-289	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.7_S1)
746-290	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.8_S1)
746-291	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_BW_Full_Env.9_S1)
746-292	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.0_S1)
746-293	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.1_S1)
746-294	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.2_S1)
746-295	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.3_S1)
746-296	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.4_S1)
746-297	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.5_S1)
746-298	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.6_S1)
746-299	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.7_S1)
746-300	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.8_S1)
746-301	2nd BTR Paper kind compensation coefficient usually	112	0~255	2nd BTR Paper kind compensation coefficient(C_BW_Full_Env.9_S1)
746-302	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.0_S1)
746-303	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.1_S1)
746-304	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.2_S1)
746-305	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.3_S1)
746-306	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.4_S1)
746-307	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.5_S1)
746-308	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.6_S1)
746-309	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.7_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-310	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.8_S1)
746-311	2nd BTR Paper kind compensation coefficient usually	112	0~255	2nd BTR Paper kind compensation coefficient(D_BW_Full_Env.9_S1)
746-312	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.0_S1)
746-313	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.1_S1)
746-314	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.2_S1)
746-315	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.3_S1)
746-316	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.4_S1)
746-317	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.5_S1)
746-318	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.6_S1)
746-319	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.7_S1)
746-320	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.8_S1)
746-321	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient(E_BW_Full_Env.9_S1)
746-322	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.0_S1)
746-323	2nd BTR Paper kind compensation coefficient usually	92	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.1_S1)
746-324	2nd BTR Paper kind compensation coefficient usually	92	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.2_S1)
746-325	2nd BTR Paper kind compensation coefficient usually	92	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.3_S1)
746-326	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficientF_BW_Full_Env.4_S1)
746-327	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.5_S1)
746-328	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.6_S1)
746-329	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficientF_BW_Full_Env.7_S1)
746-330	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.8_S1)
746-331	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient(F_BW_Full_Env.9_S1)
746-332	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.0_S1)
746-333	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.1_S1)
746-334	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.2_S1)
746-335	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficientG_BW_Full_Env.3_S1)
746-336	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.4_S1)
746-337	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.5_S1)
746-338	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.6_S1)
746-339	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.7_S1)
746-340	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.8_S1)
746-341	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient(G_BW_Full_Env.9_S1)
746-342	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.0_S1)
746-343	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.1_S1)
746-344	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.2_S1)
746-345	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.3_S1)
746-346	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.4_S1)
746-347	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.5_S1)
746-348	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.6_S1)
746-349	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.7_S1)
746-350	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.8_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-351	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient(S_BW_Full_Env.9_S1)
746-352	2nd BTR Paper kind compensation coefficient (usually, paper_full)	141	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.0_S1)
746-353	2nd BTR Paper kind compensation coefficient (usually, paper_Half)	85	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.1_S1)
746-354	2nd BTR Paper kind compensation coefficient usually	85	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.2_S1)
746-355	2nd BTR Paper kind compensation coefficient usually	85	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.3_S1)
746-356	2nd BTR Paper kind compensation coefficient usually	101	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.4_S1)
746-357	2nd BTR Paper kind compensation coefficient usually	101	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.5_S1)
746-358	2nd BTR Paper kind compensation coefficient usually	141	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.6_S1)
746-359	2nd BTR Paper kind compensation coefficient usually	141	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.7_S1)
746-360	2nd BTR Paper kind compensation coefficient usually	141	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.8_S1)
746-361	2nd BTR Paper kind compensation coefficient usually	142	0~255	2nd BTR Paper kind compensation coefficient(A_FC_Full_Env.9_S1)
746-362	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.0_S1)
746-363	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.1_S1)
746-364	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.2_S1)
746-365	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.3_S1)
746-366	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.4_S1)
746-367	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.5_S1)
746-368	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.6_S1)
746-369	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.7_S1)
746-370	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient(B_FC_Full_Env.8_S1)
746-371	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.9_S1)
746-372	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.0_S1)
746-373	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.1_S1)
746-374	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.2_S1)
746-375	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.3_S1)
746-376	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.4_S1)
746-377	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.5_S1)
746-378	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.6_S1)
746-379	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.7_S1)
746-380	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.8_S1)
746-381	2nd BTR Paper kind compensation coefficient usually	130	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.9_S1)
746-382	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.0_S1)
746-383	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.1_S1)
746-384	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.2_S1)
746-385	2nd BTR Paper kind compensation coefficient usually	107	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.3_S1)
746-386	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.4_S1)
746-387	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.5_S1)
746-388	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.6_S1)
746-389	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.7_S1)
746-390	2nd BTR Paper kind compensation coefficient usually	123	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.8_S1)
746-391	2nd BTR Paper kind compensation coefficient usually	130	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.9_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-392	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.0_S1)
746-393	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.1_S1)
746-394	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.2_S1)
746-395	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.3_S1)
746-396	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.4_S1)
746-397	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.5_S1)
746-398	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.6_S1)
746-399	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.7_S1)
746-400	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.8_S1)
746-401	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.9_S1)
746-402	2nd BTR Paper kind compensation coefficient usually	127	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.0_S1)
746-403	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.1_S1)
746-404	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.2_S1)
746-405	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.3_S1)
746-406	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.4_S1)
746-407	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.5_S1)
746-408	2nd BTR Paper kind compensation coefficient usually	127	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.6_S1)
746-409	2nd BTR Paper kind compensation coefficient usually	127	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.7_S1)
746-410	2nd BTR Paper kind compensation coefficient usually	127	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.8_S1)
746-411	2nd BTR Paper kind compensation coefficient usually	133	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.9_S1)
746-412	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.0_S1)
746-413	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.1_S1)
746-414	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.2_S1)
746-415	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.3_S1)
746-416	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.4_S1)
746-417	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.5_S1)
746-418	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.6_S1)
746-419	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.7_S1)
746-420	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.8_S1)
746-421	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.9_S1)
746-422	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.0_S1)
746-423	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.1_S1)
746-424	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.2_S1)
746-425	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.3_S1)
746-426	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.4_S1)
746-427	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.5_S1)
746-428	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.6_S1)
746-429	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.7_S1)
746-430	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.8_S1)
746-431	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.9_S1)
746-432	2nd BTR Paper kind compensation coefficient (usually, paper_full)	118	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.0_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-433	2nd BTR Paper kind compensation coefficient (usually, paper_Half)	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.1_S2)
746-434	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.2_S2)
746-435	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.3_S2)
746-436	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.4_S2)
746-437	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.5_S2)
746-438	2nd BTR Paper kind compensation coefficient usually	118	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.6_S2)
746-439	2nd BTR Paper kind compensation coefficient usually	118	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.7_S2)
746-440	2nd BTR Paper kind compensation coefficient usually	118	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.8_S2)
746-441	2nd BTR Paper kind compensation coefficient usually	117	0~255	2nd BTR Paper kind compensation coefficient usually(A_BW_Full_Env.9_S2)
746-442	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.0_S2)
746-443	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.1_S2)
746-444	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.2_S2)
746-445	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.3_S2)
746-446	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.4_S2)
746-447	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.5_S2)
746-448	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.6_S2)
746-449	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.7_S2)
746-450	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.8_S2)
746-451	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_BW_Full_Env.9_S2)
746-452	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.0_S2)
746-453	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.1_S2)
746-454	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.2_S2)
746-455	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.3_S2)
746-456	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.4_S2)
746-457	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.5_S2)
746-458	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.6_S2)
746-459	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.7_S2)
746-460	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.8_S2)
746-461	2nd BTR Paper kind compensation coefficient usually	105	0~255	2nd BTR Paper kind compensation coefficient usually(C_BW_Full_Env.9_S2)
746-462	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.0_S2)
746-463	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.1_S2)
746-464	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.2_S2)
746-465	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.3_S2)
746-466	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.4_S2)
746-467	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.5_S2)
746-468	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.6_S2)
746-469	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.7_S2)
746-470	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.8_S2)
746-471	2nd BTR Paper kind compensation coefficient usually	105	0~255	2nd BTR Paper kind compensation coefficient usually(D_BW_Full_Env.9_S2)
746-472	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.0_S2)
746-473	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.1_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-474	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.2_S2)
746-475	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.3_S2)
746-476	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.4_S2)
746-477	2nd BTR Paper kind compensation coeefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.5_S2)
746-478	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.6_S2)
746-479	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.7_S2)
746-480	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.8_S2)
746-481	2nd BTR Paper kind compensation coeefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_BW_Full_Env.9_S2)
746-482	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.0_S2)
746-483	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.1_S2)
746-484	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.2_S2)
746-485	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.3_S2)
746-486	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.4_S2)
746-487	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.5_S2)
746-488	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.6_S2)
746-489	2nd BTR Paper kind compensation coefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.7_S2)
746-490	2nd BTR Paper kind compensation coeefficient usually	104	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.8_S2)
746-491	2nd BTR Paper kind compensation coeefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(F_BW_Full_Env.9_S2)
746-492	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.0_S2)
746-493	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.1_S2)
746-494	2nd BTR Paper kind compensation coeefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.2_S2)
746-495	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.3_S2)
746-496	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.4_S2)
746-497	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.5_S2)
746-498	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.6_S2)
746-499	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.7_S2)
746-500	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.8_S2)
746-501	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_BW_Full_Env.9_S2)
746-502	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.0_S2)
746-503	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.1_S2)
746-504	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.2_S2)
746-505	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.3_S2)
746-506	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.4_S2)
746-507	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.5_S2)
746-508	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.6_S2)
746-509	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.7_S2)
746-510	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.8_S2)
746-511	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_BW_Full_Env.9_S2)
746-512	2nd BTR Paper kind compensation coefficient (usually, paper_full)	132	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.0_S2)
746-513	2nd BTR Paper kind compensation coefficient (usually, paper_Half)	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.1_S2)
746-514	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.2_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-515	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.3_S2)
746-516	2nd BTR Paper kind compensation coefficient usually	111	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.4_S2)
746-517	2nd BTR Paper kind compensation coefficient usually	111	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.5_S2)
746-518	2nd BTR Paper kind compensation coefficient usually	132	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.6_S2)
746-519	2nd BTR Paper kind compensation coefficient usually	132	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.7_S2)
746-520	2nd BTR Paper kind compensation coefficient usually	132	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.8_S2)
746-521	2nd BTR Paper kind compensation coefficient usually	122	0~255	2nd BTR Paper kind compensation coefficient usually(A_FC_Full_Env.9_S2)
746-522	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.0_S2)
746-523	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.1_S2)
746-524	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.2_S2)
746-525	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.3_S2)
746-526	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.4_S2)
746-527	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.5_S2)
746-528	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.6_S2)
746-529	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.7_S2)
746-530	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.8_S2)
746-531	2nd BTR Paper kind compensation coefficient usually	90	0~255	2nd BTR Paper kind compensation coefficient usually(B_FC_Full_Env.9_S2)
746-532	2nd BTR Paper kind compensation coefficient usually	102	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.0_S2)
746-533	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.1_S2)
746-534	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.2_S2)
746-535	2nd BTR Paper kind compensation coeefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.3_S2)
746-536	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.4_S2)
746-537	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.5_S2)
746-538	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.6_S2)
746-539	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.7_S2)
746-540	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.8_S2)
746-541	2nd BTR Paper kind compensation coefficient usually	130	0~255	2nd BTR Paper kind compensation coefficient usually(C_FC_Full_Env.9_S2)
746-542	2nd BTR Paper kind compensation coefficient usually	102	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.0_S2)
746-543	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.1_S2)
746-544	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.2_S2)
746-545	2nd BTR Paper kind compensation coefficient usually	109	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.3_S2)
746-546	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.4_S2)
746-547	2nd BTR Paper kind compensation coeefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.5_S2)
746-548	2nd BTR Paper kind compensation coeefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.6_S2)
746-549	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.7_S2)
746-550	2nd BTR Paper kind compensation coefficient usually	131	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.8_S2)
746-551	2nd BTR Paper kind compensation coeefficient usually	130	0~255	2nd BTR Paper kind compensation coefficient usually(D_FC_Full_Env.9_S2)
746-552	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.0_S2)
746-553	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.1_S2)
746-554	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.2_S2)
746-555	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.3_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-556	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.4_S2)
746-557	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.5_S2)
746-558	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.6_S2)
746-559	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.7_S2)
746-560	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.8_S2)
746-561	2nd BTR Paper kind compensation coefficient usually	110	0~255	2nd BTR Paper kind compensation coefficient usually(E_FC_Full_Env.9_S2)
746-562	2nd BTR Paper kind compensation coefficient usually	108	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.0_S2)
746-563	2nd BTR Paper kind compensation coefficient usually	108	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.1_S2)
746-564	2nd BTR Paper kind compensation coefficient usually	108	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.2_S2)
746-565	2nd BTR Paper kind compensation coefficient usually	108	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.3_S2)
746-566	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.4_S2)
746-567	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.5_S2)
746-568	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.6_S2)
746-569	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.7_S2)
746-570	2nd BTR Paper kind compensation coefficient usually	113	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.8_S2)
746-571	2nd BTR Paper kind compensation coefficient usually	130	0~255	2nd BTR Paper kind compensation coefficient usually(F_FC_Full_Env.9_S2)
746-572	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.0_S2)
746-573	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.1_S2)
746-574	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.2_S2)
746-575	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.3_S2)
746-576	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.4_S2)
746-577	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.5_S2)
746-578	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.6_S2)
746-579	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.7_S2)
746-580	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.8_S2)
746-581	2nd BTR Paper kind compensation coefficient usually	120	0~255	2nd BTR Paper kind compensation coefficient usually(G_FC_Full_Env.9_S2)
746-582	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.0_S2)
746-583	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.1_S2)
746-584	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.2_S2)
746-585	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.3_S2)
746-586	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.4_S2)
746-587	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.5_S2)
746-588	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.6_S2)
746-589	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.7_S2)
746-590	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.8_S2)
746-591	2nd BTR Paper kind compensation coefficient usually	100	0~255	2nd BTR Paper kind compensation coefficient usually(S_FC_Full_Env.9_S2)
746-592	2nd BTR Paper kind compensation coefficient usually half	80	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.0_S1)
746-593	2nd BTR Paper kind compensation coefficient usually half	116	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.1_S1)
746-594	2nd BTR Paper kind compensation coefficient usually half	116	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.2_S1)
746-595	2nd BTR Paper kind compensation coefficient usually half	116	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.3_S1)
746-596	2nd BTR Paper kind compensation coefficient usually half	106	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.4_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-597	2nd BTR Paper kind compensation coefficient usually half	106	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.5_S1)
746-598	2nd BTR Paper kind compensation coefficient usually half	106	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.6_S1)
746-599	2nd BTR Paper kind compensation coefficient usually half	106	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.7_S1)
746-600	2nd BTR Paper kind compensation coefficient usually half	106	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.8_S1)
746-601	2nd BTR Paper kind compensation coefficient usually half	88	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.9_S1)
746-602	2nd BTR Paper kind compensation coefficient usually half	85	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.0_S2)
746-603	2nd BTR Paper kind compensation coefficient usually half	97	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.1_S2)
746-604	2nd BTR Paper kind compensation coefficient usually half	97	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.2_S2)
746-605	2nd BTR Paper kind compensation coefficient usually half	97	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.3_S2)
746-606	2nd BTR Paper kind compensation coefficient usually half	80	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.4_S2)
746-607	2nd BTR Paper kind compensation coefficient usually half	80	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.5_S2)
746-608	2nd BTR Paper kind compensation coefficient usually half	85	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.6_S2)
746-609	2nd BTR Paper kind compensation coefficient usually half	85	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.7_S2)
746-610	2nd BTR Paper kind compensation coefficient usually half	85	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.8_S2)
746-611	2nd BTR Paper kind compensation coefficient usually half	96	0~255	2nd BTR Paper kind compensation coefficient usually half(Env.9_S2)
746-612	2nd BTR Paper kind compensation coefficient heavy1	87	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.0_S1)
746-613	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.1_S1)
746-614	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.2_S1)
746-615	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.3_S1)
746-616	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.4_S1)
746-617	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.5_S1)
746-618	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.6_S1)
746-619	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.7_S1)
746-620	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.8_S1)
746-621	2nd BTR Paper kind compensation coefficient heavy1	70	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.9_S1)
746-622	2nd BTR Paper kind compensation coefficient heavy1	87	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.0_S1)
746-623	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.1_S1)
746-624	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.2_S1)
746-625	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.3_S1)
746-626	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.4_S1)
746-627	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.5_S1)
746-628	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.6_S1)
746-629	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.7_S1)
746-630	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.8_S1)
746-631	2nd BTR Paper kind compensation coefficient heavy1	75	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.9_S1)
746-632	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.0_S1)
746-633	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.1_S1)
746-634	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.2_S1)
746-635	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.3_S1)
746-636	2nd BTR Paper kind compensation coefficient heavy1	130	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.4_S1)
746-637	2nd BTR Paper kind compensation coefficient heavy1	130	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.5_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-638	2nd BTR Paper kind compensation coefficient heavy1	130	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.6_S1)
746-639	2nd BTR Paper kind compensation coefficient heavy1	130	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.7_S1)
746-640	2nd BTR Paper kind compensation coefficient heavy1	130	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.8_S1)
746-641	2nd BTR Paper kind compensation coefficient heavy1	109	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.9_S1)
746-642	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.0_S1)
746-643	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.1_S1)
746-644	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.2_S1)
746-645	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.3_S1)
746-646	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.4_S1)
746-647	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.5_S1)
746-648	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.6_S1)
746-649	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.7_S1)
746-650	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.8_S1)
746-651	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.9_S1)
746-652	2nd BTR Paper kind compensation coefficient heavy1	82	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.0_S2)
746-653	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.1_S2)
746-654	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.2_S2)
746-655	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.3_S2)
746-656	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.4_S2)
746-657	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.5_S2)
746-658	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.6_S2)
746-659	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.7_S2)
746-660	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.8_S2)
746-661	2nd BTR Paper kind compensation coefficient heavy1	85	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_BW_Full_Env.9_S2)
746-662	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.0_S2)
746-663	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.1_S2)
746-664	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.2_S2)
746-665	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.3_S2)
746-666	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.4_S2)
746-667	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.5_S2)
746-668	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.6_S2)
746-669	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.7_S2)
746-670	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.8_S2)
746-671	2nd BTR Paper kind compensation coefficient heavy1	85	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_BW_Full_Env.9_S2)
746-672	2nd BTR Paper kind compensation coefficient heavy1	93	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.0_S2)
746-673	2nd BTR Paper kind compensation coefficient heavy1	83	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.1_S2)
746-674	2nd BTR Paper kind compensation coefficient heavy1	83	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.2_S2)
746-675	2nd BTR Paper kind compensation coefficient heavy1	83	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.3_S2)
746-676	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.4_S2)
746-677	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.5_S2)
746-678	2nd BTR Paper kind compensation coefficient heavy1	93	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.6_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-679	2nd BTR Paper kind compensation coefficient heavy1	93	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.7_S2)
746-680	2nd BTR Paper kind compensation coefficient heavy1	93	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.8_S2)
746-681	2nd BTR Paper kind compensation coefficient heavy1	88	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_BW_Full_Env.9_S2)
746-682	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.0_S2)
746-683	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.1_S2)
746-684	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.2_S2)
746-685	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.3_S2)
746-686	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.4_S2)
746-687	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.5_S2)
746-688	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.6_S2)
746-689	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.7_S2)
746-690	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.8_S2)
746-691	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_BW_Full_Env.9_S2)
746-692	2nd BTR Paper kind compensation coefficient heavy1	96	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.0_S1)
746-693	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.1_S1)
746-694	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.2_S1)
746-695	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.3_S1)
746-696	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.4_S1)
746-697	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.5_S1)
746-698	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.6_S1)
746-699	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.7_S1)
746-700	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.8_S1)
746-701	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.9_S1)
746-702	2nd BTR Paper kind compensation coefficient heavy1	87	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.0_S1)
746-703	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.1_S1)
746-704	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.2_S1)
746-705	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.3_S1)
746-706	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.4_S1)
746-707	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.5_S1)
746-708	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.6_S1)
746-709	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.7_S1)
746-710	2nd BTR Paper kind compensation coefficient heavy1	107	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.8_S1)
746-711	2nd BTR Paper kind compensation coefficient heavy1	84	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.9_S1)
746-712	2nd BTR Paper kind compensation coefficient heavy1	127	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.0_S1)
746-713	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.1_S1)
746-714	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.2_S1)
746-715	2nd BTR Paper kind compensation coefficient heavy1	90	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.3_S1)
746-716	2nd BTR Paper kind compensation coefficient heavy1	131	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.4_S1)
746-717	2nd BTR Paper kind compensation coefficient heavy1	131	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.5_S1)
746-718	2nd BTR Paper kind compensation coefficient heavy1	131	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.6_S1)
746-719	2nd BTR Paper kind compensation coefficient heavy1	131	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.7_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-720	2nd BTR Paper kind compensation coefficient heavy1	131	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.8_S1)
746-721	2nd BTR Paper kind compensation coefficient heavy1	104	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.9_S1)
746-722	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.0_S1)
746-723	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coeefficient heavy1(S_FC_Half_Env.1_S1)
746-724	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.2_S1)
746-725	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.3_S1)
746-726	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.4_S1)
746-727	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.5_S1)
746-728	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.6_S1)
746-729	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.7_S1)
746-730	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.8_S1)
746-731	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.9_S1)
746-732	2nd BTR Paper kind compensation coefficient heavy1	105	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.0_S2)
746-733	2nd BTR Paper kind compensation coefficient heavy1	112	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.1_S2)
746-734	2nd BTR Paper kind compensation coefficient heavy1	112	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.2_S2)
746-735	2nd BTR Paper kind compensation coefficient heavy1	112	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.3_S2)
746-736	2nd BTR Paper kind compensation coefficient heavy1	83	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.4_S2)
746-737	2nd BTR Paper kind compensation coefficient heavy1	83	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.5_S2)
746-738	2nd BTR Paper kind compensation coefficient heavy1	105	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.6_S2)
746-739	2nd BTR Paper kind compensation coefficient heavy1	105	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.7_S2)
746-740	2nd BTR Paper kind compensation coefficient heavy1	105	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.8_S2)
746-741	2nd BTR Paper kind compensation coefficient heavy1	123	0~255	2nd BTR Paper kind compensation coefficient heavy1(A_FC_Half_Env.9_S2)
746-742	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.0_S2)
746-743	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.1_S2)
746-744	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.2_S2)
746-745	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.3_S2)
746-746	2nd BTR Paper kind compensation coefficient heavy1	80	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.4_S2)
746-747	2nd BTR Paper kind compensation coefficient heavy1	80	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.5_S2)
746-748	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.6_S2)
746-749	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.7_S2)
746-750	2nd BTR Paper kind compensation coefficient heavy1	92	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.8_S2)
746-751	2nd BTR Paper kind compensation coefficient heavy1	123	0~255	2nd BTR Paper kind compensation coefficient heavy1(B_FC_Half_Env.9_S2)
746-752	2nd BTR Paper kind compensation coefficient heavy1	115	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.0_S2)
746-753	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.1_S2)
746-754	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.2_S2)
746-755	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.3_S2)
746-756	2nd BTR Paper kind compensation coefficient heavy1	110	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.4_S2)
746-757	2nd BTR Paper kind compensation coefficient heavy1	110	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.5_S2)
746-758	2nd BTR Paper kind compensation coefficient heavy1	115	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.6_S2)
746-759	2nd BTR Paper kind compensation coefficient heavy1	115	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.7_S2)
746-760	2nd BTR Paper kind compensation coefficient heavy1	115	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.8_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-761	2nd BTR Paper kind compensation coefficient heavy1	126	0~255	2nd BTR Paper kind compensation coefficient heavy1(C_FC_Half_Env.9_S2)
746-762	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.0_S2)
746-763	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.1_S2)
746-764	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.2_S2)
746-765	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.3_S2)
746-766	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.4_S2)
746-767	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.5_S2)
746-768	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.6_S2)
746-769	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.7_S2)
746-770	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.8_S2)
746-771	2nd BTR Paper kind compensation coefficient heavy1	100	0~255	2nd BTR Paper kind compensation coefficient heavy1(S_FC_Half_Env.9_S2)
746-772	2nd BTR Paper kind compensation coefficient heavy2	122	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.0_S1)
746-773	2nd BTR Paper kind compensation coefficient heavy2	111	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.1_S1)
746-774	2nd BTR Paper kind compensation coefficient heavy2	111	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.2_S1)
746-775	2nd BTR Paper kind compensation coefficient heavy2	111	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.3_S1)
746-776	2nd BTR Paper kind compensation coefficient heavy2	126	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.4_S1)
746-777	2nd BTR Paper kind compensation coefficient heavy2	126	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.5_S1)
746-778	2nd BTR Paper kind compensation coefficient heavy2	126	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.6_S1)
746-779	2nd BTR Paper kind compensation coefficient heavy2	126	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.7_S1)
746-780	2nd BTR Paper kind compensation coefficient heavy2	126	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.8_S1)
746-781	2nd BTR Paper kind compensation coefficient heavy2	105	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.9_S1)
746-782	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.0_S1)
746-783	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.1_S1)
746-784	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.2_S1)
746-785	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.3_S1)
746-786	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.4_S1)
746-787	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.5_S1)
746-788	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.6_S1)
746-789	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.7_S1)
746-790	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.8_S1)
746-791	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.9_S1)
746-792	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.0_S1)
746-793	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.1_S1)
746-794	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.2_S1)
746-795	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.3_S1)
746-796	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.4_S1)
746-797	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.5_S1)
746-798	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.6_S1)
746-799	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.7_S1)
746-800	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.8_S1)
746-801	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.9_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-802	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.0_S1)
746-803	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.1_S1)
746-804	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.2_S1)
746-805	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.3_S1)
746-806	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.4_S1)
746-807	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.5_S1)
746-808	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.6_S1)
746-809	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.7_S1)
746-810	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.8_S1)
746-811	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.9_S1)
746-812	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.0_S1)
746-813	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.1_S1)
746-814	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.2_S1)
746-815	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.3_S1)
746-816	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.4_S1)
746-817	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.5_S1)
746-818	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.6_S1)
746-819	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.7_S1)
746-820	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.8_S1)
746-821	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.9_S1)
746-822	2nd BTR Paper kind compensation coefficient heavy2	122	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.0_S1)
746-823	2nd BTR Paper kind compensation coefficient heavy2	125	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.1_S1)
746-824	2nd BTR Paper kind compensation coefficient heavy2	125	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.2_S1)
746-825	2nd BTR Paper kind compensation coefficient heavy2	125	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.3_S1)
746-826	2nd BTR Paper kind compensation coefficient heavy2	134	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.4_S1)
746-827	2nd BTR Paper kind compensation coefficient heavy2	134	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.5_S1)
746-828	2nd BTR Paper kind compensation coefficient heavy2	134	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.6_S1)
746-829	2nd BTR Paper kind compensation coefficient heavy2	134	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.7_S1)
746-830	2nd BTR Paper kind compensation coefficient heavy2	134	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.8_S1)
746-831	2nd BTR Paper kind compensation coefficient heavy2	105	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.9_S1)
746-832	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.0_S1)
746-833	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.1_S1)
746-834	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.2_S1)
746-835	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.3_S1)
746-836	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.4_S1)
746-837	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.5_S1)
746-838	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.6_S1)
746-839	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.7_S1)
746-840	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.8_S1)
746-841	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.9_S1)
746-842	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.0_S1)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-843	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.1_S1)
746-844	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.2_S1)
746-845	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.3_S1)
746-846	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.4_S1)
746-847	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.5_S1)
746-848	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.6_S1)
746-849	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.7_S1)
746-850	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.8_S1)
746-851	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.9_S1)
746-852	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.0_S1)
746-853	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.1_S1)
746-854	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.2_S1)
746-855	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.3_S1)
746-856	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.4_S1)
746-857	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.5_S1)
746-858	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.6_S1)
746-859	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.7_S1)
746-860	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.8_S1)
746-861	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.9_S1)
746-862	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.0_S1)
746-863	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.1_S1)
746-864	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.2_S1)
746-865	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.3_S1)
746-866	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.4_S1)
746-867	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.5_S1)
746-868	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.6_S1)
746-869	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.7_S1)
746-870	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.8_S1)
746-871	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.9_S1)
746-872	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.0_S2)
746-873	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.1_S2)
746-874	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.2_S2)
746-875	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.3_S2)
746-876	2nd BTR Paper kind compensation coefficient heavy2	101	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.4_S2)
746-877	2nd BTR Paper kind compensation coefficient heavy2	101	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.5_S2)
746-878	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.6_S2)
746-879	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.7_S2)
746-880	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.8_S2)
746-881	2nd BTR Paper kind compensation coefficient heavy2	122	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_BW_Half_Env.9_S2)
746-882	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.0_S2)
746-883	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.1_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-884	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.2_S2)
746-885	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.3_S2)
746-886	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.4_S2)
746-887	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.5_S2)
746-888	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.6_S2)
746-889	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.7_S2)
746-890	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.8_S2)
746-891	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_BW_Half_Env.9_S2)
746-892	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.0_S2)
746-893	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.1_S2)
746-894	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.2_S2)
746-895	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.3_S2)
746-896	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.4_S2)
746-897	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.5_S2)
746-898	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.6_S2)
746-899	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.7_S2)
746-900	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.8_S2)
746-901	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_BW_Half_Env.9_S2)
746-902	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.0_S2)
746-903	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.1_S2)
746-904	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.2_S2)
746-905	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.3_S2)
746-906	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.4_S2)
746-907	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.5_S2)
746-908	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.6_S2)
746-909	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.7_S2)
746-910	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.8_S2)
746-911	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_BW_Half_Env.9_S2)
746-912	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.0_S2)
746-913	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.1_S2)
746-914	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.2_S2)
746-915	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.3_S2)
746-916	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.4_S2)
746-917	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.5_S2)
746-918	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.6_S2)
746-919	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.7_S2)
746-920	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.8_S2)
746-921	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_BW_Half_Env.9_S2)
746-922	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.0_S2)
746-923	2nd BTR Paper kind compensation coefficient heavy2	105	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.1_S2)
746-924	2nd BTR Paper kind compensation coefficient heavy2	105	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.2_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
746-925	2nd BTR Paper kind compensation coefficient heavy2	105	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.3_S2)
746-926	2nd BTR Paper kind compensation coefficient heavy2	109	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.4_S2)
746-927	2nd BTR Paper kind compensation coefficient heavy2	109	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.5_S2)
746-928	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.6_S2)
746-929	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.7_S2)
746-930	2nd BTR Paper kind compensation coefficient heavy2	127	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.8_S2)
746-931	2nd BTR Paper kind compensation coefficient heavy2	122	0~255	2nd BTR Paper kind compensation coefficient heavy2(A_FC_Half_Env.9_S2)
746-932	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.0_S2)
746-933	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.1_S2)
746-934	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.2_S2)
746-935	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.3_S2)
746-936	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.4_S2)
746-937	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.5_S2)
746-938	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.6_S2)
746-939	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.7_S2)
746-940	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.8_S2)
746-941	2nd BTR Paper kind compensation coefficient heavy2	110	0~255	2nd BTR Paper kind compensation coefficient heavy2(B_FC_Half_Env.9_S2)
746-942	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.0_S2)
746-943	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.1_S2)
746-944	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.2_S2)
746-945	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.3_S2)
746-946	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.4_S2)
746-947	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.5_S2)
746-948	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.6_S2)
746-949	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.7_S2)
746-950	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.8_S2)
746-951	2nd BTR Paper kind compensation coefficient heavy2	120	0~255	2nd BTR Paper kind compensation coefficient heavy2(C_FC_Half_Env.9_S2)
746-952	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.0_S2)
746-953	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.1_S2)
746-954	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.2_S2)
746-955	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.3_S2)
746-956	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.4_S2)
746-957	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.5_S2)
746-958	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.6_S2)
746-959	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.7_S2)
746-960	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.8_S2)
746-961	2nd BTR Paper kind compensation coefficient heavy2	130	0~255	2nd BTR Paper kind compensation coefficient heavy2(D_FC_Half_Env.9_S2)
746-962	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.0_S2)
746-963	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.1_S2)
746-964	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.2_S2)
746-965	2nd BTR Paper kind compensation coefficient heavy2	100	0~255	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.3_S2)

Table 5 Xfer

Chain-Link	Name	Default	Range	Description
$746-966$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.4_S2)
$746-967$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.5_S2)
$746-968$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.6_S2)
$746-969$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.__S2)
$746-970$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.8_S2)
$746-971$	2nd BTR Paper kind compensation coefficient heavy2	100	$0 \sim 255$	2nd BTR Paper kind compensation coefficient heavy2(S_FC_Half_Env.9_S2)
$746-972$	The back dirt measures execution switch after resistance detection	0	$0 \sim 255$	The back dirt measures execution switch after resistance detection

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-001	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.0_S1)
747-002	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.1_S1)
747-003	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.2_S1)
747-004	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.3_S1)
747-005	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.4_S1)
747-006	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.5_S1)
747-007	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.6_S1)
747-008	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.7_S1)
747-009	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.8_S1)
747-010	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.9_S1)
747-011	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.0_S2)
747-012	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.1_S2)
747-013	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.2_S2)
747-014	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.3_S2)
747-015	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.4_S2)
747-016	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.5_S2)
747-017	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.6_S2)
747-018	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.7_S2)
747-019	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.8_S2)
747-020	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(BW_Full_Env.9_S2)
747-021	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.0_S1)
747-022	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.1_S1)
747-023	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.2_S1)
747-024	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.3_S1)
747-025	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.4_S1)
747-026	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.5_S1)
747-027	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.6_S1)
747-028	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.7_S1)
747-029	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.8_S1)
747-030	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.9_S1)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-031	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.0_S2)
747-032	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.1_S2)
747-033	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.2_S2)
747-034	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.3_S2)
747-035	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.4_S2)
747-036	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.5_S2)
747-037	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.6_S2)
747-038	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.7_S2)
747-039	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.8_S2)
747-040	2nd BTR Paper kind compensation coefficient coat1	100	0~255	2nd BTR Paper kind compensation coefficient coat1(FC_Half_Env.9_S2)
747-041	2nd BTR Paper kind compensation coefficient coat2	90	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.0_S1)
747-042	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.1_S1)
747-043	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.2_S1)
747-044	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.3_S1)
747-045	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.4_S1)
747-046	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.5_S1)
747-047	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.6_S1)
747-048	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.7_S1)
747-049	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.8_S1)
747-050	2nd BTR Paper kind compensation coefficient coat2	96	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.9_S1)
747-051	2nd BTR Paper kind compensation coefficient coat2	90	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.0_S1)
747-052	2nd BTR Paper kind compensation coefficient coat2	101	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.1_S1)
747-053	2nd BTR Paper kind compensation coefficient coat2	101	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.2_S1)
747-054	2nd BTR Paper kind compensation coefficient coat2	101	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.3_S1)
747-055	2nd BTR Paper kind compensation coefficient coat2	104	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.4_S1)
747-056	2nd BTR Paper kind compensation coefficient coat2	104	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.5_S1)
747-057	2nd BTR Paper kind compensation coefficient coat2	104	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.6_S1)
747-058	2nd BTR Paper kind compensation coefficient coat2	104	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.7_S1)
747-059	2nd BTR Paper kind compensation coefficient coat2	104	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.8_S1)
747-060	2nd BTR Paper kind compensation coefficient coat2	96	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.9_S1)
747-061	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.0_S2)
747-062	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.1_S2)
747-063	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.2_S2)
747-064	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.3_S2)
747-065	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.4_S2)
747-066	2nd BTR Paper kind compensation coefficient coat2	100	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.5_S2)
747-067	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.6_S2)
747-068	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.7_S2)
747-069	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.8_S2)
747-070	2nd BTR Paper kind compensation coefficient coat2	121	0~255	2nd BTR Paper kind compensation coefficient coat2(BW_Half_Env.9_S2)
747-071	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.0_S2)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-072	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.1_S2)
747-073	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.2_S2)
747-074	2nd BTR Paper kind compensation coefficient coat2	97	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.3_S2)
747-075	2nd BTR Paper kind compensation coefficient coat2	109	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.4_S2)
747-076	2nd BTR Paper kind compensation coefficient coat2	109	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.5_S2)
747-077	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.6_S2)
747-078	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.7_S2)
747-079	2nd BTR Paper kind compensation coefficient coat2	130	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.8_S2)
747-080	2nd BTR Paper kind compensation coefficient coat2	122	0~255	2nd BTR Paper kind compensation coefficient coat2(FC_Half_Env.9_S2)
747-081	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.0_S1)
747-082	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.1_S1)
747-083	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.2_S1)
747-084	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.3_S1)
747-085	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.4_S1)
747-086	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.5_S1)
747-087	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.6_S1)
747-088	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.7_S1)
747-089	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.8_S1)
747-090	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.9_S1)
747-091	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.0_S2)
747-092	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.1_S2)
747-093	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.2_S2)
747-094	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.3_S2)
747-095	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.4_S2)
747-096	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.5_S2)
747-097	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.6_S2)
747-098	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.7_S2)
747-099	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.8_S2)
747-100	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(BW_Full_Env.9_S2)
747-101	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.0_S1)
747-102	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.1_S1)
747-103	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.2_S1)
747-104	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.3_S1)
747-105	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.4_S1)
747-106	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.5_S1)
747-107	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.6_S1)
747-108	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.7_S1)
747-109	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.8_S1)
747-110	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.9_S1)
747-111	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.0_S2)
747-112	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.1_S2)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-113	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.2_S2)
747-114	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.3_S2)
747-115	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.4_S2)
747-116	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.5_S2)
747-117	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.6_S2)
747-118	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.7_S2)
747-119	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.8_S2)
747-120	2nd BTR Paper kind compensation coefficient post1	100	0~255	2nd BTR Paper kind compensation coefficient post1(FC_Half_Env.9_S2)
747-121	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.0_S1)
747-122	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.1_S1)
747-123	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.2_S1)
747-124	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.3_S1)
747-125	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.4_S1)
747-126	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.5_S1)
747-127	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.6_S1)
747-128	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.7_S1)
747-129	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.8_S1)
747-130	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.9_S1)
747-131	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.0_S1)
747-132	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.1_S1)
747-133	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.2_S1)
747-134	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.3_S1)
747-135	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.4_S1)
747-136	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.5_S1)
747-137	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.6_S1)
747-138	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.7_S1)
747-139	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.8_S1)
747-140	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.9_S1)
747-141	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.0_S2)
747-142	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.1_S2)
747-143	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.2_S2)
747-144	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.3_S2)
747-145	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.4_S2)
747-146	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.5_S2)
747-147	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.6_S2)
747-148	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.7_S2)
747-149	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.8_S2)
747-150	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(BW_Half_Env.9_S2)
747-151	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.0_S2)
747-152	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.1_S2)
747-153	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.2_S2)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-154	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.3_S2)
747-155	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.4_S2)
747-156	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.5_S2)
747-157	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.6_S2)
747-158	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.7_S2)
747-159	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.8_S2)
747-160	2nd BTR Paper kind compensation coefficient post2	100	0~255	2nd BTR Paper kind compensation coefficient post2(FC_Half_Env.9_S2)
747-161	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.0_S1)
747-162	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.1_S1)
747-163	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.2_S1)
747-164	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.3_S1)
747-165	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.4_S1)
747-166	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.5_S1)
747-167	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.6_S1)
747-168	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.7_S1)
747-169	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.8_S1)
747-170	2nd BTR Paper kind compensation coefficient label	93	0~255	2nd BTR Paper kind compensation coefficient label(BW_Full_Env.9_S1)
747-171	2nd BTR Paper kind compensation coefficient label	105	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.0_S1)
747-172	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.1_S1)
747-173	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.2_S1)
747-174	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.3_S1)
747-175	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.4_S1)
747-176	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.5_S1)
747-177	2nd BTR Paper kind compensation coefficient label	105	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.6_S1)
747-178	2nd BTR Paper kind compensation coefficient label	105	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.7_S1)
747-179	2nd BTR Paper kind compensation coefficient label	105	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.8_S1)
747-180	2nd BTR Paper kind compensation coefficient label	109	0~255	2nd BTR Paper kind compensation coefficient label(FC_Half_Env.9_S1)
747-181	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.0_S1)
747-182	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.1_S1)
747-183	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.2_S1)
747-184	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.3_S1)
747-185	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.4_S1)
747-186	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.5_S1)
747-187	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.6_S1)
747-188	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.7_S1)
747-189	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.8_S1)
747-190	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.9_S1)
747-191	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.0_S2)
747-192	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.1_S2)
747-193	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.2_S2)
747-194	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.3_S2)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-195	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.4_S2)
747-196	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.5_S2)
747-197	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.6_S2)
747-198	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.7_S2)
747-199	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.8_S2)
747-200	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(BW_Full_Env.9_S2)
747-201	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.0_S1)
747-202	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.1_S1)
747-203	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.2_S1)
747-204	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.3_S1)
747-205	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.4_S1)
747-206	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.5_S1)
747-207	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.6_S1)
747-208	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.7_S1)
747-209	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.8_S1)
747-210	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.9_S1)
747-211	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.0_S2)
747-212	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.1_S2)
747-213	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.2_S2)
747-214	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.3_S2)
747-215	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.4_S2)
747-216	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.5_S2)
747-217	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.6_S2)
747-218	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.7_S2)
747-219	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.8_S2)
747-220	2nd BTR Paper kind compensation coefficient envelope1	100	0~255	2nd BTR Paper kind compensation coefficient envelope1(FC_Half_Env.9_S2)
747-221	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.0_S1)
747-222	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.1_S1)
747-223	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.2_S1)
747-224	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.3_S1)
747-225	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.4_S1)
747-226	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.5_S1)
747-227	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.6_S1)
747-228	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.7_S1)
747-229	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.8_S1)
747-230	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.9_S1)
747-231	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.0_S1)
747-232	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.1_S1)
747-233	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.2_S1)
747-234	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.3_S1)
747-235	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.4_S1)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-236	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.5_S1)
747-237	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.6_S1)
747-238	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.7_S1)
747-239	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.8_S1)
747-240	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.9_S1)
747-241	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.0_S2)
747-242	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.1_S2)
747-243	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.2_S2)
747-244	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.3_S2)
747-245	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.4_S2)
747-246	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.5_S2)
747-247	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.6_S2)
747-248	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.7_S2)
747-249	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.8_S2)
747-250	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(BW_Half_Env.9_S2)
747-251	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.0_S2)
747-252	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.1_S2)
747-253	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.2_S2)
747-254	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.3_S2)
747-255	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.4_S2)
747-256	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.5_S2)
747-257	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.6_S2)
747-258	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.7_S2)
747-259	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.8_S2)
747-260	2nd BTR Paper kind compensation coefficient envelope2	100	0~255	2nd BTR Paper kind compensation coefficient envelope2(FC_Half_Env.9_S2)
747-261	2nd BTR Paper kind compensation coefficient OHP	107	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.0_S1)
747-262	2nd BTR Paper kind compensation coefficient OHP	80	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.1_S1)
747-263	2nd BTR Paper kind compensation coefficient OHP	80	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.2_S1)
747-264	2nd BTR Paper kind compensation coefficient OHP	80	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.3_S1)
747-265	2nd BTR Paper kind compensation coefficient OHP	111	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.4_S1)
747-266	2nd BTR Paper kind compensation coefficient OHP	111	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.5_S1)
747-267	2nd BTR Paper kind compensation coefficient OHP	111	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.6_S1)
747-268	2nd BTR Paper kind compensation coefficient OHP	111	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.7_S1)
747-269	2nd BTR Paper kind compensation coefficient OHP	111	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.8_S1)
747-270	2nd BTR Paper kind compensation coefficient OHP	100	0~255	2nd BTR Paper kind compensation coefficient OHP(BW_Half_Env.9_S1)
747-271	2nd BTR Paper kind compensation coefficient OHP	107	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.0_S1)
747-272	2nd BTR Paper kind compensation coefficient OHP	98	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.1_S1)
747-273	2nd BTR Paper kind compensation coefficient OHP	98	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.2_S1)
747-274	2nd BTR Paper kind compensation coefficient OHP	98	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.3_S1)
747-275	2nd BTR Paper kind compensation coefficient OHP	117	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.4_S1)
747-276	2nd BTR Paper kind compensation coefficient OHP	117	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.5_S1)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-277	2nd BTR Paper kind compensation coefficient OHP	117	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.6_S1)
747-278	2nd BTR Paper kind compensation coefficient OHP	117	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.7_S1)
747-279	2nd BTR Paper kind compensation coefficient OHP	117	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.8_S1)
747-280	2nd BTR Paper kind compensation coefficient OHP	106	0~255	2nd BTR Paper kind compensation coefficient OHP(FC_Half_Env.9_S1)
747-281	The second transcription coefficient	55	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.0_plain_S_Side1)
747-282	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.1_plain_S_Side1)
747-283	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.2_plain_S_Side1)
747-284	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.3_plain_S_Side1)
747-285	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.4_plain_S_Side1)
747-286	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.5_plain_S_Side1)
747-287	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.6_plain_S_Side1)
747-288	The second transcription coefficient	140	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.7_plain_S_Side1)
747-289	The second transcription coefficient	110	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.8_plain_S_Side1)
747-290	The second transcription coefficient	55	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.9_plain_S_Side1)
747-291	The second transcription coefficient	2100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.0_plain_S_Side1)
747-292	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.1_plain_S_Side1)
747-293	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.2_plain_S_Side1)
747-294	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.3_plain_S_Side1)
747-295	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.4_plain_S_Side1)
747-296	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.5_plain_S_Side1)
747-297	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.6_plain_S_Side1)
747-298	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.7_plain_S_Side1)
747-299	The second transcription coefficient	1500	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.8_plain_S_Side1)
747-300	The second transcription coefficient	2100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.9_plain_S_Side1)
747-301	The second transcription coefficient	45	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.0_plain_S_Side2)
747-302	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.1_plain_S_Side2)
747-303	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.2_plain_S_Side2)
747-304	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.3_plain_S_Side2)
747-305	The second transcription coefficient	225	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.4_plain_S_Side2)
747-306	The second transcription coefficient	225	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.5_plain_S_Side2)
747-307	The second transcription coefficient	225	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.6_plain_S_Side2)
747-308	The second transcription coefficient	200	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.7_plain_S_Side2)
747-309	The second transcription coefficient	140	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.8_plain_S_Side2)
747-310	The second transcription coefficient	45	0~6000	The second transcription coefficient:A(BW/FC_Full_Env.9_plain_S_Side2)
747-311	The second transcription coefficient	2600	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.0_plain_S_Side2)
747-312	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.1_plain_S_Side2)
747-313	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.2_plain_S_Side2)
747-314	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.3_plain_S_Side2)
747-315	The second transcription coefficient	1300	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.4_plain_S_Side2)
747-316	The second transcription coefficient	1300	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.5_plain_S_Side2)
747-317	The second transcription coefficient	1300	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.6_plain_S_Side2)

Chain-Link	Name	Default	Range	Description
747-318	The second transcription coefficient	1500	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.7_plain_S_Side2)
747-319	The second transcription coefficient	1900	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.8_plain_S_Side2)
747-320	The second transcription coefficient	2600	0~6000	The second transcription coefficient:B(BW/FC_Full_Env.9_plain_S_Side2)
747-321	The second transcription coefficient	30	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.0_heavy1_S_Side1)
747-322	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.1_heavy1_S_Side1)
747-323	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.2_heavy1_S_Side1)
747-324	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.3_heavy1_S_Side1)
747-325	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.4_heavy1_S_Side1)
747-326	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.5_heavy1_S_Side1)
747-327	The second transcription coefficient	145	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.6_heavy1_S_Side1)
747-328	The second transcription coefficient	125	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.7_heavy1_S_Side1)
747-329	The second transcription coefficient	90	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.8_heavy1_S_Side1)
747-330	The second transcription coefficient	30	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.9_heavy1_S_Side1)
747-331	The second transcription coefficient	2800	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.0_heavy1_S_Side1)
747-332	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.1_heavy1_S_Side1)
747-333	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.2_heavy1_S_Side1)
747-334	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.3_heavy1_S_Side1)
747-335	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.4_heavy1_S_Side1)
747-336	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.5_heavy1_S_Side1)
747-337	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.6_heavy1_S_Side1)
747-338	The second transcription coefficient	1400	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.7_heavy1_S_Side1)
747-339	The second transcription coefficient	1900	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.8_heavy1_S_Side1)
747-340	The second transcription coefficient	2800	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.9_heavy1_S_Side1)

Chain-Link	Name	Default	Range	Description
747-341	The second transcription coefficient	40	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.0_heavy1_S_Side2)
747-342	The second transcription coefficient	310	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.1_heavy1_S_Side2)
747-343	The second transcription coefficient	310	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.2_heavy1_S_Side2)
747-344	The second transcription coefficient	310	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.3_heavy1_S_Side2)
747-345	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.4_heavy1_S_Side2)
747-346	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.5_heavy1_S_Side2)
747-347	The second transcription coefficient	250	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.6_heavy1_S_Side2)
747-348	The second transcription coefficient	210	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.7_heavy1_S_Side2)
747-349	The second transcription coefficient	140	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.8_heavy1_S_Side2)
747-350	The second transcription coefficient	40	0~6000	The second transcription coefficient:A(BW/FC_Full/ Half_Env.9_heavy1_S_Side2)
747-351	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.0_heavy1_S_Side2)
747-352	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.1_heavy1_S_Side2)
747-353	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.2_heavy1_S_Side2)
747-354	The second transcription coefficient	1100	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.3_heavy1_S_Side2)
747-355	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.4_heavy1_S_Side2)
747-356	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.5_heavy1_S_Side2)
747-357	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.6_heavy1_S_Side2)
747-358	The second transcription coefficient	1900	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.7_heavy1_S_Side2)
747-359	The second transcription coefficient	2500	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.8_heavy1_S_Side2)
747-360	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Full/ Half_Env.9_heavy1_S_Side2)
747-361	The second transcription coefficient	30	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.0_heavy2_S_Side1)
747-362	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.1_heavy2_S_Side1)
747-363	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.2_heavy2_S_Side1)
747-364	The second transcription coefficient	150	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.3_heavy2_S_Side1)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-365	The second transcription coefficient	135	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.4_heavy2_S_Side1)
747-366	The second transcription coefficient	135	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.5_heavy2_S_Side1)
747-367	The second transcription coefficient	135	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.6_heavy2_S_Side1)
747-368	The second transcription coefficient	120	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.7_heavy2_S_Side1)
747-369	The second transcription coefficient	80	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.8_heavy2_S_Side1)
747-370	The second transcription coefficient	30	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.9_heavy2_S_Side1)
747-371	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.0_heavy2_S_Side1)
747-372	The second transcription coefficient	900	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.1_heavy2_S_Side1)
747-373	The second transcription coefficient	900	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.2_heavy2_S_Side1)
747-374	The second transcription coefficient	900	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.3_heavy2_S_Side1)
747-375	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.4_heavy2_S_Side1)
747-376	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.5_heavy2_S_Side1)
747-377	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.6_heavy2_S_Side1)
747-378	The second transcription coefficient	1550	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.7_heavy2_S_Side1)
747-379	The second transcription coefficient	2250	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.8_heavy2_S_Side1)
747-380	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.9_heavy2_S_Side1)
747-381	The second transcription coefficient	50	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.0_heavy2_S_Side2)
747-382	The second transcription coefficient	330	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.1_heavy2_S_Side2)
747-383	The second transcription coefficient	330	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.2_heavy2_S_Side2)
747-384	The second transcription coefficient	330	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.3_heavy2_S_Side2)
747-385	The second transcription coefficient	280	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.4_heavy2_S_Side2)
747-386	The second transcription coefficient	280	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.5_heavy2_S_Side2)
747-387	The second transcription coefficient	280	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.6_heavy2_S_Side2)
747-388	The second transcription coefficient	240	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.7_heavy2_S_Side2)
747-389	The second transcription coefficient	160	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.8_heavy2_S_Side2)
747-390	The second transcription coefficient	50	0~6000	The second transcription coefficient:A(BW/FC_Half_Env.9_heavy2_S_Side2)
747-391	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.0_heavy2_S_Side2)
747-392	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.1_heavy2_S_Side2)
747-393	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.2_heavy2_S_Side2)
747-394	The second transcription coefficient	1200	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.3_heavy2_S_Side2)
747-395	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.4_heavy2_S_Side2)
747-396	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.5_heavy2_S_Side2)
747-397	The second transcription coefficient	1600	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.6_heavy2_S_Side2)
747-398	The second transcription coefficient	1900	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.7_heavy2_S_Side2)
747-399	The second transcription coefficient	2500	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.8_heavy2_S_Side2)
747-400	The second transcription coefficient	3300	0~6000	The second transcription coefficient:B(BW/FC_Half_Env.9_heavy2_S_Side2)
747-401	System Register Max Value R0 (Env0)	600	0~10000	System Register Max Value R0 (Env0)
747-402	System Register Max Value R1 (Env1)	50	0~10000	System Register Max Value R1 (Env1)
747-403	System Register Max Value R2 (Env2)	50	0~10000	System Register Max Value R2 (Env2)
747-404	System Register Max Value R3 (Env3)	50	0~10000	System Register Max Value R3 (Env3)
747-405	System Register Max Value R4 (Env4)	100	0~10000	System Register Max Value R4 (Env4)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-406	System Register Max Value R5 (Env5)	100	0~10000	System Register Max Value R5 (Env5)
747-407	System Register Max Value R6 (Env6)	100	0~10000	System Register Max Value R6 (Env6)
747-408	System Register Max Value R7 (Env7)	150	0~10000	System Register Max Value R7 (Env7)
747-409	System Register Max Value R8 (Env8)	300	0~10000	System Register Max Value R8 (Env8)
747-410	System Register Max Value R9 (Env9)	600	0~10000	System Register Max Value R9 (Env9)
747-411	Counter is Over System Register Max Value	0	0~65535	Counter is Over System Register Max Value
747-905	Chosen 2nd BTR reference output storage(Side1)	0	0~600	Chosen 2nd BTR reference output storage(Side1)
747-906	Chosen 2nd BTR reference output storage(Side2)	0	0~600	Chosen 2nd BTR reference output storage(Side2)
747-907	2nd BTR Contact Timing (full speed)	1049	0~2000	2nd BTR Contact Timing (full speed)
747-908	2nd BTR Contact Timing (halfspeed)	1694	0~2000	2nd BTR Contact Timing (halfspeed)
747-909	2nd BTR Retract Timing (full speed)	645	0~1000	2nd BTR Retract Timing (full speed)
747-910	2nd BTR Retract Timing (half speed)	1295	0~2000	2nd BTR Retract Timing (half speed)
747-911	2nd BTR Contact movement stop Timing	874	0~1500	2nd BTR Contact movement stop Timing
747-912	2nd BTR Retract movement stop Timing	49	0~1500	2nd BTR Retract movement stop Timing
747-913	2nd BTR Print output On Timing (full speed)	1599	50~2000	2nd BTR Print output On Timing (full speed)
747-914	2nd BTR Print output On Timing (halfspeed)	2013	50~3000	2nd BTR Print output On Timing (halfspeed)
747-915	2nd BTR Print output Off Timing (full speed)	41	0~1000	2nd BTR Print output Off Timing (full speed)
747-916	2nd BTR Print output Off Timing (halfspeed)	81	0~1000	2nd BTR Print output Off Timing (halfspeed)
747-917	2nd BTR Contact Timing in Position_B (full speed)	1049	0~2000	2nd BTR Contact Timing in Position_B (full speed)
747-919	2nd BTR Print output On Timing in Position_B(full speed)	1599	50~2000	2nd BTR Print output On Timing in Position_B(full speed)
747-927	The 2nd BTR Print output Off Timing of Size Mismatch FullSpeeg Printoutput ->CLN (+)	0	0~2550	The 2nd BTR Print output Off Timing of Size Mismatch FullSpeeg Printoutput ->CLN (+)
747-928	The 2nd BTR Print output Off Timing of Size Mismatch HalfSpeed Printoutput ->CLN (+)	0	0~4500	The 2nd BTR Print output Off Timing of Size Mismatch HalfSpeed Printoutput ->CLN (+)
747-929	IBT CLN Contact Timing (full speed)	2859	2000~4000	IBT CLN Contact Timing (full speed)
747-930	IBT CLN Contact Timing (BW_halfl speed)	3604	3000~5000	IBT CLN Contact Timing (BW_halfl speed)
747-931	IBT CLN Contact Timing (FC_half speed)	3454	3000~5000	IBT CLN Contact Timing (FC_half speed)
747-932	IBT CLN Retract Timing (BW_full speed)	3095	2000~5000	IBT CLN Retract Timing (BW_ full speed)
747-933	IBT CLN Retract Timing (FC_ full speed)	3095	2000~5000	IBT CLN Retract Timing (FC_ full speed)
747-934	IBT CLN Retract Timing (BW_halfspeed)	3158	2000~5000	IBT CLN Retract Timing (BW_ halfspeed)
747-935	IBT CLN Retract Timing (FC_ halfspeed)	3032	2000~5000	IBT CLN Retract Timing (FC_halfspeed)
747-936	IBT CLN Contact movement stop Timing	391	0~800	IBT CLN Contact movement stop Timing
747-937	IBT CLN Retract movement stop Timing	12	0~800	IBT CLN Retract movement stop Timing
747-938	The chosen the second transcription coefficient_SIDE2: Alpha storage	0	0~6000	The chosen the second transcription coefficient_SIDE2: Alpha storage
747-939	The chosen the second transcription coefficient_SIDE2: Beta storage	0	0~6000	The chosen the second transcription coefficient_SIDE2: Beta storage
747-940	Transcription belt reverse sw	1	0~1	SW that enables rotating Transfer Belt in reverse direction (Job divided)
747-941	Transcription belt reverse pv threshold value	250	1~1000	Transfer Belt Reverse Rotation pv Threshold (Job divided)
747-942	Transcription belt reverse pv counter storage	0	0~1000	Transfer Belt Reverse Rotation pv Counter Storage (Job divided)

Table 6 Xfer

Chain-Link	Name	Default	Range	Description
747-943	high document ibt cln cycle sw	1	0~1	SW that enables IBT CLN cycle for an image with a high resolution
747-944	2nd BTR parameter designated (BW/FC, Common Heavy1 paper _S)	0	0~1	2nd BTR parameter designated (BW/FC, Common Heavy1 paper_S) 0:usually_PARA 1:heavy_1S_PARA
747-945	2nd BTR parameter designated (FC,Heavy1 paper _S)	30	0~50	Waiting time from the end of reverse rotation of Transfer Belt to the start of the next print
747-946	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.0_S1)
747-947	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.1_S1)
747-948	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.2_S1)
747-949	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.3_S1)
747-950	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.4_S1)
747-951	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.5_S1)
747-952	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.6_S1)
747-953	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.7_S1)
747-954	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.8_S1)
747-955	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (BW_Full_Env.9_S1)
747-956	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.0_S1)
747-957	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.1_S1)
747-958	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.2_S1)
747-959	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.3_S1)
747-960	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.4_S1)
747-961	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.5_S1)
747-962	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.6_S1)
747-963	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.7_S1)
747-964	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.8_S1)
747-965	2nd BTR Paper kind compensation coefficient label	100	0~255	2nd BTR Paper kind compensation coefficient label NA (FC_Half_Env.9_S1)

Chain 749-xxx ROS

Table 7 ROS				
Chain-Link	Name	Default	Range	Description
$749-001$	Polygon Motor Off Delay Time	1	$1 \sim 10$	Time from the end of exposure of last image to the start of stopping Polygon Motor [sec]
$749-002$	Fast Polygon Motor Start Time Out	10	$0 \sim 30$	Time [sec] before Polygon Motor is turned Off in case the machine is not instructed to start printing though Polygon Motor is activated in advance. [sec]
$749-003$	ROS Fan On Temp	24	$15 \sim 30$	Environment temp [degree C] where ROS Fan is rotated during rotation of Polygon Motor
$749-004$	ROS Fan Stop Delay Time	10	$6 \sim 14$	Time [sec] before ROS Fan is rotated after Polygon Motor stops rotating
$749-005$		600	$0 \sim 65535$	Delay start of the ROS Shutter close process (msec)
$749-006$		100	$100 \sim 4096$	Number of input pulse per ROS Shutter close process (pps)
$749-007$		0	$0 \sim 65535$	Time period of ROS Shutter close process (10msec)

Chain-Link	Name	Default	Range	Description
749-008		0	0~1	Rotation direction to close ROS Shutter 0: Clockwise 1: Counter Clockwise
749-009		100	100~4096	Number of input pulse per ROS Shutter open process (pps)
749-010		0	0~65535	Time period of ROS Shutter open process ($10 \mathrm{msec} \mathrm{)}$
749-011		0	0~1	Rotation direction to open ROS Shutter 0: Clockwise 1: Counter Clockwise
749-012	Video Asic Fail R/W NG Counter	0	0~6	the number of R/W NG results when Video ASIC Fail occurs
749-020	Halftone Pattern1	0	0~65535	Halftone Pattern 1 [16-bit data]
749-021	Halftone Pattern2	0	0~65535	Halftone Pattern 2 [16-bit data]
749-022	Halftone Pattern3	0	0~65535	Halftone Pattern 3 [16-bit data]
749-023	Halftone Pattern4	0	0~65535	Halftone Pattern 4 [16-bit data]
749-024	TR0 Filter Length	0	0~255	TR0 Filter Constant [VCLK]
749-036	Lattice Pattern dot	2	1~2	the number of dots per line in lattice pattern

Chain 751-xxx 752-xxx Chain 753-xxx Procon

Table 8 Xero/Clean				
Chain-Link	Name	Default	Range	Description
$751-284$	DRUM MAX IMPRESSION	78	$0 \sim 255$	Max. number of prints [1000pv]: Drum is available until a max number of prints are made.

Chain-Link	Name	Default	Range	Description
$752-010$	Flag NewPR	0	$0 \sim 1$	$0:$ old 1: new
$752-011$	Flag TonerExchange[Y]	0	$0 \sim 1$	$0:$ no replacement 1: replace
$752-012$	Flag TonerExchange[M]	0	$0 \sim 1$	$0:$ no replacement 2: replace
$752-013$	Flag TonerExchange[C]	0	$0 \sim 1$	$0:$ no replacement 3: replace
$752-014$	Flag TonerExchange[K]	0	$0 \sim 1$	$0:$ no replacement 4: replace
$752-015$	Flag NewToner[Y]	0	$0 \sim 1$	$0:$ old 1: new
$752-016$	Flag NewToner[M]	0	$0 \sim 1$	$0:$ old 2: new
$752-017$	Flag NewToner[C]	0	$0 \sim 1$	$0:$ old 3: new
$752-018$	Flag NewToner[K]	0	$0 \sim 1$	$0:$ old 4: new
$752-019$	Flag NewIBT	0	$0 \sim 1$	$0:$ old 1: new
$752-020$	Flag NewIBTcleaner	0	$0 \sim 1$	$0:$ old 1: new
$752-040$	Temp	0	$-100 \sim 100$	Temperature after AD conversion (NVM100: 0 degree C)
$752-041$	Humidity	0	$0 \sim 100$	Humidity after AD conversion (NVM0: $0 \%)$

Table 9 Process Control

Chain-Link	Name	Default	Range	Description
752-060	Fail Environment SNR Humidity	0	0~1	Humidity Sensor fail ("Standard Humidity" fixed)
752-061	Fail Environment SNR TEMP	0	0~1	Temperature Sensor fail ("Standard Temp" fixed)
752-091	Judge Number of ADC Fails Mcstop[N]	50	0~255	Threshold used to judge MC should be forcedly stopped in response to"the number of a series of ADC Fails." In normal mode
752-092	Judge Number of ADC Fails Mcstop[PN]	8	0~255	Threshold used to judge MC should be forcedly stopped in response to"the number of a series of ADC Fails." "Flag Status: Empty Detection">=1
752-093	Judge Number of ADC Fails Display	3	0~255	Threshold used to judge Fail should be displayed in response to "the number of a series of ADC Fails"
752-094	Fail ADC	0	0~1	ADC Sensor Fail. This fail occurs if a specified or larger number of ADC-related fails occur.
752-095	Fail ADC Sensor	0	0~1	ADC Sensor Fail
752-096	Fail ADC ShutterOpen	0	0~1	Fail: ADC Shutter stays open
752-097	Fail ADC ShutterClose	0	0~1	Fail: ADC Shutter stays closed
752-098	Fail ADC TCpatch[Y]	0	0~1	TC Patch Fail
752-099	Fail ADC TCpatch[M]	0	0~1	TC Patch Fail
752-100	Fail ADC TCpatch[C]	0	0~1	TC Patch Fail
752-101	Fail ADC TCpatch[K]	0	0~1	TC Patch Fail
752-102	Fail ADC patch[Y]	0	0~1	Tone Patch Fail
752-103	Fail ADC patch[M]	0	0~1	Tone Patch Fail
752-104	Fail ADC patch[C]	0	0~1	Tone Patch Fail
752-105	Fail ADC patch[K]	0	0~1	Tone Patch Fail
752-106	Fail ADC LongSetup[Y]	0	0~1	Patch Density Fail during Long Setup
752-107	Fail ADC LongSetup[M]	0	0~1	Patch Density Fail during Long Setup
752-108	Fail ADC LongSetup[C]	0	0~1	Patch Density Fail during Long Setup
752-109	Fail ADC LongSetup[K]	0	0~1	Patch Density Fail during Long Setup
752-111	Flag ADC Dirt	0	0~1	Flag indicating ADC Sensor Detection Surface is contaminated.
752-112	Vcln	760	0~1023	ADC average detection value of Belt-reflected light with Spectral LED On
752-113	Vdatk	0	0~1023	Detection value with both Spectral and Diffuse LEDs Off when Shutter closed.
752-114	DiffusionVcln	30	0~1023	ADC average detection value of Belt-reflected light with Diffuse LED On
752-115	Vref	800	0~1023	Detection value with only Diffuse LED On when Shutter closed.
752-116	Vclose	0	0~1023	Detection value with only Spectral LED On when Shutter closed.
752-121	Number of Continuous ADC Fails	0	0~255	the number of a series of ADC Fails
752-127	VTCpatch[Y]	0	0~1023	TC Patch Vp average value
752-128	VTCpatch[M]	0	0~1023	TC Patch Vp average value
752-129	VTCpatch[C]	0	0~1023	TC Patch Vp average value
752-130	VTCpatch[K]	0	0~1023	TC Patch Vp average value
752-132	Vpatch[Y][B]	0	0~1023	CinB Patch ADC average detection value
752-135	Vpatch[M][B]	0	0~1023	CinB Patch ADC average detection value
752-138	Vpatch[C][B]	0	0~1023	CinB Patch ADC average detection value
752-141	Vpatch[K][B]	0	0~1023	CinB Patch ADC average detection value
752-183	Nominal RADC Target[Y]	432	0~1023	RADC target value set up as the center
752-184	Nominal RADC Target[M]	422	0~1023	RADC target value set up as the center
752-185	Nominal RADC Target[C]	417	0~1023	RADC target value set up as the center

Table 9 Process Control

Chain-Link	Name	Default	Range	Description
752-186	Nominal RADC Target[K]	282	0~1023	RADC target value set up as the center
752-187	RADC Target[Y]	350	0~1023	RADC target value after various corrections
752-188	RADC Target[M]	350	0~1023	RADC target value after various corrections
752-189	RADC Target[C]	350	0~1023	RADC target value after various corrections
752-190	RADC Target[K]	350	0~1023	RADC target value after various corrections
752-195	RADC[Y]	0	0~1023	RADC value calculated from ADC-related detection values
752-196	RADC[M]	0	0~1023	RADC value calculated from ADC-related detection values
752-197	RADC[C]	0	0~1023	RADC value calculated from ADC-related detection values
752-198	RADC[K]	0	0~1023	RADC value calculated from ADC-related detection values
752-203	TRC RADC Target[Y][A]	680	0~1023	Target RADC for tone correction
752-204	TRC RADC Target[Y][B]	385	0~1023	Target RADC for tone correction
752-205	TRC RADC Target[Y][C]	915	0~1023	Target RADC for tone correction
752-206	TRC RADC Target[M][A]	605	0~1023	Target RADC for tone correction
752-207	TRC RADC Target[M][B]	340	0~1023	Target RADC for tone correction
752-208	TRC RADC Target[M][C]	910	0~1023	Target RADC for tone correction
752-209	TRC RADC Target[C][A]	645	0~1023	Target RADC for tone correction
752-210	TRC RADC Target[C][B]	400	0~1023	Target RADC for tone correction
752-211	TRC RADC Target[C][C]	915	0~1023	Target RADC for tone correction
752-212	TRC RADC Target[K][A]	475	0~1023	Target RADC for tone correction
752-213	TRC RADC Target[K][B]	165	0~1023	Target RADC for tone correction
752-214	TRC RADC Target[K][C]	845	0~1023	Target RADC for tone correction
752-215	TRC RADC[Y][A]	0	0~1023	RADC value for tone correction
752-216	TRC RADC[Y][B]	0	0~1023	RADC value for tone correction
752-217	TRC RADC[Y][C]	0	0~1023	RADC value for tone correction
752-218	TRC RADC[M][A]	0	0~1023	RADC value for tone correction
752-219	TRC RADC[M][B]	0	0~1023	RADC value for tone correction
752-220	TRC RADC[M][C]	0	0~1023	RADC value for tone correction
752-221	TRC RADC[C][A]	0	0~1023	RADC value for tone correction
752-222	TRC RADC[C][B]	0	0~1023	RADC value for tone correction
752-223	TRC RADC[C][C]	0	0~1023	RADC value for tone correction
752-224	TRC RADC[K][A]	0	0~1023	RADC value for tone correction
752-225	TRC RADC[K][B]	0	0~1023	RADC value for tone correction
752-226	TRC RADC[K][C]	0	0~1023	RADC value for tone correction
752-253	Nominal TRC RADC Target[Y][B]	385	0~1023	TRC_RADC target value set up as the center
752-254	Nominal TRC RADC Target[M][B]	340	0~1023	TRC_RADC target value set up as the center
752-255	Nominal TRC RADC Target[C][B]	400	0~1023	TRC_RADC target value set up as the center
752-256	Nominal TRC RADC Target[K][B]	165	0~1023	TRC_RADC target value set up as the center
752-299	SW DispMode	0	0~2	Switch that selects Disp Mode (0: ADC+ICDCdisp 1: ICDCdisp 2: Timerdisp)
752-301	Timer Disp time[Y]	5	0~255	Timer Disp set time (in steps of 10ms)
752-302	Timer Disp time[M]	5	0~255	Timer Disp set time (in steps of 10ms)
752-303	Timer Disp time[C]	5	0~255	Timer Disp set time (in steps of 10ms)

Table 9 Process Control

Chain-Link	Name	Default	Range	Description
752-304	Timer Disp time[K]	5	0~255	Timer Disp set time (in steps of 10ms)
752-441	SW LD Control	0	0~1	Switch that sets LD Control to ON/OFF (0: LDControl ON 1: LD Control OFF)
752-443	SW DeveBias Control	0	0~1	0: Vbias controlled 1: Vbias not controlled (delta Vbias=0)
752-444	LD Light qty when LD Control is OFF[Y]	420	0~1023	LD light quantity with electric potential control Off
752-445	LD Light qty when LD Control is OFF[M]	420	0~1023	LD light quantity with electric potential control Off
752-446	LD Light qty when LD Control is OFF[C]	420	0~1023	LD light quantity with electric potential control Off
752-447	LD Light qty when LD Control is OFF[K]	420	0~1023	LD light quantity with electric potential control Off
752-448	LD light gty[Y]	420	0~1023	Ideal LD light quantity calculated from delta LD light quantity
752-449	LD light qty[M]	420	0~1023	Ideal LD light quantity calculated from delta LD light quantity
752-450	LD light qty[C]	420	0~1023	Ideal LD light quantity calculated from delta LD light quantity
752-451	LD light qty[K]	420	0~1023	Ideal LD light quantity calculated from delta LD light quantity
752-460	Flag LD Light aty Limit[Y]	0	0~2	0: within upper \& lower limits 1: lower limit 2: upper limit
752-461	Flag LD Light qty Limit[M]	0	0~2	0: within upper \& lower limits 1 : lower limit 2: upper limit
752-462	Flag LD Light aty Limit[C]	0	0~2	0: within upper \& lower limits 1 : lower limit 2: upper limit
752-463	Flag LD Light qty Limit[K]	0	0~2	0: within upper \& lower limits 1: lower limit 2: upper limit
752-464	Warn LD Light qty[Y]	0	0~1	0 : within upper \& lower limits 1: upper or lower limit
752-465	Warn LD Light qty[M]	0	0~1	0 : within upper \& lower limits 1: upper or lower limit
752-466	Warn LD Light qty[C]	0	0~1	0: within upper \& lower limits 1: upper or lower limit
752-467	Warn LD Light qty[K]	0	0~1	0: within upper \& lower limits 1: upper or lower limit
752-705	Flag Empty Detection Status[Y]	0	0~3	0: Normal 1: PreNear 2: NearEmpty 3: Empty
752-706	Flag Empty Detection Status[M]	0	0~3	0: Normal 1: PreNear 2: NearEmpty 3: Empty
752-707	Flag Empty Detection Status[C]	0	0~3	0: Normal 1: PreNear 2: NearEmpty 3: Empty
752-708	Flag Empty Detection Status[K]	0	0~3	0: Normal 1: PreNear 2: NearEmpty 3: Empty
752-789	SW PreNear	0	0~1	Switch that selects whether or not PreNear should be displayed. (1: not displayed 2: displayed)
752-790	PreNear Threshold[Y]	4032	0~65535	PreNear Threshold calculated from ICDC for a remaining toner ratio of 0\%
752-791	PreNear Threshold[M]	3750	0~65535	PreNear Threshold calculated from ICDC for a remaining toner ratio of 0\%
752-792	PreNear Threshold[C]	4032	0~65535	PreNear Threshold calculated from ICDC for a remaining toner ratio of 0\%
752-793	PreNear Threshold[K]	11533	0~65535	PreNear Threshold calculated from ICDC for a remaining toner ratio of 0\%
752-794	Flag PreNear[Y]	0	0~1	0: Normal status 1: PreNear and afterward
752-795	Flag PreNear[M]	0	0~1	0: Normal status 2: PreNear and afterward
752-796	Flag PreNear[C]	0	0~1	0: Normal status 3: PreNear and afterward
752-797	Flag PreNear[K]	0	0~1	0: Normal status 4: PreNear and afterward
752-812	Toner Level[Y]	100	0~100	a ratio of toner remaining in Toner Cartridge
752-813	Toner Level[M]	100	0~100	a ratio of toner remaining in Toner Cartridge
752-814	Toner Level[C]	100	0~100	a ratio of toner remaining in Toner Cartridge
752-815	Toner Level[K]	100	0~100	a ratio of toner remaining in Toner Cartridge
752-825	Toner Level 0\% ICDC[Y]	4743	0~65535	ICDC total value corresponding to 0\% of remaining toner
752-826	Toner Level 0\% ICDC[M]	4412	0~65535	ICDC total value corresponding to 0\% of remaining toner
752-827	Toner Level 0\% ICDC[C]	4743	0~65535	ICDC total value corresponding to 0\% of remaining toner
752-828	Toner Level 0\% ICDC[K]	13568	0~65535	ICDC total value corresponding to 0\% of remaining toner

ChainLink	Name	Default	Range	Description
753-001	SW ADC Tone Correction	0	0~1	Switch that sets ADC Tone Correction to ON/OFF $\begin{aligned} & \text { 0: ON } \\ & \text { 1: OFF } \end{aligned}$
753-002	SW TRC Adjust	0	0~1	Switch that sets TRCadjust to ON/OFF 0: TRCadj_ON 1: TRCadj_OFF

Chain 760-xxx Registration Control

Chain-Link	Name	Default	Range	Read/ Write	Description
760-001	Polygon Synchronic Correction Switch	0	0~1	RW	Polygon Sync Correction Switch 0: ON 1: OFF
760-002	Offset Correction Switch	0	0~1	RW	$\begin{aligned} & \text { Offset Correction Switch } \\ & \text { 0: ON } \\ & \text { 1: OFF } \\ & \hline \end{aligned}$
760-003	Learn Value Use Switch	0	0~1	RW	Learning-Result Using Switch 0 : Learned value 1: NVM value
760-004	K-Speed Correction Switch	0	0~1	RW	Belt Speed Up Correction Switch $0: \mathrm{ON}$ 1: OFF
760-005	K-Speed Correction Learn Value Use Switch	0	0~1	RW	Switch sets whether to use learning result in correcting Belt speed to speed it up. 0 : Learned value 1: NVM value
760-006	GAPy	0	0~65535	R	Phase difference between TR0 and SOS: GAPy [1/50 micro s]
760-007	GAPm	0	0~65535	R	Phase difference between TR0 and SOS: GAPm [1/50 micro s]
760-008	GAPc	0	0~65535	R	Phase difference between TR0 and SOS: GAPc [1/50 micro s]
760-009	GAPk	0	0~65535	R	Phase difference between TR0 and SOS: GAPk [1/50 micro s]
760-014	BL Thresh	90	0~500	RW	Learn Mode Execution Count switching threshold [100PV]
760-015	BL Cycle1	15	0~70	RW	Learn Mode Execution Count Value 1 [100PV]
760-016	BL Cycle2	30	0~100	RW	Learn Mode Execution Count Value 2 [100PV]
760-017	Belt Length Correction Switch	0	0~1	RW	Belt Cycle Length Correction Switch [0: On 1: Off]

Chain-Link	Name	Default	Range	Read/ Write	Description
760-026	Xm	100	0~200	RW	Polygon Sync Correction Coefficient: Xm
760-027	Xc	100	0~200	RW	Polygon Sync Correction Coefficient: Xc
760-028	Xk	100	0~200	RW	Polygon Sync Correction Coefficient: Xk
760-029	Learn Belt HFSI Counter	0	$\begin{aligned} & \hline 0 \sim 42949 \\ & 67295 \end{aligned}$	R	Belt HFSI Count during learning [HFSI Count]
760-030	Learn Cleaner HFSI Counter	0	$\begin{aligned} & \hline 0 \sim 42949 \\ & 67295 \end{aligned}$	R	Cleaner HFSI Count during learning [HFSI Count]
760-031	Learn 2nd BTR HFSI Counter	0	$\begin{aligned} & \hline 0 \sim 42949 \\ & 67295 \end{aligned}$	R	2nd BTR HFSI Count [HFSI Count]
760-032	T11	0	0~50000	R	Learning result: T11 [1/50 x 2048 micro s]
760-033	T12	0	0~50000	R	$\begin{aligned} & \text { Learning result: T12 } \\ & {[1 / 50 \times 2048 \text { micro s] }} \end{aligned}$
760-034	T21	0	0~50000	R	Learning result: T21 [1/50 x 2048 micro s]
760-035	T22	0	0~50000	R	Learning result: T22 $[1 / 50 \times 2048$ micro s]
760-036	T31	0	0~50000	R	Learning result: T31 [1/50 x 2048 micro s]
760-037	T32	0	0~50000	R	$\begin{aligned} & \text { Learning result: T32 } \\ & {[1 / 50 \times 2048 \text { micro s] }} \end{aligned}$
760-038	T41	0	0~50000	R	Learning result: T41 $[1 / 50 \times 2048$ micro s]
760-039	T42	0	0~50000	R	Learning result: T42 [1/50 x 2048 micro s]
760-040	Y1	56300	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y1
760-041	Y2	90	0~200	RW	Offset Correction Coefficient: Y2
760-042	Y3	100	0~200	RW	Offset Correction Coefficient: Y3
760-043	Y4	50000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y4
760-044	Y5	56300	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y5
760-045	Y6	90	0~200	RW	Offset Correction Coefficient: Y6
760-046	Y7	93	0~200	RW	Offset Correction Coefficient: Y7
760-047	Y8	100	0~200	RW	Offset Correction Coefficient: Y8
760-048	Y9	50000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y9
760-049	Y10	59452	$\begin{aligned} & \text { 0~10000 } \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y10
760-050	Y11	95	0~200	RW	Offset Correction Coefficient: Y11
760-051	Y12	77	0~200	RW	Offset Correction Coefficient: Y12

Chain-Link	Name	Default	Range	Read/ Write	Description
760-052	Y13	100	0~200	RW	Offset Correction Coefficient: Y13
760-053	Y14	53000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: Y14
760-054	K1	43700	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K1
760-055	K2	62	0~200	RW	Offset Correction Coefficient: K2
760-056	K3	50000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K3
760-057	K4	34247	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K4
760-058	K5	85	0~200	RW	Offset Correction Coefficient: K5
760-059	K6	85	0~200	RW	Offset Correction Coefficient: K6
760-060	K7	100	0~200	RW	Offset Correction Coefficient: K7
760-061	K8	50000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K8
760-062	K9	31095	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K9
760-063	K10	85	0~200	RW	Offset Correction Coefficient: K10
760-064	K11	85	0~200	RW	Offset Correction Coefficient: K11
760-065	K12	100	0~200	RW	Offset Correction Coefficient: K12
760-066	K13	50000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K13
760-077	K14	74	0~200	RW	Offset Correction Coefficient: K14
760-078	K15	75	0~200	RW	Offset Correction Coefficient: K15
760-079	K16	100	0~200	RW	Offset Correction Coefficient: K16
760-080	K17	43000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Offset Correction Coefficient: K17
760-081	K-speed-offset start timing	12	4~15	RW	Time (100 msec)from Belt Home detection that triggers plotting an image in K to the start of modulating IBT Belt speed.
760-082	K-speed-offset end timing	3700	$\begin{aligned} & 300 ~ 370 \\ & 0 \end{aligned}$	RW	Time (msec) from Belt Home detection that triggers plotting an image in K to the end of modulating IBT Belt speed
760-083	K-speed-offset value	20264	$\begin{aligned} & 20193 ~ 2 \\ & 0274 \end{aligned}$	RW	The double of this NVM value shall be an actual division ratio in speed modulation for K.
760-085	Slope of Low Brightness	261	0~511	RW	Low-light-intensity-area regi correction gradient
760-086	Slope of High Brightness	69	0~511	RW	High-light-intensity-area regi correction gradient
760-087	Intercept of Low Brightness	6528	0~65535	RW	Low-light-intensity-area Y intercept
760-088	Intercept of High Brightness	1723	0~6535	RW	High-light-intensity-area Y intercept
760-089	LD-Volume Adjust Switch	0	0~1	RW	$\begin{aligned} & \text { Light Qty Regi Correction S/W } \\ & \text { 0: On } \\ & \text { 1: Off } \end{aligned}$
760-090	Regi-Control Change Point	430	250~880	RW	Control Gradient changing point
760-091	Y15	87	0~200	RW	Y15

Chain-Link	Name	Default	Range	Read/ Write	Description
760-092	Y16	96	0~200	RW	Y16
760-093	Y17	100	0~200	RW	Y17
760-094	Y18	55000	$\begin{aligned} & 0 \sim 10000 \\ & 0 \end{aligned}$	RW	Y18
760-095	Y-Speed Correction Switch	0	0~1	RW	$\begin{aligned} & \text { Y Belt Speed Up Correction Switch } \\ & \text { o: On } \\ & 1: \text { Off } \end{aligned}$
760-096	Y-Speed Correction Learn Value Use Switch	0	0~1	RW	Switch sets whether to use learning result in correcting Y Belt speed to speed it up. 0: Learned value 1: NVM value
760-097	Y-speed-offset start timing	22	20~30	RW	Time (100 msec)from Belt Home detection that triggers plotting an image in Y to the start of modulating IBT Belt speed
760-098	Y-speed-offset value	20302	$\begin{aligned} & 20274 ~ 2 \\ & 0355 \end{aligned}$	RW	The double of this NVM value shall be an actual division ratio in speed modulation for Y .
760-100	K-Speed Two Step Correction Switch	0	0~1	RW	$\begin{aligned} & \text { 2-step speed modulation for K } \\ & \text { 0: On } \\ & \text { 1: Off } \end{aligned}$
760-101	K-speed Two Step offset value	20235	$\begin{aligned} & 20139 ~ 2 \\ & 0274 \end{aligned}$	RW	2-step Speed Modulation division ratio for K
760-102	K-Two Step-speed-offset start timing	2600	$\begin{aligned} & 2000 \sim 37 \\ & 00 \end{aligned}$	RW	2-step speed modulation starting point for K [msec]
760-103	TR0 seal dirt error counter	0	0~255	RW	Logs how many times dirt has been detected on the effective area of TR0 sticker.
760-104	TR0 seal dirt warning counter	0	0~255	RW	Logs how many times dirt on TR0 sticker has been detected.
760-105	Belt Home Position Too Long Fail threshold	2354	$\begin{aligned} & 2337 ~ 45 \\ & 30 \end{aligned}$	RW	Threshold for detecting Broken Belt Fail

Chain 762-xxx Developer

Chain-Link	Name	Default	Range	Read/Write	Description
$762-001$	BIAS_DC_ON	67	$1 \sim 145$	RW	DC BIAS ON Timing (67 Steps before)
$762-002$	BIAS_AC_ON	67	$1 \sim 145$	RW	AC BIAS ON Timing (67 Steps before)
$762-003$	BIAS_DC_OFF	67	$1 \sim 145$	RW	DC BIAS OFF Timing (67 Steps after)
$762-004$	BIAS_AC_OFF	67	$1 \sim 145$	RW	AC BIAS OFF Timing (67 Steps after)
$762-005$	DEVE_MOT_ON	200	$0 \sim 1000$	RW	DEVE_MOT ON Timing (300ms before image)
$762-006$	DEVE_MOT_OFF	1	$1 \wedge 145$	RW	DEVE_MOT OFF Timing (1 Step after)
$762-007$	ROT_MOT_ON	10	$0 \sim 500$	RW	ROTARY MOTOR ON Signal ON timing (10ms before HI/LOW signal)
$762-008$	ROT_MOT_OFF	10	$0 \sim 500$	RW	ROTARY MOTOR ON Signal OFF timing (10ms after HI/LOW signal)
$762-009$	ROT_MOT_HL_ON	30	$0 \sim 500$	RW	ROTARY HI/LOW Signal ON timing (30ms before DEVE CLK)
$762-010$	ROT_MOT_HL_OFF	200	$0 \sim 500$	RW	ROTARY HI/LOW Signal OFF timing (200ms after DEVE CLK)
$762-011$	FIRST_ROT_TIME_FC	693	$0 \sim 2000$	RW	the timing of starting rotating Rotary when FC cycles up (693ms before image)

Chain-Link	Name	Default	Range	Read/Write	Description
762-012	FIRST_ROT_TIME_BW	693	0~2000	RW	the timing of starting rotating Rotary when BW cycles up (693ms before image)
762-014	ROT_MOT_TIME_END	10	0~500	RW	the timing of starting rotating Rotary when the M/C cycles down (10ms after the trail edge of image)
762-015	Home Back Wait Time	500	0~2000	RW	Wait Time between Exchange Position and Back Home (500 ms after the instruction)
762-016	ROTARY_POSITION	0	0~4	RW	0: Home 1: Kex 2: Yex 3: Mex 4: Cex
762-017	ESCAPE_INT_TIME	1700	0~3000	RW	Rest Time (1700ms) in Kesc
762-022	ESCAPE BIAS DC	100	0~1000	RW	Bias DC Value (100V) for generating band for a color that passes the development position
762-023	BW_TRICLE_START_WAIT	500	0~2000	RW	Wait Time before starting the operation of trickling toner (500 ms after the trail edge of image)
762-024	BW_TRICLE_WAIT_TIME	1000	0~3000	RW	Wait Time (1000 ms) at the position trickling is done
762-025	BW_TRICLE_DISP_LIMIT	1500	0~5000	RW	Total Dispense Time Threshold (15 sec : in steps of 10 ms) in continuous B/W in order to do the operation of trickling
762-026	BW_TRICLE_DISP_TOTAL	0	0~5000	RW	Total Dispense Time in continuous B/W in order to do the operation of trickling during job
762-027	NVM_HOME_ADJ_Switch	0	0~1	RW	0: Adjustment Mode not executed 1: Adjustment Mode executed
762-028	NVM_HOME_ADJ_PULSE	33	0~65	RW	HOME SENSOR Installing Position Correction Value (N)
762-029	NVM_ROTARY_FAIL_LIMIT	8	0~50	RW	Home Position Fail Occurrence Threshold (F)
762-030	Deve_Bias_DC	570	0~1000	RW	Deve Bias DC Value (Default: 600V)
762-031	Deve_Bias_AC_F	6250	0~10000	RW	Deve Bias AC Frequency (Default: 6000Hz)
762-032	Deve_Bias_AC_PP	1000	0~2000	RW	Deve Bias AC Vpeak-peak Value (Default: 1000V)
762-033	Deve_Bias_AC_Duty	65	0~100	RW	Deve Bias AC Duty (Default: 65\%)
762-034	CRUM R/W WAIT TIME 1	10	0~500	RW	Wait Time (ms) before CRUM R/W
762-035	CRUM R/W WAIT TIME 2	10	0~500	RW	Wait Time (ms) after CRUM R/W
762-036	HOME POSITION ANGLE	35	0~65	RW	Home Position Angle Preset Value (H)
762-038	CRUM R/W WAIT TIME 5	30	0~500	RW	CRUM R/W Escape Wait Time (ms)
762-039	BAND_DEVE_ROT_TIME_K	0	0~65535	RW	Total Deve Drive Time for band generation K
762-040	BAND_DEVE_ROT_TIME_Y	0	0~65535	RW	Total Deve Drive Time for band generation Y
762-041	BAND_DEVE_ROT_TIME_M	0	0~65535	RW	Total Deve Drive Time for band generation M
762-042	BAND_DEVE_ROT_TIME_C	0	0~65535	RW	Total Deve Drive Time for band generation C
762-043	BAND Cin	60	0~100	RW	Band Cin (Default: 60\%)
762-044	BAND COVERAGE LIMIT	75	0~1000	RW	Threshold for Band Execution Judgment
762-045	BAND LENGTH	145	0~1000	RW	Band Length Calculation standard value
762-046	Down Step Timing 1	247	0~1000	RW	the timing of starting Step Down in Step Control (layout difference from BCR: $227 \mathrm{~ms}+20 \mathrm{~ms}$)
762-047	Down Step Timing 2	50	0~500	RW	In Step Down in Step Control, Vm 3 hours

Table 12 Deve

Chain-Link	Name	Default	Range	Read/Write	Description
762-048	Down Step Timing 3	50	0~500	RW	In Step Down in Step Control, Vm 2 hours
762-049	Up Step Timing 1	207	0~1000	RW	the timing of starting Step Up in Step Control (layout difference from BCR: 227ms20ms)
762-050	Up Step Timing 2	50	0~500	RW	In Step Up in Step Control, Vm 2 hours
762-051	Up Step Timing 3	50	0~500	RW	In Step Up in Step Control, Vm 3 hours
762-052	ESCAPE_INT_TIME_HALF_K	8830	0~10000	RW	BW Rest Time (8330ms) in Kesc after speed reduction
762-053	ESCAPE DEVE DC HALF	100	1~1000	RW	Cin (in speed reduction) for generating band for color that passes the development position
762-054	INT_ROT_TIME_FC	693	0~2000	RW	the timing of starting rotating Rotary in FC after speed reduction (693ms before image)
762-055	Deve_Bias_DC_Nominal	570	1~1000	RW	Deve Bias DC Value when Voltage Control Off
762-056	ROT_BAND_WARNING	0	0~1	RW	Whether to rotate Rotary with P/R not in operation
762-057	ROT_TIME_LIMIT	2000	0~5000	RW	Fail Time Threshold (ms) in Home Positioning
762-058	ROT_TIME_SHORT_YMC	2947	2000~4000	RW	the timing of rotating Rotary during Print YMC (1)
762-059	ROT_TIME_SHORT_K	3057	2000~4000	RW	the timing of rotating Rotary during Print K (1)
762-060	ROT_TIME_MID_YMC	1207	0~2000	RW	the timing of rotating Rotary during Print YMC (2)
762-061	ROT_TIME_MID_K	1318	0~2000	RW	the timing of rotating Rotary during Print K (2)
762-062	ROT_TIME_LONG_YMCK	1	0~500	RW	the timing of rotating Rotary during Print YMCK
762-063	CHANGE_INT_RECOVERY	200	0~2000	RW	Wait Time (200ms) in changing color during the recovery operation
762-064	Cartridge First Set UP	0	0~1	RW	Installing Operation at installation 0 : Yes 1: No
762-244	DEVE_UNIT_LIFE	420000	0~840000	RW	Developer Unit Life
762-245	DEVE_UNIT_LIFE_WARNING	418500	0~840000	RW	Warning on Developer Unit

Chain 764-xxx Finisher

Table 13 Output Control				
Chain-Link	Name	Default	Range	Description
$764-002$	B-Fin Sleep Mode Recovery Indicate	0	$0 \sim 1$	Indicates whether Finisher has recovered from Sleep Mode. $1:$ Recovery from Sleep Mode $0:$ Power ON in any case other than the above
$764-003$	Fin Decurler On Level	0	$-50 \sim 50$	Curl Amount based on which Finisher Decurler should be turned on
$764-004$	Fin Sheet Width of Last EjectedSheet	0	$0 \sim 65535$	the width (in steps of 0.1 mm) of the top sheet of a stack of paper on Finisher Stacker (Rewrite in Sleep Mode)
$764-005$	Fin Sheet Length of Last EjectedSheet	0	$0 \sim 65535$	the length (in steps of 0.1 mm) of the top sheet of a stack of paper on Finisher Stacker (Rewrite in Sleep Mode)
$764-006$	Fin Sheet Width of Maximum SizeSheet	0	$0 \sim 65535$	the width (in steps of 0.1 mm) of the largest sheet of a stack of paper on Finisher Stacker) (Rewrite in Sleep Mode)
$764-007$	Fin Sheet Length of Maximum SizeSheet	0	$0 \sim 65535$	the length (in steps of 0.1 mm) of the largest sheet of a stack of paper on Finisher Stacker) (Rewrite in Sleep Mode)

Table 13 Output Control

Chain-Link	Name	Default	Range	Description
764-008	Fin Number Of Ejected Staple Set	0	0~255	the number of to-be-stapled sets ejected on Finisher Stacker (Rewrite in Sleep Mode)
764-009	Fin Mix Sensor Level Indicate	0	0~1	Finisher Stacker Tray Mix SNR position level (Rewrite in Sleep Mode)
764-010	Fin Staple Mode of Last Set	0	0~255	Staple Mode (including unstaple) for the last set on Finisher Stacker (Rewrite in Sleep Mode)
764-011	Fin Mix Stack Enable/Disable	0	0~1	Prohibits stacking mixed-size sheets after detecting the Finisher MIX STCK position 0: Prohibited 1: Not prohibited
764-012	B-Fin Maximum Set Count	50	0~100	the max number of sets that can be stacked on B-Finisher Stacker
764-013	B-Fin Max Compile Sheet Count for Staple	50	10~100	the upper limit on the number of sheets to be compiled for B-Finisher Stapling
764-014	B-Fin Max Compile Sheet Count(Un-Staple/Big)	25	10~100	the upper limit on the number of large sheets to be compiled for B-Finisher Un-Stapling
764-015	B-Fin Max Compile Sheet Count(Un-Staple/Small)	50	10~100	the upper limit on the number of small sheets to be compiled for B-Finisher Un-Stapling
764-016	B-Fin Decurler Detect SW	0	0~1	Indicates whether Decurler Kit is installed in B-Finisher. 0 : Not installed 1: Installed
764-017	A-Fin Maximum Set Count	30	0~100	the max number of sets that can be stacked on A-Finisher Stacker
764-018	A-Fin Maximum Compile Sheet Count (Staple/Big)	30	10~100	the upper limit on the number of large sheets to be compiled for A-Finisher Stapling
764-019	A-Fin Maximum Compile Sheet Count (Staple/Small)	50	10~100	the upper limit on the number of small sheets to be compiled for A-Finisher Stapling
764-020	A-Fin Max Compile Sheet Count (Un-Staple/Plain Big)	5	1~25	the upper limit on the number of large plain sheets to be compiled for A-Finisher Un-Stapling
764-021	A-Fin Max Compile Sheet Count (Un-Staple/Plain Small)	10	1~50	the upper limit on the number of small plain sheets to be compiled for A-Finisher Un-Stapling
764-022	A-Fin Max Compile Sheet Count (Un-Staple/Special Paper Big)	5	1~25	the upper limit on the number of large special sheets to be compiled for A-Finisher Un-Stapling
764-023	A-Fin Max Compile Sheet Count (Un-Staple/Special Paper Small)	5	1~50	the upper limit on the number of small special sheets to be compiled for A-Finisher Un-Stapling
764-024	A-Fin Max Compile Sheet Count (Un-Staple/OHP Big)	1	1~25	the upper limit on the number of large transparencies to be compiled for A-Finisher Un-Stapling
764-025	A-Fin Max Compile Sheet Count (Un-Staple/OHP Small)	1	1~50	the upper limit on the number of small transparencies to be compiled for A-Finisher Un-Stapling
764-026	Fin Number Of Ejected Sheet Count	0	0~65535	the number of sheets ejected on Finisher Stacker (Rewrite in Sleep Mode)

IIT NVM List

Chain-Link	Content	Default	Range	Meaning
710-501	Fax Document Size Detection Method for DADF	0	0~1	Indicates the switching of detection method when Fax Document Size Detection is specified in DADF mode. 0: A/B series, 1: Inch series
710-551	JAM Bypass	0	0~1	0: Do not bypass, 1: Bypass Applies to CVT mode.
710-600	Size Mismatch Jam Detection Setting (Applicable only in Simplex mode)	1	1~2	1: Size Mismatch Jam Detection On 2: Size Mismatch Jam Detection Off
710-603	Alternate Size Set3	0	0~2	PF1: Switches between 11x15S and 11x17S. No-Mix: mm, No-Mix/Size-Mix: Inch13/Inch14,0: Default,1: 11x17S,2: 11x15S PF2: Switches between 11x15S and 11x17S. No-Mix: mm/Inch13/ Inch14, Size-Mix: Inch13/Inch14,0: Default,1: 11x17S,2: 11x15S
710-604	Alternate Size Set4	0	0~2	PF1: Switches between $8.46 \times 12.4 \mathrm{~S}, 8.5 \times 13 \mathrm{~S}$ and $8.5 \times 14 \mathrm{~S}$. No-Mix/Size-Mix: mm,0: Default,1: $8.5 \times 13 \mathrm{~S}, 2$: 8.5×14 SF2: Switches between 8.5×13 S and $8.5 \times 14 \mathrm{~S}$. No-Mix/Size-Mix: mm Initial value: 2,0 : Default, $1: 8.5 \times 13 \mathrm{~S}, 2: 8.5 \times 14 \mathrm{~S}$
710-605	Alternate Size Set5	0	0~2	PF1: Switches between BS5 and 16KS. No-Mix: mm,0: Default,1: B5S,2: 16KS PF2: Switches between B5S and 16KS. No-Mix/Size-Mix: mm Initial value: mm,0: Default,1: B5S,2: 16KS
710-606	Alternate Size Set6	0	0~3	PF1: Switches between 8×10 S, 8×10.5 S and 8.5×11 S. Size-Mix: Inch13/Inch14,0: Default, 1: $8.5 \times 11 \mathrm{~S}, 2$: $8 \times 10 \mathrm{~S}, 3: 8 \times 10.5 \mathrm{~S}$ PF2: Switches between $8 \times 10 \mathrm{~S}, 8 \times 10.5 \mathrm{~S}$ and 8.5×11 S. Size-Mix: Inch13/Inch14,0: Default, 1: $8.5 \times 11 \mathrm{~S}, 2: 8 \times 10 \mathrm{~S}, 3: 8 \times 10.5 \mathrm{~S}$
710-607	Alternate Size Set7	0	0~3	PF1: Switches between $8 \times 10 \mathrm{~L}, 8 \times 10.5 \mathrm{~L}$ and $8.5 \times 11 \mathrm{~L}$. Size-Mix: Inch13/Inch14,0: Default, 1 : $8.5 \times 11 \mathrm{~L}, 2: 8 \times 10 \mathrm{~L}, 3: 8 \times 10.5 \mathrm{~L}$ PF2: Switches between $8 \times 10 \mathrm{~L}, 8 \times 10.5 \mathrm{~L}$ and $8.5 \times 11 \mathrm{~L}$. Size-Mix: Inch13/ Inch14,0: Default, 1: $8.5 \times 11 \mathrm{~L}, 2: 8 \times 10 \mathrm{~L}, 3: 8 \times 10.5 \mathrm{~L}$
710-608	Alternate Size Set8	0	0~4	PF2: Switches between B4S, 8KS, 11x15S and 11x17S. Size-Mix: mm,0: Default, 1: B4S,2: 8KS 3: 11x15S 4: 11x17S PF2: Switches between B4S, 8KS and 11x17S. Size-Mix: mm, 0: Default, 1: B4S,2: $8 \mathrm{KS} \quad 3$: $11 \times 17 \mathrm{~S}$ PF2 setting range is $0 \sim 3$.
710-609	Alternate Size Set9	0	0~2	PF1: Switches between 8×10 and $8 \times 10.5 \mathrm{~S}$. No-Mix: Inch13/Inch14,0: Default, 1: $8 \times 10 \mathrm{~S}, 2: 8 \times 10.5 \mathrm{~S}$ PF2: Switches between $8 \times 10 \mathrm{~S}$ and $8 \times 10.5 \mathrm{~S}$. No-Mix: Inch13/Inch14,0: Default, $1: 8 \times 10 \mathrm{~S}, 2: 8 \times 10.5 \mathrm{~S}$
710-610	Alternate Size Set10	0	0~2	PF1: Switches between B5L and 16KL. Size-Mix: mm,0: Default,1: B5L,2: 16KL PF2: Switches between B5L, 16KL and $8.5 \times 11 \mathrm{~L}$. Size-Mix: mm,0: Default 1:B5L,2: 16KL $\quad 3: 8.5 \times 11 \mathrm{~L}$ PF2 setting range is $0 \sim 3$.
710-612	Size-Mix Mode Size Orientation	1	0~1	Switches between LEF and SEF.,0: LEF, 1: SEF
710-613	Fax Job Mixed-Sizes Standard Mode	0	0~1	Switches to a size (standard/non-standard) that DADF should report to IISS in Fax Mixed-Sizes Mode. 0: Non-standard Mode 1: Standard Mode

Chain 711-xxx CVT DADF NVM LIST

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
$711-001$	DADF Lead Registration Adjustment (Side1) $(37.5 \mathrm{~mm} / \mathrm{sec})$	129	$0 \sim 214$	0.0458 mm	Initial value Omm (129 pulse) $+5.9 \mathrm{~mm}(-129 \mathrm{pulse}) /-3.9 \mathrm{~mm}(+85 \mathrm{pulse})$
$711-002$	DADF Lead Registration Adjustment (Side1) $(50.0 \mathrm{~mm} / \mathrm{sec})$	129	$0 \sim 214$	0.0458 mm	Initial value Omm (129 pulse) $+5.9 \mathrm{~mm}(-129 \mathrm{pulse}) /-3.9 \mathrm{~mm}(+85 \mathrm{pulse})$

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
711-003	DADF Lead Registration Adjustment (Side1) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-004	DADF Lead Registration Adjustment (Side1) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-005	DADF Lead Registration Adjustment (Side1) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-006	DADF Lead Registration Adjustment (Side1) ($133.3 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-007	DADF Lead Registration Adjustment (Side1) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-008	DADF Lead Registration Adjustment (Side1) (200.0mm/sec)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-009	DADF Lead Registration Adjustment (Side1) ($300.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-015	DADF Lead Registration Adjustment (Side2) ($37.5 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-016	DADF Lead Registration Adjustment (Side2) ($50.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-017	DADF Lead Registration Adjustment (Side2) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-018	DADF Lead Registration Adjustment (Side2) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-019	DADF Lead Registration Adjustment (Side2) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-020	DADF Lead Registration Adjustment (Side2) (133.3mm/sec)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-021	DADF Lead Registration Adjustment (Side2) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-022	DADF Lead Registration Adjustment (Side2) (200.0mm/sec)	129	0~214	0.0458mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-023	DADF Lead Registration Adjustment (Side2) ($300.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~214	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -3.9mm (+85 pulse)
711-029	DADF Tail Edge Fine Adjustment (Side1) ($37.5 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment $=$ Lead Registration adjustment value + Tail Edge fine adjustment value
711-030	DADF Tail Edge Fine Adjustment (Side1) ($50.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-031	DADF Tail Edge Fine Adjustment (Side1) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-032	DADF Tail Edge Fine Adjustment (Side1) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-033	DADF Tail Edge Fine Adjustment (Side1) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-034	DADF Tail Edge Fine Adjustment (Side1) ($133.3 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment $=$ Lead Registration adjustment value + Tail Edge fine adjustment value

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
711-035	DADF Tail Edge Fine Adjustment (Side1) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-036	DADF Tail Edge Fine Adjustment (Side1) ($200.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-037	DADF Tail Edge Fine Adjustment (Side1) (300.0mm/sec)	129	0~255	0.0458 mm	Initial value 0mm (129 pulse) +5.9mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-043	DADF Tail Edge Fine Adjustment (Side2) ($37.5 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-044	DADF Tail Edge Fine Adjustment (Side2) ($50.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value Omm (129 pulse) +5.9mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment $=$ Lead Registration adjustment value + Tail Edge fine adjustment value
711-045	DADF Tail Edge Fine Adjustment (Side2) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-046	DADF Tail Edge Fine Adjustment (Side2) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-047	DADF Tail Edge Fine Adjustment (Side2) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-048	DADF Tail Edge Fine Adjustment (Side2) ($133.3 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment $=$ Lead Registration adjustment value + Tail Edge fine adjustment value
711-049	DADF Tail Edge Fine Adjustment (Side2) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-050	DADF Tail Edge Fine Adjustment (Side2) ($200.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment = Lead Registration adjustment value + Tail Edge fine adjustment value
711-051	DADF Tail Edge Fine Adjustment (Side2) ($300.0 \mathrm{~mm} / \mathrm{sec}$)	129	0~255	0.0458mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Tail Edge adjustment $=$ Lead Registration adjustment value + Tail Edge fine adjustment value
711-057	Vertical Ratio Fine Adjustment (37.5mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-058	Vertical Ratio Fine Adjustment (50.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-059	Vertical Ratio Fine Adjustment (66.7mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-060	Vertical Ratio Fine Adjustment (75.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-061	Vertical Ratio Fine Adjustment (100.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-062	Vertical Ratio Fine Adjustment (133.3mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-063	Vertical Ratio Fine Adjustment (150.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-064	Vertical Ratio Fine Adjustment (200.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-065	Vertical Ratio Fine Adjustment (300.0mm/sec)	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor.
711-070	T/A Roll Transport Speed Adjustment (Side1) ($37.5 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
711-071	T/A Roll Transport Speed Adjustment (Side1) $(50.0 \mathrm{~mm} / \mathrm{sec})$	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-072	T/A Roll Transport Speed Adjustment (Side1) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-073	T/A Roll Transport Speed Adjustment (Side1) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5\% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1\% increments Adjusts only Top Speed for Feed Motor.
711-074	T/A Roll Transport Speed Adjustment (Side1) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-075	T/A Roll Transport Speed Adjustment (Side1) ($133.3 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-076	T/A Roll Transport Speed Adjustment (Side1) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-077	T/A Roll Transport Speed Adjustment (Side1) (200.0mm/sec)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-078	T/A Roll Transport Speed Adjustment (Side1) ($300.0 \mathrm{~mm} / \mathrm{sec}$)	15	0~50	0.001	Initial value 1.5% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-080	T/A Roll Transport Speed Adjustment (Side2) ($37.5 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1\% increments Adjusts only Top Speed for Feed Motor.
711-081	T/A Roll Transport Speed Adjustment (Side2) ($50.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1\% increments Adjusts only Top Speed for Feed Motor.
711-082	T/A Roll Transport Speed Adjustment (Side2) ($66.7 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-083	T/A Roll Transport Speed Adjustment (Side2) ($75.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-084	T/A Roll Transport Speed Adjustment (Side2) ($100.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1\% increments Adjusts only Top Speed for Feed Motor.
711-085	T/A Roll Transport Speed Adjustment (Side2) ($133.3 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-086	T/A Roll Transport Speed Adjustment (Side2) ($150.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-087	T/A Roll Transport Speed Adjustment (Side2) ($200.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor.
711-088	T/A Roll Transport Speed Adjustment (Side2) ($300.0 \mathrm{~mm} / \mathrm{sec}$)	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1\% increments Adjusts only Top Speed for Feed Motor.
711-140	DADF Lead Registration Adjustment (Side1) Replace All	129	0~214	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -3.9 mm (+85 pulse) Rewrites all data of 711-001 to 711-009 with specified data.
711-141	DADF Lead Registration Adjustment (Side2) Replace All	129	0~214	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -3.9 mm (+85 pulse) Rewrites all data of 711-015 to 711-023 with specified data.
711-142	DADF Tail Edge Fine Adjustment (Side1) Replace All	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Rewrites all data of 711-029 to 711-037 with specified data.
711-143	DADF Tail Edge Fine Adjustment (Side2) Replace All	129	0~255	0.0458 mm	Initial value 0 mm (129 pulse) +5.9 mm (-129 pulse) / -5.8 mm (+126 pulse) Rewrites all data of 711-043 to 711-051 with specified data.
711-144	Vertical Ratio Fine Adjustment Replace All	20	0~40	0.001	Initial value 0\% (20) +/-2\% (+/-20), 0.1\% increments Adjusts only Top Speed for Feed Motor and Regi Motor. Rewrites all data of 711-057 to 711-065 with specified data.

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
711-145	T/A Roll Transport Speed Adjustment (Side1) Replace All	15	0~50	0.001	Initial value 1.5\% (15) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor. Rewrites all data of 711-070 to 711-078 with specified data.
711-146	T/A Roll Transport Speed Adjustment (Side2) Replace All	0	0~50	0.001	Initial value 0\% (0) Maximum 5\% (50), Minimum 0\% (0), 0.1% increments Adjusts only Top Speed for Feed Motor. Rewrites all data of 711-080 to 711-088 with specified data.
711-150	Loop Amount Adjustment (Side1) (x1 Pulse)	3	0~9	0.6835 mm	Initial value 3.6 mm (172 pulse, 130 pulse for High Speed mode) $+4.1 \mathrm{~mm} /-2.1 \mathrm{~mm} 10$ pulse increments
711-151	Loop Amount Adjustment (Side2) (x6 Pulse)	5	0~14	0.4581 mm	Initial value 4.0 mm (256 pulse) +4.1 mm (346 pulse) / -2.3 mm (206 pulse) 10 pulse increments
711-152	Simplex Speed Mode Switch	0	0~1	-	0 : High Speed mode Off 1: High Speed mode On
711-158	Position Adjustment for End Position during Invert (x4 Pulse)	10	20	0.4581 mm	Initial value 31.1 mm (450 pulse) +4.6 mm (766 pulse) / -4.6 mm (566 pulse) 10 pulse increments
711-164	Slow Scan Original Size Correction Value	50	0~100	0.1 mm	Correction value for [Size Detection Auto-Correction Function] Original Size Correction Value: $+/-5 \mathrm{~mm}$
711-200	Position Adjustment for Pre Regist End Position (Original Lead Edge Eject Amount from Regi Roll in x2 Pulse Increments)	8	0~16	0.6249 mm	Initial value 0 mm (0 pulse) +5.0 mm (80 pulse) / -5.0 mm (-80 pulse) 10 pulse increments This value also applies to Scan Position Transport Time.
711-201	Position Adjustment for Feed Motor Off Start Position (x3 Pulse)	8	1~15	0.6249 mm	Initial value 5.0 mm (80 pulse) +4.4 mm (150 pulse) / -4.4 mm (10 pulse) 10 pulse increments
711-202	Position Adjustment for Position to Start Increasing Speed in Duplex (x5 Pulse)	10	0~20	0.4581 mm	Initial value 50.4 mm (1080 pulse) +4.6 mm (1180 pulse) / -4.6 mm (980 pulse) 10 pulse increments
711-203	Position Adjustment for First-Out Pre Feed Position in Duplex (x7 Pulse)	5	0~10	0.6835 mm	Initial value 14.6 mm (224 pulse) +3.4 mm (274 pulse) / -3.4 mm (174 pulse) 10 pulse increments
711-204	Position Adjustment for N.R. Solenoid On Position during Invert Output (x8 Pulse)	10	0~20	0.4581 mm	Initial value 15.0 mm (241 pulse) +4.6 mm (341 pulse) / -4.6 mm (141 pulse) 10 pulse increments
711-205	Side2 Feed Motor Reverse Start Time Adjustment Value (T1 ms)	4	0~20	4 msec	Initial value $0 \mathrm{~ms}+80 \mathrm{~ms} /-20 \mathrm{~ms}$, 4ms increments
711-207	Next Feed Start Time Adjustment Value (T3 ms)	5	2~27	4msec	Initial value $0 \mathrm{~m}+88 \mathrm{~ms} /-12 \mathrm{~ms}$, 4 ms increments
711-208	Simplex Next Pre Regist Start Time Adjustment Value (T4 ms)	6	6~25	4 msec	Initial value $4 \mathrm{~ms}+76 \mathrm{~ms} / 0 \mathrm{~ms}$, 4 ms increments
711-209	Invert Start Time Adjustment Value (T6 ms)	5	0~25	4 msec	Initial value $0 \mathrm{~ms}+80 \mathrm{~ms} /-20 \mathrm{~ms}$, 4ms increments
711-210	N.R. Solenoid On Start Time Adjustment Value during Invert Output (T7 ms)	5	0~15	4 msec	Initial value0ms +40ms/-20ms, 4ms increments
711-211	First-Out Original Feed Start Time Adjustment Value (T8 ms)	5	0~25	4msec	Initial value $0 \mathrm{~ms}+80 \mathrm{~ms} /-20 \mathrm{~ms}, 4 \mathrm{~ms}$ increments
711-212	Duplex Next Pre Regist Start Time Adjustment Value (T9 ms)	6	6~25	4msec	Initial value $4 \mathrm{~ms}+76 \mathrm{~ms} / 0 \mathrm{~ms}$, 4ms increments
711-215	Slow Down Start Time Adjustment Value during Nudger Lift Down (T11 ms)	10	0~20	4msec	Initial value 0ms +/-40ms, 4ms increments
711-216	Slow Down Start Time Adjustment Value during Nudger Lift Up (T12 ms)	10	10~20	4msec	Initial value0ms +40ms/-0ms, 4ms increments
711-217	Feed Out Sensor Static Jam Detection Sampling No. Setting	20	1~40	1 time	Initial value 20 times +20 times/-19 times, 1 time increments

Table 2 CVT DADF NVM LIST

Chain-Link	Content	Default	Range	1 Count	Meaning
711-218	Feed Out Sensor Act. Correction Coefficient - A9	59	0~255	0.01	Initial value 0.59 0.00~2.55, 0.01 increments
711-219	Feed Out Sensor Act. Correction Coefficient - B9	104	0~255	1	Initial value $1040 \sim 255,1$ increments
711-270	ADF-IIT Combine Adjustment Value Data 1	0	0~255	-	Adjustment Value Data 1 sent to IIT during ADF-IIT Combine.
711-271	ADF-IIT Combine Adjustment Value Data 2	0	0~255	-	Adjustment Value Data 2 sent to IIT during ADF-IIT Combine.
711-272	ADF-IIT Combine Adjustment Value Data 3	0	0~255	-	Adjustment Value Data 3 sent to IIT during ADF-IIT Combine.
711-273	ADF-IIT Combine Adjustment Value Data 4	0	0~255	-	Adjustment Value Data 4 sent to IIT during ADF-IIT Combine.
711-274	ADF-IIT Combine Adjustment Value Data 5	0	0~255	-	Adjustment Value Data 5 sent to IIT during ADF-IIT Combine.
711-275	ADF-IIT Combine Adjustment Value Data 6	0	0~255	-	Adjustment Value Data 6 sent to IIT during ADF-IIT Combine.
711-276	ADF-IIT Combine Adjustment Value Data 7	0	0~255	-	Adjustment Value Data 7 sent to IIT during ADF-IIT Combine.
711-277	ADF-IIT Combine Adjustment Value Data 8	0	0~255	-	Adjustment Value Data 8 sent to IIT during ADF-IIT Combine.
711-278	ADF-IIT Combine Adjustment Value Data 9	0	0~255	-	Adjustment Value Data 9 sent to IIT during ADF-IIT Combine.
711-279	ADF-IIT Combine Adjustment Value Data 10	0	0~255	-	Adjustment Value Data 10 sent to IIT during ADF-IIT Combine.
711-280	ADF-IIT Combine Adjustment Value Data 11	0	0~255	-	Adjustment Value Data 11 sent to IIT during ADF-IIT Combine.
711-281	ADF-IIT Combine Adjustment Value Data 12	0	0~255	-	Adjustment Value Data 12 sent to IIT during ADF-IIT Combine.
711-282	ADF-IIT Combine Adjustment Value Data 13	0	0~255	-	Adjustment Value Data 13 sent to IIT during ADF-IIT Combine.
711-283	ADF-IIT Combine Adjustment Value Data 14	0	0~255	-	Adjustment Value Data 14 sent to IIT during ADF-IIT Combine.
711-284	ADF-IIT Combine Adjustment Value Data 15	0	0~255	-	Adjustment Value Data 15 sent to IIT during ADF-IIT Combine.
711-297	Communication Fail Bypass	0	0~1	-	0: Disable Communication Fail Bypass 1: Enable Communication Fail Bypass
711-468	DADF Open/Close Life Count (upper digits)	3	0~65535	-	260 K * Life value may be changed in Counter Write Command. It cannot be written in Chain Link setting.
711-469	DADF Open/Close Life Count (lower digits)	63392	0~65535	-	
711-470	DADF Document Feed Life Count (upper digits)	3	0~65535	-	200 K * Life value may be changed in Counter Write Command. It cannot be written in Chain Link setting.
711-471	DADF Document Feed Life Count (lower digits)	3392	0~65535	-	
711-472	DADF Simplex and Duplex Document Feed Life Count (upper digits)	13	0~65535	-	912 K * Life value may be changed in Counter Write Command. It cannot be written in Chain Link setting.
711-473	DADF Simplex and Duplex Document Feed Life Count (lower digits)	60032	0~65535	-	
711-474	Invert Solenoid Life Count (upper digits)	7	0~65535	-	500 K * Life value may be changed in Counter Write Command. It cannot be written in Chain Link setting.

Chain 715-xxx IISS
Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
$715-007$	PH_CL_Contone Scan Speed	0	$0 \sim 1$	Switches scan speed in Scan Photographic Printing Paper mode. $0:$ Half Speed mode 1: Normal Speed mode
$715-017$	IIT Fail Bypass	0	$0 \sim 1$	$0:$ Fail Bypass Off, 1: Fail Bypass On
$715-018$	FAN Control Mode	0	$0 \sim 1$	$0:$ Normal mode; $1:$ M/C for Multiple Stores mode
$715-020$	No. of APS	1	$0 \sim 1$	$0: 1$ APS, 1:2 APS

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-022	Lamp Fan Fail Bypass	1	0~1	Existence or of Lamp Fan Fail Detection 0: Lamp Fan Fail Detection existent 1: Lamp Fan Fail Detection not existent
715-023	Lamp Fan On Time (Low Rotation)	15	0~60	Lamp Fan On at Low Speed time (in minute)
715-024	Lamp Fan Off Time	1	0~60	Lamp Fan Off time (in minute)
715-025	FL Timer Set	0	0~1	0: Standard FL Timer settings (30min rest/0.5sec On), 1: Condensation mode setting (Diag 715026, 715-027 timer settings apply)
715-026	Lamp ON Interval	30	0~60	Interval setting (unit: min)
715-027	Lamp ON Time	1	0~60	Lamp ON time setting (unit: sec)
715-030	IIT Failure Part Diagnosis	1	0~65535	Writing 1 allows starting diagnostics of a failed IIT part. Reading this NVM after diagnostics is made on a failed part makes a certain presumed part No. appear. If a fail occurs during diagnostics of a failed part, Fail Code associated with the fail is logged in this NVM and the diagnostics ends. *Even if 1 is written, 1 is not actually done. *If any value other than 1 is entered, the value becomes illegal.
715-050	Platen SS Registration Adjustment	100	16~184	Slow Scan Direction Regi Correction Value ($0.036 \mathrm{~mm} / \mathrm{increment}$), Factory Settings
715-051	Platen SS Reduce/Enlarge Adjustment	50	44~56	Slow Scan Direction Regi Correction Value (0.1\%/increment), Factory Settings
715-052	Platen Glass Type	2	0~2	0: Platen model, 1: Belt DADF, 2: CVT, Factory Settings
715-053	Platen PRadjF	120	0~240	Fast Scan Direction Regi Correction Value (Dot), VLSS=PROMVLSS+(PRadjF-120)x2, Factory Set- tings
715-056	CVT FS Offset Side1-1 (139.7-148)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-057	CVT FS Offset Rear Side2-1 (139.7~148)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-058	CVT FS Offset Side1-2 (182-194)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-059	CVT FS Offset Side2-2 (182-194)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-060	CVT FS Offset Side1-3 (203.2)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-061	CVT FS Offset Side2-3 (203.2)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-062	CVT FS Offset Side1-4 (210)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-063	CVT FS Offset Side2-4 (210)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-064	CVT FS Offset Side1-5 (214.9-215.9)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-065	CVT FS Offset Side2-5 (214.9-215.9)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-066	CVT FS Offset Side1-6 (254-257)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-067	CVT FS Offset Side2-6 (254-257)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-068	CVT FS Offset Side1-7 (266.7-267)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-069	CVT FS Offset Side2-7 (266.7-267)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-070	CVT FS Offset Side1-8 (279.4)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-071	CVT FS Offset Side2-8 (279.4)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-072	CVT FS Offset Side1-9 (297)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment}$) in CVT. Factory Settings
715-073	CVT FS Offset Side2-9 (297)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-074	CVT FS Offset Side3-1 (139.7-148)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-075	CVT FS Offset Side4-1 (139.7-148)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-076	CVT FS Offset Side3-2 (182-194)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-077	CVT FS Offset Side4-2 (182-194)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-078	CVT FS Offset Side3-3 (203.2)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-079	CVT FS Offset Side4-3 (203.2)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-080	CVT FS Offset Side3-4 (210)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-081	CVT FS Offset Side4-4 (210)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-082	CVT FS Offset Side3-5 (214.9-215.9)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-083	CVT FS Offset Side4-5 (214.9-215.9)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-084	CVT FS Offset Side3-6 (254-257)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-085	CVT FS Offset Side4-6 (254-257)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-086	CVT FS Offset Side3-7 (266.7-267)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-087	CVT FS Offset Side4-7 (266.7-267)	120	0~240	Fast Scan Direction Regi Correction Value ($0.1 \mathrm{~mm} / \mathrm{increment)}$) in CVT. Factory Settings
715-088	CVT FS Offset Side3-8 (279.4)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-089	CVT FS Offset Side4-8 (279.4)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-090	CVT FS Offset Side3-9 (297)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-091	CVT FS Offset Side4-9 (297)	120	0~240	Fast Scan Direction Regi Correction Value (0.1mm/increment) in CVT. Factory Settings
715-092	WREF_ADJ_Red	140	70~255	Red W-Ref correction coefficient, Factory Settings
715-093	WREF_ADJ_Green	140	70~255	Green W-Ref correction coefficient, Factory Settings
715-094	WREF_ADJ_Blue	140	70~255	Blue W-Ref correction coefficient, Factory Settings
715-102	WREF_Offset_Red	63	0~127	Red W-Ref Correction Coefficient; Correction for individual sheets of paper
715-103	WREF_Offset_Green	63	0~127	Green W-Ref Correction Coefficient; Correction for individual sheets of paper
715-104	WREF_Offset_Blue	63	0~127	Blue W-RefCorrection Coefficient; Correction for individual sheets of paper
715-106	IIT Paper Code	0	0~8	0: NVM uses coefficient for each individual paper type 1: J paper, 2: P paper, 3: C2 paper, 4: Green100 paper, 5: Digital Color Xpression, 6: Color Tech+, 7: Xerox4200 paper, 8: Xerox Business
715-107	Nut_Angle_Front	990	0~1980	Light Axis Front Nut rotation angle (990~1980: Right revolution angle, 0~990: Left revolution angle)
715-108	Nut_Angle_Rear	990	0~1980	Light Axis Rear Nut rotation angle (990~1980: Right revolution angle, 0~990: Left revolution angle)
715-118	Ctracs Lamp On Wait Time	0	0~300	Lamp On Wait Time before auto gradation adjustment (in sec)
715-119	WREF Lamp On Wait Time	0	0~300	Lamp On Wait Time before W-Ref correction (in sec)
715-201	ACS Detection Level Extension	0	0~1	0: Normal; 1: Extend adjustment range
715-241	Black Line Correction Level Value (for Color)	8	0~15	Black Line Correction Strength Level Setting when reading Color, the larger the value, the stronger the correction strength ("0" means correction reset).
715-242	Black Line Correction Level Value (for BW)	8	0~15	Black Line Correction Strength Level Setting when reading BW, the larger the value, the stronger the correction strength ("0" means correction reset).
715-243	DCIC TEST MODE	0	0~7	Test Mode Setting for Designing Black Line Correction Parameter, "0" means normal operation.
715-249	DCIC Level for White Line	8	0~15	Sets White Line detection strength level for background. As the value is larger, detection strength increases. ("0" clears the detection.)
715-250	DCIC Original Level for Black Line	8	0~15	Sets Black Line detection strength level for original image. As the value is larger, detection strength increases. ("0" clears the detection.)
715-251	DCIC Original Level for White Line	8	0~15	Sets Black Line detection strength level for original image. As the value is larger, detection strength increases. ("0" clears the detection.)
715-252	DCIC Detection Result	0	0~1	Result of abnormal garbage detection. "1" indicates abnormal garbage has been detected.
715-280	HOSEI_SCAN (for detection)	3	0~6	Correction Coefficient No "Factory Settings"
715-281	HOSEI_SCAN (for image)	3	0~6	Correction Coefficient No "Factory Settings"

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-282	CCD Calib Y Scan Red	0	0~1023	CCD Calib Y patch when reading Red (Reflectivity LSB) "Factory Settings"
715-283	CCD Calib Y Scan Green	0	0~1023	CCD Calib Y patch when reading Green (Reflectivity LSB) "Factory Settings"
715-284	CCD Calib Y Scan Blue	0	0~1023	CCD Calib Y patch when reading Blue (Reflectivity LSB) "Factory Settings"
715-285	CCD Calib M Scan Red	0	0~1023	CCD Calib M patch when reading Red (Reflectivity LSB) "Factory Settings"
715-286	CCD Calib M Scan Green	0	0~1023	CCD Calib M patch when reading Green (Reflectivity LSB) "Factory Settings"
715-287	CCD Calib M Scan Blue	0	0~1023	CCD Calib M patch when reading Blue (Reflectivity LSB) "Factory Settings"
715-288	CCD Calib C Scan Red	0	0~1023	CCD Calib C patch when reading Red (Reflectivity LSB) "Factory Settings"
715-289	CCD Calib C Scan Green	0	0~1023	CCD Calib C patch when reading Green (Reflectivity LSB) "Factory Settings"
715-290	CCD Calib C Scan Blue	0	0~1023	CCD Calib C patch when reading Blue (Reflectivity LSB) "Factory Settings"
715-291	CCD Calib PK Scan Red	0	0~1023	CCD Calib PK patch when reading Red (Reflectivity LSB) "Factory Settings"
715-292	CCD Calib PK Scan Green	0	0~1023	CCD Calib PK patch when reading Green (Reflectivity LSB) "Factory Settings"
715-293	CCD Calib PK Scan Blue	0	0~1023	CCD Calib PK patch when reading Blue (Reflectivity LSB) "Factory Settings"
715-300	A6/Postcard Detection	0	0~2	0: Table default 1: A6SEF 2: PostcardSEF (mm series) or PostcardSEF (Inch series)
715-302	A4S/8.5in Detection 2	3	0~6	0:210mm, 1:211mm, 2: 212 mm , 3: $213 \mathrm{~mm}, 4: 214 \mathrm{~mm}, 5: 215 \mathrm{~mm}, 6: 216 \mathrm{~mm}$
715-303	B5/8x10 Detection	0	0~3	0: Table default 1: B5LEF or ExecutiveLEF 2: $8 \times 10 \mathrm{LEF} / 8 \times 10.5 \mathrm{LEF} 3$: Off
715-305	$8.5 \times 13 / 8.5 \times 14$ Detection	0	0~3	0: Table default 1: 12.4inch 2: 13inch 3: 14inch
715-306	Original Detection Table for Special Paper	0	0~2	0: Do not use Special Table 1: APS OFF, A4; APS ON, A3 2: APS OFF, Letter; APS ON, 17inch
715-307	Original Size Detection Table Switch	2	1~5	1: Inch13-2 2: mm-2 3: mm 4: Inch13-1 5: Inch14
715-308	5.5x8.5/Postcard Detection	0	0~2	0: Table default 1: A5SEF or 5.5x8.5SEF 2: PostCardLEF
715-310	A3/11x17 Detection	0	0~3	0: Table default 1: A3SEF 2: 11x17SEF 3: A3SEF, 11x17SEF
715-311	A4/8.5x11 Detection	0	0~3	0: Table default 1: A4LEF 2: 8.5x11LEF 3: $8.5 \times 11 \mathrm{LEF}$, A4LEF
715-312	A6S Threshold	90	50~110	Changes fast scan threshold for non-standard, Postcard SEF and A6SEF. If any value out of the range of 50 to 110 is set up, fast scan threshold shall be 90 mm . 50: 50 mm or more; 110: 110 mm ($1 \mathrm{~mm} /$ step)
715-344	Original Size Detection, Platen Background Countermeasure for Dirt	0	0~1	0 : Detection by 4 registers 1: Detection by 3 registers (countermeasure for dirt)
715-345	GCO/TFX Size Switch	1	0~1	0: GCO (16K/8K=270x195/270x390) 1: TFX (16K/8K=267x194/267x388)
715-346	B4/8K Fast Scan Threshold Value Setting	3	0~6	0: $256 \mathrm{~mm}, 1: 258 \mathrm{~mm}, 2: 260 \mathrm{~mm}, 3: 262 \mathrm{~mm}, 4: 264 \mathrm{~mm}, 5: 266 \mathrm{~mm}, 6: 268 \mathrm{~mm}$
715-347	8K/11x17SEF Fast Scan Threshold Value Setting	3	0~6	0: $269 \mathrm{~mm}, 1: 271 \mathrm{~mm}, 2: 273 \mathrm{~mm}, 3: 275 \mathrm{~mm}, 4: 277 \mathrm{~mm}, 5: 279 \mathrm{~mm}, 6: 281 \mathrm{~mm}$
715-349	B6/5x7 Detection	0	0~2	0: Table default 1: B6SEF 2: 5x7SEF
715-362	FL_CHK_NG_Count	0	0~65535	Lamp Check NG Count (Reset when lamp is replaced)
715-363	FL_CHK_NG_Data	0	0~1023	Data obtained when Lamp Check Fails (Read G Write data compared at checking)
715-418	AOCerr	0	0~255	No. of times the AOC flow has ended abnormally
715-550	BW Copy during AE BGR-AE Adjustment Level (Text/Photo)	0	0~4095	Value (0~15) x $3=$ Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit ~ 3 bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy

Chain-Link	Content	Default	Range	Meaning
715-551	Color Copy at during AE BGR-AE Adjustment Level (Text/Photo)	0	0~4095	Value (0~15) $\times 3=$ Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit \sim 3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-552	BW Copy during AE BGR-AE Adjustment Level (Text)	0	0~4095	Value (0~15) x 3 = Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-553	Color Copy at during AE BGR-AE Adjustment Level (Text)	0	0~4095	Value (0~15) x 3 = Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit~3bit, Platen 4Bit 7Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-554	BW ContoneScan during AE BGR-AE Adjustment Level (Text/Photo)	0	0~4095	Value (0~15) x 3 = Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit \sim 3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-555	Color ContoneScan during AE BGR-AE Adjustment Level (Text/Photo)	0	0~4095	Value (0~15) $\times 3$ = Erase Amount (8bit conversion) (x12 for 10bit conversion) Lower digits Obit \sim 3bit, Platen 4Bit~7Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-600	AE1 FS External Area	255	0~65535	High Speed AE/Fast Scan Direction undetected area INSTV At SMPST, SMPED setting
715-601	AE2 FS External Area	255	0~65535	High Speed AE/Fast Scan Direction undetected area INSTV At SMPST, SMPED setting
715-602	AE3 FS External Area	255	0~65535	High Speed AE/Fast Scan Direction undetected area INSTV At MAEFST, MAEFSE setting (* Area used as detection area is used for PreIPS noise removal as well)
715-603	AE4 FS External Area	255	0~65535	High Speed AE/Fast Scan Direction undetected area INSTV At SMPST, SMPED setting
715-604	Line to Fix Variation	60	0~65535	High Speed AE/Slow Scan Direction variable fixed position/NCON, Slow Scan Edge AE Detection Amount (0.16 mm increments)
715-605	HAE Line to Fix Variation	240	0~65535	High Speed AE/Slow Scan Direction End position, Slow Scan Edge AE Detection Amount HAESSE
715-606	MAE Line to Fix Variation	240	0~65535	High Speed AE/Slow Scan Direction End position, Slow Scan Edge AE Detection Amount MAESSE
715-607	NAE Line to Fix Variation	240	0~65535	High Speed AE/Slow Scan Direction End position, Slow Scan Edge AE Detection Amount NAESSE
715-608	Variation Control for BW Copy	1	0~1	LIM Control mode
715-609	Variation Control for Color Copy	1	0~1	LIM Control mode
715-610	Variation Control for FAX, BinScan	1	0~1	LIM Control mode
715-611	Variation Control for ContoneScan	1	0~1	LIM Control mode
715-612	Background Color Suppression Threshold Value (HAE)	127	0~255	HAE Histogram threshold value Specify using 100/255\% increments. HAETH
715-613	Background Color Suppression Threshold Value (NAE1)	33	0~255	NAE Block Count Threshold (Color Block Count Threshold) Set in 100/255\% increments. NAEBLK- THC
715-614	Background Color Suppression Threshold Value (NAE2)	204	0~255	NAE Block Count Threshold (Specified Color Block threshold value) Set in 100/255\% increments. NAEBLKTHY

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-615	Background Color Suppression Threshold Value (NAE3)	8	0~65535	NAE Color Line threshold value Specify the no. of lines. NAETHC
715-616	Background Color Suppression Threshold Value (NAE4)	4	0~65535	NAE Color Line threshold value Specify the no. of lines. NAETHY
715-617	AE Control of FS Length	0	0~1	0 : Always use the document size detection result 1: Use the input document size as the detection size For AES parameter calculation.
715-618	Minimum FS Length for AE	500	0~65535	Fast Scan Detection Min range (0.1mm increments) For AES parameter calculation.
715-619	AE Parameter Slow Scan Enlargement Correction Upper Limit 1	4000	0~4000	Slow Scan Detection Max range (0.1mm increments) For RAE.
715-620	AE Parameter Slow Scan Enlargement Correction Upper Limit 2	4000	0~4000	Slow Scan Detection Max range (0.1mm increments) For MAE.
715-621	AE Parameter Slow Scan Enlargement Correction Upper Limit 3	4000	0~4000	Slow Scan Detection Max range (0.1mm increments) For HAE.
715-622	AE Parameter Slow Scan Enlargement Correction Upper Limit 4	4000	0~4000	Slow Scan Detection Max range (0.1mm increments) For NAE.
715-629	TX_BW_Fax Offset Level of AE (Normal, Pencil)	0	0~8191	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit $\sim 3 b i t$, Platen 4bit $\sim 7 b i t$, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy
715-630	TP_BW_Copy_Fax Suppression Level of AE (Print, Photograph, Copy)	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)
715-631	TP_BW_Copy_Fax Offset Level of AE (Print, Photograph, Copy)	273	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit $\sim 3 b i t$, Platen 4bit $\sim 7 b i t$, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy
715-632	TX_BW_Copy_Fax Suppression Level of AE (Normal, Pencil Text)	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF. 8bit~11bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)
715-633	TX_BW_Copy_Fax Offset Level of AE (Normal, Pencil Text)	273	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy
715-634	TPL_BW_Copy_Fax Suppression Level of AE (Light Document)	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit~3bit, Platen 4bit~7bit, CVT or DADF 8bit~11bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)
715-635	TPL_BW_Copy_Fax Offset Level of AE (Light Document)	273	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit $\sim 3 b i t$, Platen 4bit $\sim 7 b i t$, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy
715-636	TRP_BW_Copy_Fax Suppression Level of AE (Tracing Paper)	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF 8bit~11bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-637	TRP_BW_Copy_Fax Offset Level of AE (Tracing Paper)	273	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit~3bit, Platen 4bit~7bit, CVT or DADF 8bit 11bit, CVT or DADF 2 Sided Copy
715-638	Background Color Suppression Level Text/Photo Mode (Print, Photograph Paper, Inkjet, Highlighted) for Color Copy.	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit~7Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy Tools and coupling (Determine the Parameter Selection Level by adding the tool value (level 0 to 4) and the NVM Level (level 0 to 4). If the total is Level 4 and above, it is determined as Level 4) (* Also used by the PreIPS EAER_DAT Removal Level)
715-639	Background Color Suppression Offset Level Text/ Photo Mode (Print, Photograph Paper, Inkjet, Highlighted) for Color Copy	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-640	Background Color Suppression Level Text (Normal) for Color Copy	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit~7Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy Tools and coupling (Determine the Parameter Selection Level by adding the tool value (level 0 to 4) and the NVM Level (level 0 to 4). If the total is Level 4 and above, it is determined as Level 4) (* Also used by the PreIPS EAER_DAT Removal Level)
715-641	Background Color Suppression Offset Level Text (Normal) for Color Copy	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-642	TP_BW_Contone Suppression Level of AE	819	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit ~ 3 bit, Platen 4bit $\sim 7 b i t$, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)
715-643	TP_BW_Contone Offset Level of AE	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF 8bit 11 bit, CVT or DADF 2 Sided Copy
715-644	woTP_BW_Contone Suppression Level of AE	819	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) 0bit ~ 3 bit, Platen 4bit $\sim 7 b i t$, CVT or DADF 8bit ~ 11 bit, CVT or DADF 2 Sided Copy (* Used as the PreIPS EAER_DAT suppression level as well)
715-645	woTP_BW_Contone Offset Level of AE	0	0~4095	0: Strength Level 0 (standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 and above: Strength Level 0 (standard) Obit~3bit, Platen 4bit~7bit, CVT or DADF 8bit 11 bit, CVT or DADF 2 Sided Copy

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-646	Color Contone Scan Background Color Suppression Level (Text/Photo)	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy Tools and coupling (Determine the Parameter Selection Level by adding the tool value (level 0 to 4) and the NVM Level (level 0 to 4). If the total is Level 4 and above, it is determined as Level 4) (* Also used by the PreIPS EAER DAT Removal Level)
715-647	Color Contone Scan Background Color Suppression Offset Level (Text/Photo)	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy
715-648	Color Contone Scan Background Color Suppression Level (other than Text/Photo)	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim Bit CVT or DADF machine 8Bit~11Bit CVT or DADF machine 2 Sided Copy (* Also used by the PreIPS EAER_DAT Removal Level)
715-649	Color Contone Scan Background Color Suppression Offset Level (other than Text/Photo)	0	0~4095	0: Strength Level 0 (Standard), 1: Strength Level 1, 2: Strength Level 2, 3: Strength Level 3, 4: Strength Level 4, 5~15 or above: Level 0 (Standard) Obit~3bit, Platen 4Bit \sim 7Bit CVT or DADF machine 8Bit ~ 11 Bit CVT or DADF machine 2 Sided Copy
715-660	2 Sided AE Control Parameter Lower Limit Multiplication Coefficient	0	0~255	Used when calculating the HAE background value. 1/255 units. 255 indicates 1.
715-661	2 Sided AE Control Parameter Upper Limit Multi- plication Coefficient	255	0~255	Used when calculating the HAE background value. Set as Upper limit multiplication coefficient + Lower limit multiplication coefficient = $2551 / 255$ units. 255 indicates 1 .
715-662	2 Sided AE Control Parameter Relative Margin OFST	8	0~255	The value added (or subtracted) when comparing the RAE background value and the HAE background value. When the value is large, Side2 cannot be selected.
715-663	2 Sided AE Control Parameter Background Level Threshold Value LEVEL N	16	0~255	The value used to compare with the HAE background value when selecting 2 Sided. 2 Sided is not selected if this NVM is not reached for the HAE background value.
715-664	2 Sided AE Control Parameter Forced Selection	3	0~3	0: 2 Sided AE Control 1: Forced Side 1 (L0) Selection. 2: Force Side2 (L1) output
715-668	Dual Color Copy Control	0	0~1	Dual Color Copy Control. DLUT Parameter Selection Factor 0: Normal 1: Black (emphasize BW)
715-669	Control of Tracing Paper Mode	0	0~1	0:,Normal, 1: Tracing Paper mode (* Used as PrelPS C mode as well)
715-680	Default Value Color Balance Adjustment Level Y Color Low density	4	0~8	Default Value Color Balance Adjustment Level Y Color Low density
715-681	Default Value Color Balance Adjustment Level Y Color Medium density	4	0~8	Default Value Color Balance Adjustment Level Y Color Medium density
715-682	Default Value Color Balance Adjustment Level Y Color High density	4	0~8	Default Value Color Balance Adjustment Level Y Color High density
715-683	Default Value Color Balance Adjustment Level M Color Low density	4	0~8	Default Value Color Balance Adjustment Level M Color Low density

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning																
715-684	Default Value Color Balance Adjustment Level M Color Medium density	4	0~8	Default Value Color Balance Adjustment Level M Color Medium density																
715-685	Default Value Color Balance Adjustment Level M Color High density	4	0~8	Default Value Color Balance Adjustment Level M Color High density																
715-686	Default Value Color Balance Adjustment Level C Color Low density	4	0~8	Default Value Color Balance Adjustment Level C Color Low density																
715-687	Default Value Color Balance Adjustment Level C Color Medium density	4	0~8	Default Value Color Balance Adjustment Level C Color Medium density																
715-688	Default Value Color Balance Adjustment Level C Color High density	4	0~8	Default Value Color Balance Adjustment Level C Color High density																
715-689	CL Balance Def K / Low Density	4	0~8	Default Color Balance Adjustment Level K Color Low Density																
715-690	CL Balance Def K / Medium Density	4	0~8	Default Color Balance Adjustment Level K Color Medium Density																
715-691	CL Balance Def K / High Density	4	0~8	Default Color Balance Adjustment Level K Color High Density																
715-702	PLTN/Belt FS Reduce/Enlarge Adjustment	50	0~100	Fine adjustment for Fast Scan Direction Reduce/Enlarge ratios. Specify within the range of 0 and 100 in increments of 1 . The value indicates the fine adjustment with $0=-5 \%, 50=0 \%$ and $100=5 \%$ at $+/-5 \%$ (0.1% increments). (No adjustment in Factory Settings)																
715-703	CVT FS Reduce/Enlarge Adjustment	50	0~100	Fine adjustment for Fast Scan Direction Reduce/Enlarge ratios. Specify within the range of 0 and 100 in increments of 1 . The value indicates the fine adjustment with $0=-5 \%, 50=0 \%$ and $100=5 \%$ at $+/-5 \%$ (0.1% increments). (No adjustment in Factory Settings)																
715-704	IPS Through Setting1	0	0~65535	IPS Through Setting 1. Force to skip Image Processing functions at memory sample scan. Change a value at S/W \& H/W DEBUG. Always set " 0 " in normal use. (Handle with care) --The usage is as follows: Whether to execute/force to skip functions is assigned to each bit. However, you can specify multiple bits at a time. [PF1]\| [PF2],D'0: AES	BEXG_TH,D'1: DF39	FSRE_TH,D'2: SSR	SSR_TH,D'3: FSRE	NSP_TH,D'4: NSP	AER_TH,D'5: 4DLUT	TRC2_TH,D'6: 5AER	ED_TH,D'7: 5MUL	SEL_TH,D'8: 5MWA	SEL2_TH, D'9: 4AER	(spare),D'10: 4MUL	(spare),D'11: TRC	(spare), D'12: ED	(spare), D'13: DIRECT	(spare), D'14: (spare)	(spare), D'15: (spare)	(spare) The specified bit value is: $\mathrm{B}^{\prime} 0$: Unchanged, $\mathrm{B}^{\prime} 1$: Forced to skip.
715-705	IPS Through Setting2	0	0~65535	IPS Through Setting 2 Set the 4DLUT Bypass mode. This setting is valid only when IPS Bypass Setting1 is set to force skip 4DLUT. Change a value at S/W \& H/W DEBUG. 0: $L^{*} a^{*} b^{*}$ through from Y block 1: L*a*b* through from M block 2: L*a* ${ }^{*}$ through from C block 3: L*a* ${ }^{*}$ through from K block 4: L* through from YMCK block 5: a* through from YMCK block 6: b^{*} through from YMCK block 7~65535: Oh output																
715-720	Normal Density Text (BW Copy)	128	0~256	B/W COPY Text Normal Density Adjustment																
715-721	High Density Text (BW Copy)	128	0~256	B/W COPY Text Darker 3 Density Adjustment																
715-722	Normal Density Text (Scan/Fax)	128	0~256	Scan/FAX Text Normal Density Adjustment																
715-723	High Density Text (Scan/Fax)	128	0~256	Scan/FAX Text Darker 3 Density Adjustment																
715-724	PLTN RAE SS Not Detect Area	0	0~65535	Slow Scan Non-detection area Setup Value at Real Time AE for Platen model. BASE, HAEST, MAESST, NAESS																

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
715-725	DADF-P-Job RAE SS Not Detect Area	0	0~65535	Slow Scan Non-detection area Setup Value at Real Time AE for DADF model Platen job. Or, Slow Scan Non-detection area Setup Value at Real Time AE for CVT job. BASE, HAEST, MAESST, NAESS
715-726	DADF-D-Job RAE SS Not Detect Area	0	0~65535	Slow Scan Non-detection area Setup Value at Real Time AE for DADF model DADF job. BASE, HAEST, MAESST, NAESS
715-780	Hue Angle B Starts	270	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-781	Hue Angle B Ends	320	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-782	Hue Angle G Starts	110	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-783	Hue Angle G Ends	200	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-784	Hue Angle R Starts	350	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-785	Hue Angle R Ends	60	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-786	Hue Angle Y Starts	60	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-787	Hue Angle Y Ends	120	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-788	Hue Angle M Starts	320	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-789	Hue Angle M Ends	360	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-790	Hue Angle C Starts	360	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-791	Hue Angle C Ends	360	0~360	1 degree increments. It means End to 360 and 0 to Start when Start > End.
715-800	IISS-DADF Communication Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-801	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-802	IISS-Controller Communication Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-803	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-804	DADF EEPROM Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-805	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-808	CRG Position Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-809	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-810	IISS LOGIC Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-811	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-814	Lamp Illumination Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-815	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-816	CRG Over Run Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-817	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-822	AGC Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-823	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-824	AOC Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-825	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-826	IPS PWBA Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-827	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-840	IPS PWBA Memory Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-841	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)
715-856	IIT Hot Line Fail	0	0~65535	Accumulative Fail Counter value. (Write not permitted)
715-857	(Same as above)	0	0~65535	Accumulative Fail Counter value since it was last reset. (Write not permitted)

Table 3 IISS

Chain-Link	Content	Default	Range	Meaning
$715-860$	Scan Replacement Life Count (upper digits)	91	$0 \sim 65535$	Scan Replacement Life Count (upper digits) (Write not permitted): 6,000,000 times (including Pre Scan)
$715-861$	Scan Replacement Life Count (lower digits)	36224	$0 \sim 65535$	Scan Replacement Life Count (lower digits) (Write not permitted)
$715-875$	Lamp On Time Replacement Life Count (upper digits)	109	$0 \sim 65535$	Lamp On Time Replacement Life Count (upper digits) (Write not permitted): 7,200,000 sec (2,000 hr)
$715-876$	Lamp On Time Replacement Life Count (lower digits)	56576	$0 \sim 65535$	Lamp On Time Replacement Life Count (lower digits) (Write not permitted)
$715-890$	Lamp On Replacement Life Count (upper digits)	91	$0 \sim 65535$	Lamp On Replacement Life Count (upper digits) (Write not permitted): 6,000,000 times
$715-891$	Lamp On Replacement Life Count (lower digits)	36224	$0 \sim 65535$	Lamp On Replacement Life Count (lower digits) (Write not permitted)

Chain 719-xxx Configuration

Table 4 Configuration				
Chain-Link	Name	Default	Range	Remarks
$719-008$	Market Information	0	$0 \sim 3$	$0:$ FX, 1: AP, 2: XC, 3: XE
$719-009$	IISS Major Version	0	$0 \sim 65535$	IISS Major Version No. (Same as when downloaded)
$719-010$	IISS Minor Version	0	$0 \sim 65535$	IISS Minor Version No. (Same as when downloaded)
$719-011$	IISS Revision Version	0	$0 \sim 65535$	IISS Revision Version No. (Same as when downloaded)
$719-012$	IISS Patch Version	0	$0 \sim 65535$	IISS Patch Version No. (Same as when downloaded)
$719-013$	ADF Major Version	0	$0 \sim 65535$	ADF Major Version No. (Same as when downloaded)
$719-014$	ADF Minor Version	0	$0 \sim 65535$	ADF Minor Version No. (Same as when downloaded)
$719-015$	ADF Revision Version	0	$0 \sim 65535$	ADF Revision Version No. (Same as when downloaded)
$719-016$	ADF Patch Version	0	$0 \sim 65535$	ADF Patch Version No. (Same as when downloaded)
$719-017$	IPL Version	0	$0 \sim 65535$	IPL Version No.
$719-018$	Black Line Suppression FPGA Version	0	$0 \sim 65535$	Black Line Suppression FPGA Version No.

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-061	FAX Card Availability	-2~0	-	Read	0: Normal, -1: Error, -2: Not installed
700-064	Availability of Fax Card for Ch0 Installed by Host. (It is good that the Fax Card performs only auto detection.)	0~1	0: Off	Read/Write	0: OFF, 1: ON
700-071	USB Port Receive Buffer	64~1024	64KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-073	Page Memory Size (Volume)	-	-	Read	bytes (Auto Setting)
700-075	ART User Definition Memory (Valid only when the machine is installed with the ART/Emulation option)	32~2048	32 KB	Read/Write	[32KB~2048KB](32KB increments) Unit: Kbyte
700-076	PostScript Memory (Valid only when PS option is installed)	8~96	$\begin{array}{\|l} \hline 24 \mathrm{MB} \\ \left(24^{*} 1024\right) \end{array}$	Read/Write	[8MB~96MB](0.25MB increments) Unit: Kbyte
700-078	Form Data Memory (ART and ESC/P) (Valid only when the machine is installed with the ART/Emulation option and not installed with the HDD.)	128~2048	128KB	Read/Write	[128KB~2048KB]Unit: Kbyte
700-080	HPGL/Auto Layout Memory (Valid only when the machine is installed with the ART/Emulation option and not installed with the HDD.)	64~5120	64KB	Read/Write	[64KB~5120KB](32KB increments) Unit: Kbyte
700-081	Parallel (IEEE1284) Port	64~1024	64KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-082	Port9100 Port	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-083	Ipd: Spool Off	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-084	NetWare	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-085	AppleTalk (EtherTalk)	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-086	SMB: Spool Off	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-087	IPP: Spool Off	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-088	Salutation	64~1024	256KB	Read/Write	[64KB~1MB](32KB increments) Unit: Kbyte
700-089	HDD Availability	-2~0	-	Read	0: Yes, -1: Error, -2: No (Auto Detect)
700-100	Enable/Disable the Setting of Forced Warmup Mode	0, 1	0: Cannot be set	Read/Write	0: Cannot be set, 1: Can be set
700-109	Forced Warmup Mode	0,1	0: Disable	Read/Write	0: Disable, 1: Enable
700-110	Specify Start Time for Forced Warmup (Hour)	0~23	8 (Hour)	Read/Write	0-23 (Hour)
700-111	Specify Start Time for Forced Warmup (Min)	0~59	0 (Min)	Read/Write	0-59 (Min)

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-120	Time Zone	-600~+600	+540(FX Default) +600 (AP default) -300 (XC default)	Read/Write	Displays the time difference from GMT. For example, Japan: 540, Hawaii: -600
700-124	Auto Clear Timer (Combining Auto Resume Timer, Auditron Off Timer and Tools Off Timer)	0~240	$\begin{aligned} & 1 \min (\mathrm{MF}: \\ & 60, \mathrm{P}: 1) \end{aligned}$	Read/Write	$\begin{aligned} & \text { Input from the menu is MF: } 0 \text { (Disable), } 60,120,180,240 \text { (sec), P: } 0 \text { (Disable), } \\ & 1 \sim 30 \text { (min) } \\ & 0 \text { (prohibit) } 240 \text { can be entered from ChainLink for MF and P but they must be } \\ & \text { within the range specified above. } \end{aligned}$
700-125	Job Cancel Timer	0~5940	10min	Read/Write	0, 240~5940: [Disable, 4~99min](1 min increments) (The MF-UI SOD has a dif- ferent value.)
700-126	Operating Timer	0~240	10sec	Read/Write	0: Not started, 1~240: [1~240sec](1sec increments)
700-127	Job End Timer	0~240	6 sec	Read/Write	0: Not started, 1~240: [1~240sec](1sec increments)
700-128	Scanning Timer	1~20	$4 \mathrm{sec}, 3 \mathrm{sec}$ (Allagash only)	Read/Write	1~20: [1~20sec (1sec increments)]
700-129	Low Power Mode Timer	1~240	15 min	Read/Write	1~240: [1~240min (1 min increments)], (Ignored if Low Power mode is disabled)
700-130	Sleep Mode Timer	1~240	60 min	Read/Write	1~240: [1~240min (1min increments)], (Ignored if Sleep Mode is disabled)
700-131	Sleep Mode Availability Setting	0~1	1: Enable	Read/Write	0: Not valid, 1: Valid
700-132	Operation Panel Normal Input Beep	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-133	Operation Panel Error Input Beep	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-134	Normal Completion Beep (Copy)	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-135	Normal Completion Beep (Other than Copy)	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-136	Abnormal Warning Beep	0~3	0: Off	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud (For P Models, there is no volume adjustment. Any setting in soft, normal or loud means On.)
700-137	Abnormal Completing Beep	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-138	Ready Beep	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-139	Toner Empty Warning Beep	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-140	Bell Tone	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-141	Line Monitor Tone	0~3	2: Normal	Read/Write	1: Soft, 2: Normal, 3: Loud
700-142	Low Power Mode Availability Setting	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
700-143	Job Memory Entry Tone	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-144	Job History Report Auto Output Specification	0~1	0: OFF	Read/Write	0: OFF, 1: ON
700-145	Duplex Printing Specification	0~1	0: OFF	Read/Write	0: OFF, 1: ON
700-146	Mail Box Receive Notification Report Output Specification	0~1	ON	Read/Write	0: OFF, 1: ON

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-147	Protocol Monitor Output Control	0~2	0: When print instruction is specified	Read/Write	0: When print instruction is specified, 1: When error occurs, 2: Always
700-148	Broadcast/Multi-Poll Report Output Control	0~1	1: Print	Read/Write	0: Do not print, 1: Print
700-149	Relay Broadcast Report Output Setting	0~3	1: Send to Relay Station	Read/Write	0: Off, 1: Send to Relay Station, 2: Print to Local, 3: Send to Relay Station \& Print to Local
700-150	Activity Report Output Setting	0~1	1: Print	Read/Write	0: Do not print, 1: Print
700-151	Unsend Report Output	0~2	1: ON	Read/Write	0: OFF, 1: ON, 2: Always Print CAUTION Transmission reports can only be printed from the Panel. However, with Transmission Report=On, when sending fails, undelivered reports will be printed.
700-152	Unsend Report Output Setting when sending is stopped	0~1	$\begin{aligned} & \text { 0: Do not } \\ & \text { print } \end{aligned}$	Read/Write	0: Do not print, 1: Print
700-153	Abnormal Warning Beep (Out of paper)	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-154	Auto Clear Pre Notify Tone	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-155	Base Point Tone	0~3	2: Normal	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-164	Language Information	1~32	$\begin{aligned} & \text { 1: Japa- } \\ & \text { nese (FX), } \\ & \text { 2: English } \\ & \text { (AP/XC) } \end{aligned}$	Read/Write	1: Japanese, 2: English, 3: French, 4: German, 5: Italian, 6: Spanish, 7: Portuguese, 8: Russian, 9: Chinese, 10: Korean, 11: Thai, 12: Vietnamese, 13: Chinese (Taiwan), 14: Dutch, 15: Danish, 16: Swedish, 17: Finnish, 18: Norwegian, 19: Portuguese (Brazil), 20: Bulgarian, 21: Polish, 22: Hungarian, 23: Romanian, 24: Czech, 25: Greek, 26: Turkish, 27: Arabic, 28: Persian, 29: Hebrew
700-165	Area Code / SEEPROM (uses ISO3166 values): Key Code to change the system data default value to the target value in the EPROM compatible for multiple Area.	-	Depends on factory settings	Read/Write	0 = Undefined, 840 =USA, 124=Canada, 076=Brazil, 826=UK, 276=Germany, 380=Italy, 250=France, 724=Spain, 528=Holland, 756=Swiss, 752=Sweden, 056=Belgium, 040=Austria, 620=Portugal, 246=Finland, 208=Denmark, 578=Norway, 300=Greece, 372=Ireland, 036=Australia, 554=New Zealand, 360=indonesia, 702=Singapore, 458=Malaysia, 608=Philippin, 764=Thailand, 344=Hong Kong, 704=Vietnum, 392=Japan, 158=Taiwan, 410=Korea, Mexico=484, Chile=152, Argentina=032, Venezuela=862, Columbia=170, Peru=604, India=356, Egypt=818, South Africa=710, Turkey=792, Russia=643, Czech Republic=203, Poland=616, Hungary=348, Romania=642, Bulgaria=100, Morocco=504, 156=China
700-171	KO Tools Entry Password	-	11111 (five one's)	Read/Write	P Models: 0~9 (ASCII) 4 digits. MF Model: 0~9 (ASCII) 4 digits~12 digits
700-173	Off Hook Alarm (XE) Added on 2000.12.19	0~3	2 (XE)	Read/Write	0: Off, 1: Soft, 2: Normal, 3: Loud
700-175	Display position of remote terminals on Activity Report	0~1	0 : Displays lead edge in 40 digits	Read/Write	0 : Displays 40 digits in lead edge, 1: Displays the 40 digits in rear edge
700-197	Maximum No. of Jobs	90~3000	600	Read/Write	Set between 90(Min) 300(Max) in increments of 1
700-198	Flag to permit/prohibit job passing	0~1	1: Permit	Read/Write	1: Permit, 0: Prohibit
700-301	SEEPROM Serial\# (1st digit)	-	-	Read	Alphanumerics (ASCII)
700-302	SEEPROM Serial\# (2nd digit)	-	-	Read	Alphanumerics (ASCII)

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-303	SEEPROM Serial\# (3rd digit)	-	-	Read	Alphanumerics (ASCII)
700-304	SEEPROM Serial\# (4th digit)	-	-	Read	Alphanumerics (ASCII)
700-305	SEEPROM Serial\# (5th digit)	-	-	Read	Alphanumerics (ASCII)
700-306	SEEPROM Serial\# (6th digit)	-	-	Read	Alphanumerics (ASCII)
700-307	SEEPROM Serial\# (7th digit)	-	-	Read	Alphanumerics (ASCII)
700-308	SEEPROM Serial\# (8th digit)	-	-	Read	Alphanumerics (ASCII)
700-309	SEEPROM Serial\# (9th digit)	-	-	Read	Alphanumerics (ASCII)
700-310	SEEPROM Serial\# (10th digit)	-	-	Read	Alphanumerics (ASCII)
700-311	Battery Backup SRAM Serial \# (1st digit)	-	-	Read	Alphanumerics (ASCII)
700-312	Battery Backup SRAM Serial \# (2nd digit)	-	-	Read	Alphanumerics (ASCII)
700-313	Battery Backup SRAM Serial \# (3rd digit)	-	-	Read	Alphanumerics (ASCII)
700-314	Battery Backup SRAM Serial \# (4th digit)	-	-	Read	Alphanumerics (ASCII)
700-315	Battery Backup SRAM Serial \#(5th digit)	-	-	Read	Alphanumerics (ASCII)
700-316	Battery Backup SRAM Serial \# (6th digit)	-	-	Read	Alphanumerics (ASCII)
700-317	Battery Backup SRAM Serial \# (7th digit)	-	-	Read	Alphanumerics (ASCII)
700-318	Battery Backup SRAM Serial \# (8th digit)	-	-	Read	Alphanumerics (ASCII)
700-319	Battery Backup SRAM Serial \# (9th digit)	-	-	Read	Alphanumerics (ASCII)
700-320	Battery Backup SRAM Serial \# (10th digit)	-	-	Read	Alphanumerics (ASCII)
700-321	SEEPROM Product \# (1st digit)	-	-	Read	Alphanumerics (ASCII)
700-322	SEEPROM Product \# (2nd digit)	-	-	Read	Alphanumerics (ASCII)
700-323	SEEPROM Product \# (3rd digit)	-	-	Read	Alphanumerics (ASCII)
700-324	SEEPROM Product \# (4th digit)	-	-	Read	Alphanumerics (ASCII)
700-325	Battery Backup SRAM Product \# (1st digit)	-	-	Read	Alphanumerics (ASCII)
700-326	Battery Backup SRAM Product \# (2nd digit)	-	-	Read	Alphanumerics (ASCII)
700-327	Battery Backup SRAM Product \# (3rd digit)	-	-	Read	Alphanumerics (ASCII)
700-328	Battery Backup SRAM Product \# (4th digit)	-	-	Read	Alphanumerics (ASCII)
700-329	SEEPROM Product Code (1st digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-330	SEEPROM Product Code (2nd digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-331	SEEPROM Product Code (3rd digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-332	SEEPROM Product Code (4th digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-333	SEEPROM Product Code (5th digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-334	SEEPROM Product Code (6th digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-335	SEEPROM Product Code (7th digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-336	SEEPROM Product Code (8th digit)	-	-	Read/Write	Alphanumerics (ASCII)
700-337	Types of Devices (Information on the SEEPROM)	-	-	Read/Write	[P, SP, CSP, CFSP (,C)](C is requested by M/N) Adjusted at Factory Settings. P (rinter), $\mathrm{F}(\mathrm{ax}), \mathrm{C}(\mathrm{opy}), \mathrm{S}(\mathrm{can})$ are allocated the following bits and are expressed in the following logic. P: 0x01, F: 0x02, C: $0 \times 04, \mathrm{~S}: 0 \times 08$
700-338	Territory Information (FX, XC, XE, AP) (Information on SEEPROM) (Data outside the target for Initialize by Country function)	1~4	-	Read/Write	1: FX, 2: XC, 3: XE, 4: AP

Table 1 Common

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-368	Ipd: Memory Spool	512~1024	1MB	Read/Write	Memory spooling: [512KB~32MB](256KB increments) Unit: Kbyte
700-390	Memory size for mail print (E-mail To Print)	64~1024	$\begin{aligned} & \hline 256 \mathrm{~KB} \\ & (256) \end{aligned}$	Read/Write	64K~1M Byte Unit: Kbyte
700-396	Auditron Color Mode for Copy (Color Mode for unauthenticated user)	0~2	0: Prohibit	Read/Write	0: ProhiBit, 1: BW, 2: BW \& Low Price Color
700-397	Default Paper Size for Reports	5~44	5: A4 (FX/ AP default), 44: Letter (XC default)	Read/Write	5: A4, 44: Letter
700-398	CE Auditron Mode: (Print User Restriction Setup Menu Display)	0~1	1: Display	Read/Write	0: No display 1: Display
700-399	Millimeter/Inch Settings	1~3	$\begin{aligned} & \text { 1: Millime- } \\ & \text { ter (FX/AP } \\ & \text { default), 3: } \\ & \text { Inch (XC } \\ & \text { default) } \end{aligned}$	Read/Write	1: Millimeter, 3: Inch
700-401	Paper Size Group (NVM)	1~5	The value specified in Paper Size Group (Factory Settings SEEPROM)	Read/Write	1: Japan, 2: NA (North America), 3: EU, 4: AP, 5: SA (South America)
700-402	Paper Size Group (SEEPROM)	1~5	Sets every destination at the factory	Read/Write	1: Japan, 2: NA (North America), 3: EU, 4: AP, 5: SA (South America)
700-410	Electronic Sort Print Area Size (RAM Disk)		33M with standard memory, 50M with 128M expansion memory, and 66M with 256M expansion memory	Read/Write	This setting becomes valid only when extending the printer kit with HDD not installed. Do not set other than the situation above. The setting range is from 0 to "current value + amount of free memory". Setting increment is 1MB Units. The current value can be checked from the System Settings List of the device, while the amount of free memory can be checked from the Memory Settings Menu. CAUTION If a value that is larger than the "current value + amount of free memory" is entered, every Memory Settings (inclusive of Receiving Buffer of the Host IF, Form Memory, etc.) will revert to their Factory Shipment Settings. Please make sure that the total of the increased portion does not exceed the amount of free memory if the Electronic Sort Copy Size is also changed. The Electronic Sort function listed to the left stops when its value is set to " 0 ". However, please do not set only this value to " 0 ". Also set the Electronic Sort Copy Area to " 0 " when setting this value to " 0 ".

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-411	Electronic Sort Copy Area Size (RAM Disk)		33M with standard memory, 50M with 128M expansion memory, 66M with 256M expansion memory, and 100M with 386M expansion memory (TBD)	Read/Write	This setting becomes valid only when the HDD is not installed. Do not set other than the situation above. The setting range is from 0 to "current value + amount of free memory". Setting increment is 1 MB Units. The current value can be checked from the System Settings List of the device, while the amount of free memory can be checked from the Memory Settings Menu. CAUTION If a value that is larger than the "current value + amount of free memory" is entered, every Memory Settings will revert to their Factory Shipment Settings. Please make sure that the total of the increased portion does not exceed the amount of free memory if the Electronic Sort Print Area is also changed. The Electronic Sort function listed to the left stops when its value is set to " 0 ". However, please do not set only this value to " 0 ". Also set the Electronic Sort Print Area to " 0 " when setting this value to " 0 ".
700-412	Mailbox Area Size (RAM Disk)		7M	Read/Write	Cannot be set (TBD)
700-420	Download Disable Flag	0~1	0: Permit	Read/Write	0: Permit, 1: Prohibit
700-421	Product ID to identify downloaded file (first character)	-	NULL	Read/Write	ASCII
700-422	Product ID to identify downloaded file (2nd character)	-	NULL	Read/Write	ASCII
700-423	Product ID to identify downloaded file (3rd character)	-	NULL	Read/Write	ASCII
700-424	Product ID to identify downloaded file (4th character)	-	NULL	Read/Write	ASCII
700-425	Product ID to identify downloaded file (5th character)	-	NULL	Read/Write	ASCII
700-426	Product ID to identify downloaded file (6th character)	-	NULL	Read/Write	ASCII
700-427	Product ID to identify downloaded file (7th character)	-	NULL	Read/Write	ASCII
700-428	Product ID to identify downloaded file (8th character)	-	NULL	Read/Write	ASCII
700-430	Certificate Credibility (PKI Mode)	1~3	1: Level 1	Read/Write	1: Level 1, 2: Level 2, 3: Level 3
700-431	Device Certification Type	0~2	0: Not registered	Read/Write	0: Not registered, 1: On (Self-generate), 2: Available (Import)
700-437	SSL Availability Setting	0~1	0: FALSE Invalid	Read/Write	0: FALSE Invalid, 1: TRUE Valid
700-440	S/MIME Availability Setting	0, 1	0: FALSE Invalid	Read/Write	[0: FALSE Invalid, 1: TRUE Valid]
700-441	S/MIME Device Certification	$\begin{aligned} & \text { 0~0xFFFFF } \\ & \text { FFF } \end{aligned}$	0	Read/Write	
700-442	S/MIME Message Digest Algorithm	0, 1	0: SHA1	Read/Write	[0: SHA1, 1: MD5]

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-443	S/MIME Contents Encryption Method	0~3	0: 3DES	Read/Write	[0: 3DES, 1: RC4-40, 2: RC4-64, 3: RC4-128]
700-444	S/MIME Signature Mode	0~2	0: Fixed as Device Certificate	Read/Write	0: Fixed as Device Certificate (Default) 1: Fixed as Personal Certificate 2: Fixed as User Certificate
700-445	SSL Port Number	443~9999	443	Read/Write	443, 8000~9999
700-446	HDD Overwrite Setting	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
700-447	HDD Overwrite Count Setting	0~3	1	Read/Write	1,3
700-452	SNTP Server Address Valid	0~1	0: FALSE	Read/Write	0: FALSE, 1: TRUE
700-453	SNTP Server Address	$\begin{aligned} & \text { 0x00000000 } \\ & \sim 0 \times F F F F F F F \\ & \text { FF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFFF
700-454	SNTP Enabled/Disabled	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
700-455	SNTP Time Retrieval Interval	1~500	168	Read/Write	1~500hr
700-458	Prohibit Receiving of Untrusted E-mail	0, 1	0: Do not prohibit	Read/Write	0: Do not prohibit, 1: Prohibit
700-459	Enable/Disable Auto Store Certificates	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
700-460	SEC Data Restriction Setup	0, 1	0: OFF	Read/Write	[0: OFF, 1: ON]
700-461	Prohibit Receiving of Untrusted E-mail (@iFax)	0, 1	0: Do not prohibit	Read/Write	0: Do not prohibit, 1: Prohibit
700-462	SCANFILE Signature Device Certification	$\begin{aligned} & \text { 0~0XFFFFF } \\ & \text { FFF } \end{aligned}$	0	Read/Write	$\begin{aligned} & \text { 0: TBD } \\ & >0: \text { Certificate Index Number } \end{aligned}$
700-463	SCANFILE Signature Signer	0~2	0: Fixed as Device Signature	Read/Write	0: Fixed as Device Certificate 1: Fixed as Personal Certificate 2: Fixed as User Certificate
700-464	XDW Signature	1~4	4: User selection	Read/Write	2: Always add signature (visible) 3: Do not add signature 4: User selection
700-465	PDF Signature	0~4	4: User selection	Read/Write	1: Always add signature (invisible) 2: Always add signature (visible) 3: Do not add signature 4: User selection
700-466	Print Delay Restriction Prohibition Settings	0, 1	0: Do not prohibit	Read/Write	0: Do not prohibit, 1: Prohibit
700-467	Time to Start Print Prohibited State (Hour)	0~23	21	Read/Write	0~23
700-468	Time to Start Print Prohibited State (Min)	0~59	0	Read/Write	0~59
700-469	Time to End Print Prohibited State (Hour)	0~23	9	Read/Write	0~23
700-470	Time to End Print Prohibited State (Min)	0~59	0	Read/Write	0~59
700-471	Output CO User Report	0, 1	1: TRUE (Allow)	Read/Write	0: FALSE (Prohibit), 1: TRUE (Allow)
700-490	Target Stored Document for Stored Document LED	0~1	0: All Documents	Read/Write	0: All Documents, 1: Received Fax documents
700-500	Enable/Disable iFAX Transfer for iFAX Receive	0~1	1: Enable	Read/Write	1: Enable, 0: Disable

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-501	Enable/Disable E-mail Transfer for iFAX Receive	0~1	1: Enable	Read/Write	1: Enable, 0: Disable
700-502	Enable/Disable Auto Deletion of Extended Mailbox Document	0~1	0: Do not auto delete	Read/Write	1: Auto delete, 0: Do not auto delete
700-503	Extended Mailbox Document Auto Deletion Frequency by Days	0~14	7	Read/Write	1~14 days
700-504	Extended Mailbox Document Auto Deletion Frequency by Hours (Hour)	0~23	3	Read/Write	0~23
700-505	Extended Mailbox Document Auto Deletion by Hours (Min)	0~59	0	Read/Write	0~59
700-506	Document Processing after Document Retrieval from Client	0~1	0: Follow Box settings	Read/Write	0: Follow Box settings, 1: Delete
700-510	Enable/Disable Deletion of Auditron Print Document	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
700-511	Enable/Disable Deletion of Secure Print Document	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
700-512	Enable/Disable Deletion of Sample Print Document	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
700-513	Confirmation screen control for the Print Saved Job of Box Service	0, 1	1: Display	Read/Write	0: Do not display, 1: Display
700-520	SESAMi Manager Port Number	1~65535	80	Read/Write	80, 8000~9999
700-521	SESAMi Manager Maximum Sessions	1~5	3	Read/Write	1~5
700-522	SESAMi Manager Connector Timeout Time (Unit: sec)	30~255	30	Read/Write	1~255
700-523	Individual Setting Information related to ESR Task (Communication timeout when Application Interface starts)	1~900	60	Read/Write	1~900
700-530	Rebooting when failure occurs	0~1	1: ON	Read/Write	0: OFF, 1: ON
700-540	Auditron Mode (Auditron Mode/Login Mode)	0~2	0: OFF	Read/Write	0: OFF, 1: INTERNAL AUDITRON, 2: NETWORK ACCOUNTING
700-541	Printing Restriction for Mailbox Print	0~1	1: ON	Read/Write	0: OFF (Not restricted), 1: ON (Restricted)
700-542	Restriction for outputting Electronic Document from Mailbox	0~1	1: ON	Read/Write	0: OFF (Not restricted), 1: ON (Restricted)
700-543	User Information Location (User Information Storage Location)	0~1	0: NVRAM	Read/Write	0: NVRAM, 1: HDD
700-544	Matching of Login Information	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
700-545	Password Mode for Local Access (Login Password Mode)	0~1	0: OFF	Read/Write	0: OFF, 1: ON
700-546	Operation when Login Information is not available	0~1	0: Cancel	Read/Write	0: Cancel, 1: Store
700-547	User ID Notation	-	User ID	Read/Write	1~15 characters (7Bit ASCII)
700-548	Account ID Notation	-	Account ID	Read/Write	1~15 characters (7Bit ASCII)

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-549	Conceal UserID	0~1	0: FALSE	Read/Write	0: FALSE, 1: TRUE
700-550	Conceal AccountID	0~1	0: FALSE	Read/Write	0: FALSE, 1: TRUE
700-551	Remote Authentication Mode for Scan (Remote Login Mode for Scan)	0~2	0: OFF	Read/Write	0: OFF, 1: ON, 2: ON with Guest
700-552	Remote Authentication Service (Remote Login Service Selection)	0~1	0: Ker- beros (Windows2 000)	Read/Write	0: Kerberos (Windows2000), 1: Kerberos (Solaris)
700-553	Guest Password	-	Guest	Read/Write	4~12 characters (7Bit ASCII)
700-554	KDC IP Address	0~255	0.0.0.0	Read/Write	0.0.0.0~255.255.255.255
700-555	KDC Server Port Number	0~65535	88	Read/Write	Values between 1-65535
700-556	KDC FQDN	-	NULL character	Read/Write	Character below 255bytes valid in FQDN
700-557	KDC Realm Name	-	NULL character	Read/Write	Character string below 64bytes
700-558	Pay for Print Storing	0~2	0: Off	Read/Write	0: OFF, 1: ON, 2:Compulsion accumulates by the print job.
700-559	Enable/Disable Pay for Print Storing Job Command	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
700-560	Operation for incorrect Login Information	0~1	0: Cancel	Read/Write	0: Cancel, 1: Store
700-561	Enable/Disable Pay for Print Control Job Command	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
700-562	No Account User Print (Enable/Disable Non-Account Print)	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
700-563	Maximum Number of Continuous KO Login Errors	0~10	5	Read/Write	0~10
700-564	Maximum Number of Login Errors	0~600	10	Read/Write	0~600
700-565	KDC IP Address-2	$\begin{aligned} & 0.0 .0 .0 \sim 255 \\ & .255 .255 .25 \\ & 5 \end{aligned}$	0.0.0.0	Read/Write	0.0.0.0~255.255.255.255
700-566	KDC Server Port Number-2	1~65535	88	Read/Write	Values between 1-65535
700-567	KDC FQDN-2		NULL character	Read/Write	Character below 255bytes valid in FQDN
700-568	KDC Realm Name-2		NULL character	Read/Write	Character string below 64bytes
700-569	KDC IP Address-3		0.0.0.0	Read/Write	0.0.0.0~255.255.255.255
700-570	HCF ROM Major Version	-	-	Read	Auto setting
700-571	HCF ROM Minor Version	-	-	Read	Auto setting
700-572	HCF ROM Revision Version	-	-	Read	Auto setting
700-573	Finisher ROM Major Version	-	-	Read	Auto setting
700-574	Finisher ROM Minor Version	-	-	Read	Auto setting
700-575	Finisher ROM Revision Version	-	-	Read	Auto setting
700-576	IIT Extension ROM Major Version	-	-	Read	Auto setting

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-577	IIT Extension ROM Minor Version	-	-	Read	Auto setting
700-578	IIT Extension ROM Revision Version	-	-	Read	Auto setting
700-580	KDC Server Port Number-3	1~65535	88	Read/Write	Values between 1-65535
700-581	KDC FQDN-3		NULL character	Read/Write	Character below 255bytes valid in FQDN
700-582	KDC Realm Name-3		NULL character	Read/Write	Character string below 64bytes
700-583	KDC IP Address-4		0.0.0.0	Read/Write	0.0.0.0~255.255.255.255
700-584	KDC Server Port Number-4	1~65535	88	Read/Write	Values between 1-65535
700-585	KDC FQDN-4		NULL character	Read/Write	Character below 255bytes valid in FQDN
700-586	KDC Realm Name-4		NULL character	Read/Write	Character string below 64bytes
700-587	KDC IP Address-5		0.0.0.0	Read/Write	0.0.0.0~255.255.255.255
700-588	KDC Server Port Number-5	1~65535	88	Read/Write	Values between 1-65535
700-589	KDC FQDN-5		NULL character	Read/Write	Character below 255bytes valid in FQDN
700-590	KDC Realm Name-5		NULL character	Read/Write	Character string below 64bytes
700-591	Direct Fax Job Restricted Mode	0, 1	0: Allow	Read/Write	0: Allow: 1 Prohibit
700-600	DC132 Supplementary Data Group 1 (IOT)	-	-	Read	Auto setting
700-601	DC132 Supplementary Data Group 1 (SYS1)	-	-	Read	Auto setting
700-602	DC132 Supplementary Data Group 1 (SYS2)	-	-	Read	Auto setting
700-603	DC132 Supplementary Data Group 2 (IOT)	-	-	Read	Auto setting
700-604	DC132 Supplementary Data Group 2 (SYS1)	-	-	Read	Auto setting
700-605	DC132 Supplementary Data Group 2 (SYS2)	-	-	Read	Auto setting
700-606	DC132 Supplementary Data Group 3 (IOT)	-	-	Read	Auto setting
700-607	DC132 Supplementary Data Group 3 (SYS1)	-	-	Read	Auto setting
700-608	DC132 Supplementary Data Group 3 (SYS2)	-	-	Read	Auto setting
700-610	IT Option Connection Settings	0,1	0: Do not connect	Read/Write	[0: Do not connect, 1: Connect]
700-611	KDC IP Address - For Backup 1		0.0.0.0	Read/Write	IP Address
700-612	KDC IP Address - For Backup 2		0.0.0.0	Read/Write	IP Address
700-613	KDC IP Address - For Backup 3		0.0.0.0	Read/Write	IP Address
700-614	KDC IP Address - For Backup 4		0.0.0.0	Read/Write	IP Address
700-615	KDC IP Address - For Backup 5		0.0.0.0	Read/Write	IP Address

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
700-616	KDC FQDN - For Backup 1		null	Read/Write	Text (ASCII 256 Characters)
700-617	KDC FQDN - For Backup 2		null	Read/Write	Text (ASCII 256 Characters)
700-618	KDC FQDN - For Backup 3		null	Read/Write	Text (ASCII 256 Characters)
700-619	KDC FQDN - For Backup 4		null	Read/Write	Text (ASCII 256 Characters)
700-620	KDC FQDN - For Backup 5		null	Read/Write	Text (ASCII 256 Characters)
700-621	KDC Server Port Number - For Backup 1	1-65535	88	Read/Write	1-65535
700-622	KDC Server Port Number - For Backup 2	1-65535	88	Read/Write	1-65535
700-623	KDC Server Port Number - For Backup 3	1-65535	88	Read/Write	1-65535
700-624	KDC Server Port Number - For Backup 4	1-65535	88	Read/Write	1-65535
700-625	KDC Server Port Number - For Backup 5	1-65535	88	Read/Write	1-65535
700-626	Authentication agent - timeout	1~300	60 (sec)	Read/Write	1-300 (sec)
700-627	LDAP Authentication - Sequence Type	0, 1	$\begin{array}{\|l} \hline \text { 0: Direct } \\ \text { Login } \end{array}$	Read/Write	0: Direct Login 1: Search and Login
700-628	LDAP Authentication - Login User Login Attributes Type		samAccountName	Read/Write	Text (ASCII 32 Characters)
700-629	LDAP Authentication - Login User Search Attributes Type		mail	Read/Write	Text (ASCII 32 Characters)
700-630	LDAP Authentication - User Name Additional Text		null	Read/Write	Text (ASCII 64 Characters)
700-631	LDAP Authentication - Enable/Disable User Name Additional Text	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
700-632	SMB Authentication - Domain Name 1		null	Read/Write	Text (ASCII 15 Characters)
700-633	SMB Authentication - Domain Name 2		null	Read/Write	Text (ASCII 15 Characters)
700-634	SMB Authentication - Domain Name 3		null	Read/Write	Text (ASCII 15 Characters)
700-635	SMB Authentication - Domain Name 4		null	Read/Write	Text (ASCII 15 Characters)
700-636	SMB Authentication - Domain Name 5		null	Read/Write	Text (ASCII 15 Characters)
700-637	SMB Authentication - Server Address 1		0.0.0.0	Read/Write	IP Address
700-638	SMB Authentication - Server Address 2		0.0.0.0	Read/Write	IP Address
700-639	SMB Authentication - Server Address 3		0.0.0.0	Read/Write	IP Address
700-640	SMB Authentication - Server Address 4		0.0.0.0	Read/Write	IP Address
700-641	SMB Authentication - Server Address 5		0.0.0.0	Read/Write	IP Address
700-642	SMB Authentication - Server/SMB Name 1		null	Read/Write	Text (ASCII 64 Characters)
700-643	SMB Authentication - Server/SMB Name 2		null	Read/Write	Text (ASCII 64 Characters)
700-644	SMB Authentication - Server/SMB Name 3		null	Read/Write	Text (ASCII 64 Characters)
700-645	SMB Authentication - Server/SMB Name 4		null	Read/Write	Text (ASCII 64 Characters)
700-646	SMB Authentication - Server/SMB Name 5		null	Read/Write	Text (ASCII 64 Characters)
700-652	SMTP Authentication - Specification Method	0~3	0 : DOMAIN NAME	Read/Write	0: DOMAIN NAME 1: SERVER NAME 2: SERVER ADDRESS 3: SERVER SMB NAME

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
701-912	ADC Gradation Correction LUT Validity (A, B)	0~1	1	Read/Write	0: Disable, 1: Enable
701-917	ADC Gradation Correction LUT Validity (E, F)	0, 1	1	Read/Write	0: Disable, 1: Enable
701-924	Auto Gradation Correction LUT Validity (A, B)	0~1	1	Read/Write	0: Disable, 1: Enable
701-929	Auto Gradation Correction LUT Validity (E, F)	0~1	1	Read/Write	0: Disable, 1: Enable
702-931	BufferCont Management Memory Partition Data	0, 1	FALSE: Not prohibited	Read/Write	Expansion of memory partition size prohibition. TRUE: Prohibited FALSE: Not prohibited (Default) If the expansion of memory partition size is prohibited, memory partition expansion request by PfBufloctl() will be refused.
702-932	External Scan Feature	0~2	0: None	Read/Write	0 : None 1: ExtNetScan 2: CDIScan
702-934	Output Settings for Error Report during JFS Error	0, 1	$\begin{aligned} & \text { 0: Auto } \\ & \text { output Off } \end{aligned}$	Read/Write	0: Auto output Off, 1: Auto output On
702-935	Confirmation screen control for the Print Saved Job of Print Service	0, 1	1: Display	Read/Write	0: Do not display, 1:Display
702-940	Size Type Settings during sending of FAX Document	1, 2	2: Nonstandard	Read/Write	1: Standard, 2: Non-standard
702-941	Threshold Value Settings for size determination in Slow Scan direction during sending of FAX Document	0~10	10mm	Read/Write	0~10mm
702-942	"Mixed A3 and Ledger" Condition Settings for size determination in Slow Scan direction during sending of FAX Document	1,2	Conforms to RECEIVE_ DOCSIZE SELECT of "(A10 Country Specific SystemDat aDefault)" in the FaxCard Features Specifications Manual.	Read/Write	1: Mixed A3 and Ledger allowed 2: Mixed A3 and Ledger prohibited

Chain 720-xxx Meter Counter

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
720-002	Billing Display	1~7	PFV_BILLING TYPE_1	Read/Write	Meter Counter. 1: Billing 1, 2: Billing 2, 3: Billing 3, 4: Billing 4, 5: Billing 5, 6: Billing 6, 7: Billing 7
720-003	Master Print-Full Color	0~19999999	-	Read	Meter Counter
720-004	Master Print-Color 1	0~19999999	-	Read	Meter Counter
720-005	Master Print-Color 2	0~19999999	-	Read	Meter Counter
720-006	Master Print-B\&W	0~19999999	-	Read	Meter Counter
720-007	Master Copy-Full Color	0~19999999	-	Read	Meter Counter
720-008	Master Copy-Color2	0~19999999	-	Read	Meter Counter
720-009	Master Copy-B\&W	0~19999999	-	Read	Meter Counter
720-010	Master FAX-Full Color	0~19999999	-	Read	Meter Counter
720-011	Master FAX-B\&W	0~19999999	-	Read	Meter Counter
720-046	Master Large Size B\&W	0~19999999	-	Read	Meter Counter
720-047	Master Large Size Color	0~19999999	-	Read	Meter Counter
720-052	Billing Count Type	0~2	0: STANDARD	Read/Write	Meter Counter. 0: STANDARD, 1: CUSTOM 1, 2: CUSTOM
720-053	Master Modal Color	0~19999999	-	Read	Meter Counter
720-054	Master Modal B\&W	0~19999999	-	Read	Meter Counter
720-055	Backup1 Modal Color Counter	0~19999999	-	Read	Meter Counter
720-057	Modal Break Point	10~100	10	Read/Write	Meter Counter

Chains 730-xxx, 731-xxx, 732-xxx, 733-xxx, 734-xxx Stored-Data

Chain-Link	NVM Name	PWS Display	Setup Range	Initial Value	Read/ Write	Description
730-010	Control of correctly authenticated print job at Authentication Mode of Print Auditron.	Pay for Print - Correct Account	0, 1	00: Print	Read/Write	0: Print, 1: Forced save
$\begin{array}{\|l\|} \hline 731- \\ 001 ~ 999 \end{array}$	Modem Speed	Speed Dial setting for Modem Speed (Link 1-500)	-	0 : Follow the modem speed of system data	Read/Write	0: Follow the modem speed of system data, 1: 2400bps, 2: 4800bps, 3: 7200bps, 4: 9600bps, 5: 12000bps, 6: 144000bps, 7: 16800bps, 8: 19200bps, 9: 21600bps, 10: 24000bps, 11: 26400 bps , 12: 28800bps, 13: 31200bps, 14: 33600bps, Speed Dial (Address Book) (999 stations)
$\begin{array}{\|l} \hline 732- \\ \text { 001~999 } \end{array}$	Super G3 Disable Setting	Speed Dial setting for Super G3 (Link 1-500=Dial)	0~1	0: Enable	Read/Write	Speed Dial (Address Book) (999 stations) 0: Enable, 1: Disable
$\begin{array}{\|l\|} \hline 733- \\ \text { 001~999 } \end{array}$	ECM Disable Setting	Speed Dial setting for ECM (Link 1-500=Dial)	0~1	0: Enable	Read/Write	Speed Dial (Address Book) (999 stations) 0 : Enable, 1: Disable
$\begin{array}{\|l\|} \hline 734- \\ 001 ~ 999 \end{array}$	JBIG Disable Setting	Speed Dial setting for JBIG (Link 1-500=Dial)	0~1	0: Enable	Read/Write	Speed Dial (Address Book) (999 stations) 0: Enable, 1: Disable

Chain 770-xxx I/O Port Protocol

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-001	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-002	Print Mode	0~29	1: Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 9: 201H, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-003	JCL Switch	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-004	Adobe Communication Protocol	0~2	0: Standard	Read/Write	0: Standard, 1: Binary, 2: TBCP
770-005	Auto Feed Time	1~255	6 (30sec)	Read/Write	1-255 (5-1275 sec)
770-006	Input Prime	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-007	Bi-directional Mode	0~1	0: ON	Read/Write	0: ON, 1: OFF
770-009	Applicable Communication Specification	0~1	$\begin{array}{\|l\|} \hline \text { O: IEEE } \\ \text { P1284 } \end{array}$	Read/Write	0: IEEE P1284, 1: Centronics
770-010	Operation Speed	1~0x7F	$\begin{array}{\|l} \hline \text { 0x7F (127): } \\ \text { Auto } \\ \hline \end{array}$	Read/Write	0x7F: Auto, 2: 100BASE-TX, 1: 10BASE-T
770-011	JBA 2004 Extensions	0, 1	0: Not supported	Read	0: Not supported, 1: Operate in expanded mode
770-012	Enable Setting	0, 1	1: Enable	Read/Write	0: Disable, 1: Enable
770-020	Operation Speed	-	4: Auto	Read/Write	Auto:4, 4MB/s: 1, 16MB/s: 2, 100MB/s: 3
770-021	Maximum Packet Size	-	1500	Read/Write	1500, 2088, 4472, 8232
770-030	Operation Frame Type Setting	0~255	255: Auto	Read/Write	255: Auto, 2: Ethernet II, 4: Ethernet SNAP, 3: Ethernet 802.2, 1: Ethernet 802.3, 6: Token SNAP, 5: Token 802.5
770-040	Enable Setting	0~1	0: Disable	Read/Write	0: Disable 1: Enable
770-041	Print Mode	-	5: PostScript	Read/Write	PostScript
770-042	JCL Switch is set as PJL Switch for AP	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-050	Enable Setting	0~1	0: Disable	Read/Write	0: Disable 1: Enable
770-051	Print Mode	0~29	1: Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-052	JCL Switch	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
770-053	Filter	0~1	0: None	Read/Write	0: None, 1: TBCP
770-054	Transport	0~3	1: IPX/SPX	Read/Write	1: IPX/SPX, 2: TCP/IP, 3: both
770-060	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-061	Print Mode	1~29	1: Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-062	JCL Switch	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-063	Filter	0~1	0: None	Read/Write	0: None, 1: TBCP
770-064	Spool Type	0~1	0: Non Spool	Read/Write	0: Non Spool, 1: Spool

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-065	Connection Timeout Time	$2 \sim 3600$ $2 \sim 3600$ sec (Setup range: $2 \sim 65,535$)	16sec	Read/Write	
770-068	Port Number	-	515	Read/Write	515, 8000~9999
770-070	Address Limitation (Valid for Ipd in Japan market)	0~1	0: OFF	Read/Write	0: OFF, 1: ON
770-071	Receive IP Address 1	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-072	Receive IP Address 2	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-073	Receive IP Address 3	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-074	Receive IP Address 4	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-075	Receive IP Address 5	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-077	SMTP Port Number	1~65535	25	Read/Write	1~65535
770-080	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-081	Print Mode	1~29	1: Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-082	JCL Switch is set as PJL Switch for AP	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-083	Filter	0~1	0: None	Read/Write	0: None, 1: TBCP
770-084	Spool Type	1	0: Non Spool	Read/Write	0: Non Spool, 1: Spool
770-085	Transport	2~6	6: both	Read/Write	2: TCP/IP, 4: NetBeui, 6: both
770-090	Enable Setting	0~1	0: Disable	Read/Write	0: Disable 1: Enable
770-091	Print Mode	1~29	1: Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-092	JCL Switch	0~1	1: ON	Read/Write	0: OFF, 1: ON
770-093	Filter	0~1	0: None	Read/Write	0: None, 1: TBCP
770-094	Acl Authorization (Acl Authorization)	0~1	$\begin{aligned} & \text { 0: OFF } \\ & \text { (none) } \end{aligned}$	Read/Write	1: ON (local), 0: OFF (none)
770-095	Use DNS Name	0~1	1: ON	Read/Write	1: ON, 0: OFF
770-097	Port no. (Value can be changed by user)	9999	80	Read/Write	0, 80, any one value between 8000~9999
770-098	Spool Type	1	0: Non Spool is 1	Read/Write	0: Non Spool, 1: Spool
770-099	Time Out	0~65535	60	Read/Write	0~65535 [Sec]
770-100	IP Address Solution	1~0x10	2: DHCP	Read/Write	0x10: Manual, 4: BOOTP, 2: DHCP, 1: RARP
770-101	IP Address	$\begin{aligned} & 0 \times 000000 \\ & 00 \sim 0 x F F F \\ & \text { FFFFF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-102	Subnet Mask	$\begin{aligned} & 0 \times 000000 \\ & 00 \sim 0 \times F F F \\ & \text { FFFFF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFF

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-103	Gateway Address	$\begin{aligned} & 0 \times 000000 \\ & \text { 00~0xFFF } \\ & \text { FFFFF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-110	DNS Auto Config.	0~0x10	DHCP	Read/Write	0x10: Manual Setting, 0x02: DHCP
770-112	DNS Domain Name	-	NULL	Read/Write	DNS Domain Name (Normally, it is within 255 characters including the "." (dot) at the end which is not displayed)
770-120	WINS Auto Config.	-	DHCP	Read/Write	0x10: Manual Setting, 0x02: DHCP
770-121	WINS Server Address 1	-	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-123	WINS Server Address 2	$\begin{aligned} & 0 \times 000000 \\ & 00 \sim 0 \times F F F \\ & \text { FFFFF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-130	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-131	Transport	0~3	2: UDP	Read/Write	0: both OFF, 1: IPX, 2: UDP, 3: both ON
770-133	Community Name (For Set/Get Access)	-	NULL (Replace to "fxSystemMgr" on the PDU)	Read/Write	JISX0201 Character Code 12 Characters
770-140	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-150	Enable Setting	0~1	0; 1: Disable	Read/Write	0: Disable 1: Enable
770-160	Enable Setting	0~1	0: Disable	Read/Write	0: Disable 1: Enable
770-166	No. of concurrent requests received	1~10	5	Read/Write	1~10
770-190	Enable, Disable	0~1	1: Enable	Read/Write	1: Enable, 0: Disable
770-191	Addressee of Mail Sender (Self-machine mail address)	-	NULL	Read/Write	Maximum 128 ASCII characters (Character type includes alphanumeric, [@][. (period) $][+][-][=][$ (underscore) $][/][<][>]$) username@domain.name format
770-202	SMTP Mail Server IP Address	$\begin{aligned} & 0 \times 000000 \\ & 00 \sim 0 x F F F \\ & \text { FFFFF } \end{aligned}$	0.0.0.0	Read/Write	00000000~FFFFFFFF
770-222	Start Setup	0, 1	1	Read/Write	0: Stop, 1: Start
770-250	Adobe Communication Protocol	0~2	0: Standard	Read/Write	0: Standard, 1: Binary, 2: TBCP
770-251	JCL Switch	0~1	0: ON	Read/Write	0: OFF 1: ON
770-252	Print Mode	1~29	Auto	Read/Write	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895.
770-254	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-255	Auto Feed Time	0~255	6 (30sec)	Read/Write	1-255 (5-1275 sec)
770-280	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-281	Print Mode	1~29	10: TIFF	Read	1: Auto, 14: Dump, 15: ART, 16: PLW, 3: HPGL2, 8: ESCP, 5: PostScript, 10: TIFF, 2: PCL, 17: KS5843, 18: KSSM, 29: KS5895. Refer to the FF Host I/F of each product for the setup range.
770-282	JCL Switch	0~1	1: ON	Read	0: OFF, 1: ON
770-283	Filter	0~1	0: None	Read	0: None, 1: TBCP
770-284	Spool Type	0~1	0: Non Spool	Read	0: Non Spool (Ring Buffer), 1: Spool (RAM Disk)

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-285	Print Control for Mail Header and Contents in Email Receive Print	0~3	1: "Print basic headers and contents"	Read/Write	0: Print all headers and contents, 1: Print basic headers and contents, 2: Do not print headers or contents, 3: Auto print according to content
770-286	POP Server User Name	$-$	NULL	Read/Write	-
770-287	POP Server Password	-	NULL	Read/Write	-
770-290	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-291	UPnP Port Number	0~65535	80	Read/Write	1~65535
770-295	Enable Setting	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-296	BMLinkS Discovery Service Port Number	0~65535	80	Read/Write	1~65535
770-297	BMLinkS Print Service Port Number	0~65535	80	Read/Write	1~65535
770-310	Notification Timing for Recipient 1	0~2	0	Read/Write	The prefix ""PFV_MAIL_REQUEST_TYPE""PFV_MAIL_REQUEST_TYPE"' is omitted. NULL (Default) Not specified. STATUS_REPORT Request for periodic status notification. IMMEDIATE_STATUS_REPORT Request for immediate status notification.
770-311	Notification Timing for Recipient 2	0~2	0	Read/Write	The prefix ""PFV_MAIL_REQUEST_TYPE""PFV_MAIL_REQUEST_TYPE"' is omitted. NULL (Default) Not specified. STATUS_REPORT Request for periodic status notification. IMMEDIATE_STATUS_REPORT Request for immediate status notification.
770-312	Notification Timing for Recipient 3	0~2	0	Read/Write	The prefix ""PFV_MAIL_REQUEST_TYPE""PFV_MAIL_REQUEST_TYPE"' is omitted. NULL (Default) Not specified. STATUS_REPORT Request for periodic status notification. IMMEDIATE_STATUS_REPORT Request for immediate status notification.
770-320	Sesami External Interface Settings Information	0~1	1: Enable	Read/Write	0: Disable 1: Enable
770-339	FTP Server Availability	0, 1	PFDISABLE (0): Disable	Read/Write	PFENABLE (1): Enable PFDISABLE (0): Disable (Default)
770-340	IT Option MAC Address	$\begin{array}{\|l\|} \hline 0 \times 0 \sim 0 x F F \\ \text { FFFFFFFF } \\ \text { FF } \end{array}$	0x0	Read/Write	
770-341	IT Option IP Address	$\begin{array}{\|l\|} \hline 0 \times 0 \sim 0 \times F F \\ \text { FFFFFFFF } \\ \text { FF } \\ \hline \end{array}$	0x0	Read/Write	

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-342	IT Option MAC Address \#1	0x0~0xFF	0x0	Read/Write	Byte 1 of IT Option MAC Address
770-343	IT Option MAC Address \#2	0x0~0xFF	0x0	Read/Write	Byte 2 of IT Option MAC Address
770-344	IT Option MAC Address \#3	0x0~0xFF	0x0	Read/Write	Byte 3 of IT Option MAC Address
770-345	IT Option MAC Address \#4	0x0~0xFF	0x0	Read/Write	Byte 4 of IT Option MAC Address
770-346	IT Option MAC Address \#5	0x0~0xFF	0x0	Read/Write	Byte 5 of IT Option MAC Address
770-347	IT Option MAC Address \#6	0x0~0xFF	0x0	Read/Write	Byte 6 of IT Option MAC Address
770-400	Enable Setting	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
770-401	Port No. (User modifiable value)	0~65535	80	Read/Write	Port no.
770-402	Time-Out	0~65535	30	Read/Write	Time-Out (Seconds)

Chain 770-xxx 840-xxx Scan Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
770-301	Directory Server (Primary) - FQDN	-	NULL	Read/Write	Below 64 bytes. Refer to RFC1034 for the available characters.
770-302	Directory Server (Primary) - IP Address	-	NULL	Read/Write	Below 4 bytes. Invalid if FQDN is specified. Invalid if retrieval by DHCP is specified. 1.1.1.1~254.254.254.254
770-303	Directory Server (Primary) - LDAP Port No.	1~65535	389	Read/Write	1~65535
770-304	Directory Server (Secondary) - FQDN	-	NULL	Read/Write	Below 64 bytes. Refer to RFC1034 for the available characters.
770-305	Directory Server (Secondary) - IP Address	-	NULL	Read/Write	Below 4 bytes. Invalid if FQDN is specified. Invalid if retrieval by DHCP is specified. 1.1.1.1~254.254.254.254
770-306	Directory Server (Secondary) - LDAP Port No.	1~65535	389	Read/Write	1~65535
840-001	Scan Feature Setting	0~1	0: Enable	Read/Write	0: Enable, 1: Disable
840-002	Scan Illegal Operation (Operation when there was no specific timing when an error occurs in storing)	0~1	0: Enable Stored Document	Read/Write	0: Discard stored documents, 1: Enable stored documents
840-003	Maximum No. of Storage	1~999	999 sheets	Read/Write	1~999 sheets
840-004	Brightness 3 Setting	0~200	192: -92 (Density)	Read/Write	0~200: -100~100
840-005	Brightness 2 Setting	0~200	$\begin{array}{\|l\|} \hline \text { 161: -61 } \\ \text { (Density) } \end{array}$	Read/Write	0~200: -100~100
840-006	Brightness 1 Setting	0~200	$\begin{aligned} & \hline \text { 131: }-31 \\ & \text { (Density) } \end{aligned}$	Read/Write	0~200: -100~100
840-007	Brightness-1 Setting	0~200	$\begin{aligned} & \text { 99: } 1 \text { (Den- } \\ & \text { sity) } \end{aligned}$	Read/Write	0~200: -100~100
840-008	Brightness -2 Setting	0~200	$\begin{aligned} & \text { 98: } 2 \text { (Den- } \\ & \text { sity) } \end{aligned}$	Read/Write	0~200: -100~100
840-009	Brightness -3 Setting	0~200	$\begin{aligned} & \text { 97: } 3 \text { (Den- } \\ & \text { sity) } \end{aligned}$	Read/Write	0~200: -100~100
840-010	Brightest Setting	0~200	150:50	Read/Write	0~200: -100~100

General procedures information

Controller \& Fax NVM List

Table 5 Scan Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
840-011	Brighter Setting	0~200	125:25	Read/Write	0~200: -100~100
840-012	Softer Setting	0~200	75:-25	Read/Write	0~200: -100~100
840-013	Softest Setting	0~200	50: -50	Read/Write	0~200: -100~100
840-019	RGB Color Space	0~1	0: Standard Color Space	Read/Write	0: Standard Color Space, 1: Device Color Space
840-021	SCAN ACS Menu Display Settings	0~1	0: Do not display (FX), 1: Display (AP/ MN Default)	Read/Write	0: Do not display 1: Display
840-022	Color Saturation Adjustment Default	0~4	2: Standard	Read/Write	0: Stronger 2, 1: Stronger 1, 2: Standard, 3: Softer 1, 4: Softer 2
840-023	Background Color Suppression Level Adjustment	0~4	3: Stronger+1	Read/Write	0: Stronger+4, 1: Stronger+3, 2: Stronger+2, 3: Stronger+1, 4: Normal Applicable to Full Color only
840-024	Bleed Prevention Adjustment Default	0~4	2: Standard	Read/Write	0: Stronger 2, 1: Stronger 1, 2: Standard, 3: Softer 1, 4: Softer 2
840-041	ScanToPC Network Browsing Time Out Time	1~300	5 (sec)	Read/Write	1~300 (sec)
840-080	Enable Use of Remote Mail Address Book	0~1	1: Permit	Read/Write	1: Permit, 0: Prohibit
840-081	LDAP Attribute Type for [Recipient Name]	-	cn	Read/Write	Text string below 32 bytes
840-082	LDAP Attribute Type for [Surname]	-	sn	Read/Write	Text string below 32 bytes
840-083	LDAP Attribute Type for [Name]	-	givenname	Read/Write	Text string below 32 bytes
840-084	LDAP Attribute Type for [Mail Address]	-	mail	Read/Write	Text string below 32 bytes
840-085	Attribute Name assigned in [Supplementary Item 1]	-	Telephone No. (FX Default)	Read/Write	Text string below 16 bytes (FX), Default text string is different depending on the designated market
840-086	LDAP Attribute Type for [Supplementary Item 1]	-	Telephone No.	Read/Write	Text string below 32 bytes
840-087	Attribute Name assigned in [Supplementary Item 2]	-	Company (FX Default)	Read/Write	Text string below 16 bytes (Japan market) Default text string is different depending on the designated market
840-088	LDAP Attribute Type for [Supplementary Item 2]	-	0	Read/Write	Text string below 32 bytes
840-089	Attribute Name assigned in [Supplementary Item 3]	-	Company (FX Default)	Read/Write	Text string below 16 bytes (Japan market) Default text string is different depending on the designated market
840-090	LDAP Attribute Type for [Supplementary Item 3]	-	ou	Read/Write	Text string below 32 bytes
840-091	Maximum Hit Count	5~100	50	Read/Write	5~100
840-092	Device User DN Name (for LDAP Authentication)	-	NULL	Read/Write	Below 256 bytes. Do not set if LDAP Authentication is not required.
840-093	Password (for LDAP Authentication)	-	NULL	Read/Write	Below 32 bytes. Do not set if password is not required for LDAP Authentication.
840-094	Search Root Entry DN	-	NULL	Read/Write	Below 255 bytes.
840-095	Search Range	0~3	All levels below root entry	Read/Write	1: Root entry only, 2: One level below root entry only, 3: All levels below root entry

Table 5 Scan Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
840-096	Object Class	-	-	Read/Write	Below 32 bytes
840-097	Timeout Value (second)	-	30	Read/Write	For 0 or 5~120 detected by the device, set the timeout value to a numerical value other than 0 . If 0 is specified, the device will not detect timeout. The timeout setting will follow the setting in the Directory Server Service.
840-098	Directory Server Application	-	NULL	Read/Write	0: None, 1: Microsoft) ActiveDirectory or Microsoft) ExchangeServer5.5, 2: Novel) NetWare5.*, Mapping of properties for retrieval and LDAP property is done based on this setting.
840-116	ScanToEmail Transmission S/MIME Signature Settings	1~3	3: By user specification	Read/Write	1: Always add signature 2: Do not add signature 3: By user specification
840-117	iFAX Transmission S/MIME Signature Settings	1~3	3: User selection	Read/Write	1: Always add signature 2: Do not add signature 3: User selection
840-118	Certificate Attribute Name		userCertificate;binary	Read/Write	Text that displays the certificate attribute name
840-121	Resolution Change Process for Fax Transmission of Scanned Documents	2~15	15: Input resolution	Read/Write	$\begin{aligned} & \text { 2: } 200 x 200 \\ & \text { 15: Input resolution } \end{aligned}$
840-122	Color Page Resolution Change Process for IFax Transmission of Scanned Documents	0, 1	1: High Speed	Read/Write	0: High Quality 1: High Speed
840-123	BW Page Resolution Change Process for IFax Transmission of Scanned Documents	1,2	1: High Speed	Read/Write	1: High Speed 2: Profile Priority
840-125	LDAP - SSL ON/OFF During Server Access	0,1	0: OFF	Read/Write	0: OFF, 1: ON
840-126	Body Text Message		NULL character	Read/Write	-
840-127	Add Login User Name	0, 1	1	Read/Write	0: Disable 1: Enable
840-128	Add Login User Address	0, 1	1	Read/Write	0: Disable 1: Enable
840-129	Add Number of Pages Sent	0, 1	1	Read/Write	0: Disable 1: Enable
840-130	Add Appended File Format Information	0, 1	1	Read/Write	0: Disable 1: Enable
840-131	Add IP Address of Sender Device	0, 1	0	Read/Write	0: Disable 1: Enable
840-132	Add Serial Number of Sender Device	0, 1	0	Read/Write	0: Disable 1: Enable
840-133	Add MAC Address of Sender Device	0, 1	0	Read/Write	0: Disable 1: Enable
840-134	Add Device Name of Sender Device	0, 1	1	Read/Write	0: Disable 1: Enable
840-135	Add Location Information of Sender Device	0, 1	1	Read/Write	0: Disable 1: Enable

Table 5 Scan Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$840-136$	Signature Message	NULL char- acter	Read/Write	-	
$840-137$	Permission to change "From:", when suc- cessful in obtaining E-mail address during authentication	0,1	0	Read/Write	0: Prohibit, 1: Allow
$840-138$	Permission to change "From:", when failed in obtaining E-mail address during authen- tication	0,1	1	Read/Write	0: Prohibit, 1: Allow
$840-139$	Permission to change "From:", for Guest User	0,1	0	Read/Write	0: Prohibit, 1: Allow
$840-140$	Permission to change "From:", when not authenticated	0,1	0	Read/Write	0: Prohibit, 1: Allow
$840-141$	Permission to use ScanToEmail, when failed in obtaining E-mail address during authentication	0,1	1	Allow	

Chain 780-xxx IOT
Table 6 IOT

| Chain-Link | NVM Name | Setup
 Range | Initial Value | Read/Write |
| :--- | :--- | :--- | :--- | :--- | Description | Table 6 IOT |
| :--- |
| $780-013$ |

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
780-014	Paper Type for Tray 2	1~61	$\begin{array}{\|l} \hline \text { 1: Plain } \\ \text { Paper } \end{array}$	Read/Write	1: Plain Paper, 2: OHP Sheet, 3: Envelope, 4: Envelope (Plain), 5: Envelope (with window), 6: Labels, 7: Forms, 8: Coated Paper 1, 9: Tracing Paper, 10: Heavyweight 1, 11: Heavyweight 1 Side 2, 12: Heavyweight 2, 13: Heavyweight 2 Side 2, 14: Recycled Paper, 15: Continuous paper (Long), 16: Continuous Paper (short), 17: TABSTOCK, 18: MULTILAYER, 19: OPAQUEFILM, 20: TACK_FILM, 21: Lightweight, 22: Bond paper, 23: Custom Paper 1, 24: Custom Paper 2, 25: Custom Paper 3, 26: Custom Paper 4, 27: Custom Paper 5, 28: Others, 29: Wrapping Paper, 30: Special Glossy Paper, 31: Coated Paper 2, 32: Coated Paper 1 (Side 2), 33: Coated Paper 2 (Side 2), 34: Finisher-supported Heavyweight 1, 35: Finisher-supported Coated Paper 1, 36: Heavyweight 1_A, 37: Heavyweight 1_B, 38: Heavyweight 1_C, 39: Heavyweight 1_S, 40: Heavyweight 2_A, 41: Heavyweight 2_B, 42: Heavyweight 2_C, 43: Heavyweight 2_D, 44: Heavyweight 2_S, 45: Finisher-supported Heavyweight 1_A, 46: Finisher-supported Heavyweight 1_B, 47: Finisher-supported Heavyweight 1_C, 48: Finisher-supported Heavyweight 1_S, 49: Postcard Stock, 50: Postcard Stock (Side 2), 51: Plain Paper (Side 2), 52: Bond paper (Side 2), 53: Recycled Paper (Side 2), 54: Special, 55: Special (Side 2), 56: Backing Sheet, 57: Perforated Paper, 58: Tab Stock Heavyweight 1, 59: Tab Stock Heavyweight 2
780-015	Paper Type for Tray 3	1~61	$\begin{array}{\|l} \hline \text { 1: Plain } \\ \text { Paper } \end{array}$	Read/Write	1: Plain Paper, 2: OHP Sheet, 3: Envelope, 4: Envelope (Plain), 5: Envelope (with window), 6: Labels, 7: Forms, 8: Coated Paper 1, 9: Tracing Paper, 10: Heavyweight 1, 11: Heavyweight 1 Side 2, 12: Heavyweight 2, 13: Heavyweight 2 Side 2, 14: Recycled Paper, 15: Continuous paper (Long), 16: Continuous Paper (short), 17: TABSTOCK, 18: MULTILAYER, 19: OPAQUEFILM, 20: TACK_FILM, 21: Lightweight, 22: Bond paper, 23: Custom Paper 1, 24: Custom Paper 2, 25: Custom Paper 3, 26: Custom Paper 4, 27: Cus tom Paper 5, 28: Others, 29: Wrapping Paper, 30: Special Glossy Paper, 31: Coated Paper 2, 32: Coated Paper 1 (Side 2), 33: Coated Paper 2 (Side 2), 34: Finisher-supported Heavyweight 1, 35: Finisher-supported Coated Paper 1, 36: Heavyweight 1_A, 37: Heavyweight 1_B, 38: Heavyweight 1_C, 39: Heavyweight 1_S, 40: Heavyweight 2_A, 41: Heavyweight 2_B, 42: Heavyweight 2_C, 43: Heavyweight 2_D, 44: Heavyweight 2_S, 45: Finisher-supported Heavyweight 1_A, 46: Finisher-supported Heavyweight 1_B, 47: Finisher-supported Heavyweight 1_C, 48: Finisher-supported Heavyweight 1_S, 49: Postcard Stock, 50: Postcard Stock (Side 2), 51: Plain Paper (Side 2), 52: Bond paper (Side 2), 53: Recycled Paper (Side 2), 54: Special, 55: Special (Side 2), 56: Backing Sheet, 57: Perforated Paper, 58: Tab Stock Heavyweight 1, 59: Tab Stock Heavyweight 2
780-018	Paper Type for SMH	1~61	1: Plain Paper	Read/Write	1: Plain Paper, 2: OHP Sheet, 3: Envelope, 4: Envelope (Plain), 5: Envelope (with window), 6: Labels, 7: Forms, 8: Coated Paper 1, 9: Tracing Paper, 10: Heavyweight 1, 11: Heavyweight 1 Side 2, 12: Heavyweight 2, 13: Heavyweight 2 Side 2, 14: Recycled Paper, 15: Continuous paper (Long), 16: Continuous Paper (short), 17: TABSTOCK, 18: MULTILAYER, 19: OPAQUEFILM, 20: TACK_FILM, 21: Lightweight, 22: Bond paper, 23: Custom Paper 1, 24: Custom Paper 2, 25: Custom Paper 3, 26: Custom Paper 4, 27: Custom Paper 5, 28: Others, 29: Wrapping Paper, 30: Special Glossy Paper, 31: Coated Paper 2, 32: Coated Paper 1 (Side 2), 33: Coated Paper 2 (Side 2), 34: Finisher-supported Heavyweight 1, 35: Finisher-supported Coated Paper 1, 36: Heavyweight 1_A, 37: Heavyweight 1_B, 38: Heavyweight 1_C, 39: Heavyweight 1_S, 40: Heavyweight 2_A, 41: Heavyweight 2_B, 42: Heavyweight 2_C, 43: Heavyweight 2_D, 44: Heavyweight 2_S, 45: Finisher-supported Heavyweight 1_A, 46: Finisher-supported Heavyweight 1_B, 47: Finisher-supported Heavyweight 1_C, 48: Finisher-supported Heavyweight 1_S, 49: Postcard Stock, 50: Postcard Stock (Side 2), 51: Plain Paper (Side 2), 52: Bond paper (Side 2), 53: Recycled Paper (Side 2), 54: Special, 55: Special (Side 2), 56: Backing Sheet, 57: Perforated Paper, 58: Tab Stock Heavyweight 1, 59: Tab Stock Heavyweight 2
780-019	User Define: Name of Paper Type 1		NULL	Read/Write	8 alphanumeric Katakana (single byte) characters; maximum 12 alphanumeric, symbols, Katakana, Hiragana, or Kanji (double bytes) (Japan) characters; maximum 24 ASCII characters (M/N)
780-020	User Define: Name of Paper Type 2		NULL	Read/Write	8 alphanumeric Katakana (single byte) characters; maximum 12 alphanumeric, symbols, Katakana, Hiragana, or Kanji (double bytes) (Japan) characters; maximum 24 ASCII characters (M/N)

Table 6 IOT

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
780-021	User Define: Name of Paper Type 3		NULL	Read/Write	8 alphanumeric Katakana (single byte) characters; maximum 12 alphanumeric, symbols, Katakana, Hiragana, or Kanji (double bytes) (Japan) characters; maximum 24 ASCII characters (M/N)
780-022	User Define: Name of Paper Type 4		NULL	Read/Write	8 alphanumeric Katakana (single byte) characters; maximum 12 alphanumeric, symbols, Katakana, Hiragana, or Kanji (double bytes) (Japan) characters; maximum 24 ASCII characters (M/N)
780-023	User Define: Name of Paper Type 5		NULL	Read/Write	8 alphanumeric Katakana (single byte) characters; maximum 12 alphanumeric, symbols, Katakana, Hiragana, or Kanji (double bytes) (Japan) characters; maximum 24 ASCII characters (M/N)
780-025	Image Quality Control Category: Bond paper	1~60	$\begin{aligned} & \text { 1: Plain } \\ & \text { Paper A } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-026	Image Quality Control Category: Plain Paper	1~60	$\begin{aligned} & \text { 2: Plain } \\ & \text { Paper B } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-027	Image Quality Control Category: Recycled Paper	1~60	$\begin{aligned} & \text { 4: Plain } \\ & \text { Paper C } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-028	Image Quality Control Category: Custom Paper 1	1~60	$\begin{aligned} & \text { 2: Plain } \\ & \text { Paper B } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-029	Image Quality Control Category: Custom Paper 2	1~60	$\begin{aligned} & \text { 2: Plain } \\ & \text { Paper B } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-030	Image Quality Control Category: Custom Paper 3	1~60	$\begin{aligned} & \text { 2: Plain } \\ & \text { Paper B } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-031	Image Quality Control Category: Custom Paper 4	1~60	$\begin{aligned} & \text { 2: Plain } \\ & \text { Paper B } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-032	Image Quality Control Category: Custom Paper 5	1~60	$\begin{aligned} & \text { 128: Plain } \\ & \text { Paper S } \end{aligned}$	Read/Write	1: Plain Paper A, 2: Plain Paper B, 4: Plain Paper C, 8: Plain Paper D, 11: Plain Paper 32, 5: Plain Paper F, 64: Plain Paper G, 128: Plain Paper S
780-033	Image Quality Control Category: Heavyweight 1	0~60	19: Heavyweight 1_A	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
780-034	Image Quality Control Category: Heavyweight 1 Finisher	0~60	19: Heavy- weight 1_A	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T
780-035	Image Quality Control Category: Heavyweight 1 (Side 2)	0~60	19: Heavyweight 1_A	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T
780-036	Image Quality Control Category: Heavyweight 2	0~60	27: Heavyweight 2_A	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T
780-037	Image Quality Control Category: Heavyweight 2 (Side 2)	0~60	32: Heavyweight 2_A (Side 2)	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T
780-038	Image Quality Control Category: Side 2 (Plain Paper Side 2)	0~60	1: Plain Paper B	Read/Write	0: Plain Paper A, 1: Plain Paper B, 2: Plain Paper C, 3: Plain Paper D, 4: Plain Paper E, 5: Plain Paper F, 6: Plain Paper G, 7: Plain Paper S, 8: Labels, 9: Lightweight, 10: OHP Sheet, 11: Heavyweight 1, 12: Heavyweight 1 (Side 2), 13: Heavyweight 2, 14: Heavyweight 2 (Side 2), 15: Coated Paper 1, 16: Coated Paper 1 (Side 2), 17: Coated Paper 2, 18: Coated Paper 2 (Side 2), 19: Heavyweight 1_A, 20: Heavyweight 1_B, 21: Heavyweight 1_C, 22: Heavyweight 1_S, 23: Heavyweight 1_A (Side 2), 24: Heavyweight 1_B (Side 2), 25: Heavyweight 1_C (Side 2), 26: Heavyweight 1_S (Side 2), 27: Heavyweight 2_A, 28: Heavyweight 2_B, 29: Heavyweight 2_C, 30: Heavyweight 2_D, 31: Heavyweight 2_S, 32: Heavyweight 2_A (Side 2), 33: Heavyweight 2_B (Side 2), 34: Heavyweight 2_C (Side 2), 35: Heavyweight 2_D (Side 2), 36: Heavyweight 2_S (Side 2), 37: Plain Paper T
780-050	Paper Type Priority: Bond Paper	0x01~0xff	3	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): Oxff Repetition Allowed, n is the maximum number of paper types that can be selected

Table 6 IOT

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
780-051	Paper Type Priority: Plain Paper	0x01~0xff	1	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-052	Paper Type Priority: Recycled Paper	0x01~0xff	2	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-053	Paper Type Priority: Custom Paper 1	0x01~0xff	X (Not applicable for ATS)	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-054	Paper Type Priority: Custom Paper 2	0x01~0xff	X (Not applicable for ATS)	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-055	Paper Type Priority: Custom Paper 3	0x01~0xff	X (Not applicable for ATS)	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-056	Paper Type Priority: Custom Paper 4	0x01~0xff	X (Not applicable for ATS)	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-057	Paper Type Priority: Custom Paper 5	0x01~0xff	X (Not applicable for ATS)	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-060	Tray 1 Priority	1~4	1	Read/Write	1~4: $1,2,3,4$, The priority follows the number and 1 is the highest priority. Repetition not allowed.
780-061	Tray 2 Priority	1~4	2	Read/Write	1~4: 1, 2, 3, 4, The priority follows the number and 1 is the highest priority. Repetition not allowed.
780-062	Tray 3 Priority	1~4	3	Read/Write	1~4: 1, 2, 3, 4, The priority follows the number and 1 is the highest priority. Repetition not allowed.
780-066	Edge Erase Adjustment value (Lead Edge)	40~50	4.0	Read/Write	$4.0 \sim 5.0 \mathrm{~mm}$ (0.1 mm unit)
780-067	Edge Erase Adjustment value (Trail Edge)	20~30	2.0	Read/Write	2.0.0~3.0mm (0.1mm unit)
780-068	Edge Erase Adjustment value (Side)	20~30	2.0	Read/Write	$1.0 \sim 3.0 \mathrm{~mm}$ (0.1mm unit)
780-069	Image Enhancement MC Setting	0~1	1: ON	Read/Write	0: OFF, 1: ON
780-073	Offset operation of Finisher Tray	0~3	1: Offset per set	Read/Write	1: Offset per set, 2: Offset per job, 3: No offset
780-076	Paper Type Priority: Heavyweight 1 Finisher	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): Oxff Repetition Allowed, n is the maximum number of paper types that can be selected
780-077	Paper Type Priority: Heavyweight 1 Finisher (A)	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-078	Paper Type Priority: Heavyweight 1 Finisher (B)	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-079	Paper Type Priority: Heavyweight 1 Finisher (C)	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected

Reversion 4.0
WorkCentre 7132

Table 6 IOT

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
780-080	Paper Type Priority: Heavyweight 1 Finisher (S)	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-081	Paper Type Priority: Coated Paper 1 Finisher	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): Oxff Repetition Allowed, n is the maximum number of paper types that can be selected
780-084	$\begin{aligned} & \text { Paper Type Priority: Side } \\ & 2 \end{aligned}$	0x01~0xff	X	Read/Write	1~n: 1~n, X (Not applicable for Priority Tray for APS/ATS): 0xff Repetition Allowed, n is the maximum number of paper types that can be selected
780-141	Center Tray2 Offset Enable	Offset per Set	1~3	Read/Write	1: Offset per Set 2: Offset per Job3: No Offset.
780-142	Forced Duplex for Odd Number Page when 2 Sided Print is selected	0~1	1:2 Sided	Read/Write	1: 2 Sided, 0: 1 Sided
780-145	Offset operation at Staple mode	0~3	1: Offset per set	Read/Write	1: Offset per set, 2: Offset per job, 3: No offset
780-146	Operation for Abnormal Mix Size Staple	0~1	0: Release	Read/Write	1: Staple, 0: Release
780-147	Maximum Paper Count for 1 Set	10~150	50	Read	10 sheets ~ 100 sheets (B-Finisher) 25 sheets ~ 75 sheets (C-Finisher/D-Finisher (50 sheets)) 50 sheets ~ 150 sheets (D-Finisher (100 sheets))
780-148	Maximum Paper Count for 1 Set (/Small Size)	0~200	100 sheets	Read	2 sheets ~ 200 sheets
780-149	Maximum Paper Count for 1 Set (/Large Size)	0~200	65 sheets	Read	2 sheets ~ 200 sheets
780-150	Maximum Paper Count for Bi-Fold	1~15	5 sheets	Read	1 sheet ~ 15 sheets
780-151	Maximum Paper Count for 1 Set	2~25	15	Read	2 sheets ~ 25 sheets
780-153	Enable/Disable User Confirmation for Paper Type / Paper Attribute Inconsistency	0~1	1: Confirm to wait for user's instruction	Read/Write	1: Confirm to wait for user's instruction, 0: Proceed without confirmation
780-162	Tray 1 Medium Attributes	0~2	0. None	Read/Write	0: None, 1: Paper for BW, 2: Paper for Color
780-163	Tray 2 Medium Attributes	0~2	0. None	Read/Write	0: None, 1: Paper for BW, 2: Paper for Color
780-164	Tray 3 Medium Attributes	0~2	0. None	Read/Write	0: None, 1: Paper for BW, 2: Paper for Color
780-196	Output Tray Offset Feature Availability	1	(Auto Detect)	Read/Write	0: FALSE, 1: TRUE, (Auto Detect)

Chain 785-xxx IIT

Table 7 IIT					
Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$785-002$	ACS Separate Level	$0 \sim 5$	3: Normal	Read/Write	1: More Black, 2: Black, 3: Normal, 4: Color, 5: More Color

Table 7 IIT

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
785-003	Image Processing Method of FAX Photo	0~1	$\begin{aligned} & \text { 0: Error Diffu- } \\ & \text { sion } \end{aligned}$	Read/Write	0: Error Diffusion (1Bit ED), 1: Dither
785-004	Background Color removal method in B/ W Mode	0~1	1: Fast Speed	Read/Write	0: Image Quality, 1: Fast Speed
785-005	Background Color removal method in Color Mode	0~1	1: Fast Speed	Read/Write	0: Image Quality, 1: Fast Speed
785-008	DADF Type	0~2	0: None	Read/Write	Automatic recognition 1: PF1, 2: PF2
785-010	FAX Document Size Detect Method in DADF	0~1	0: A/B Series *The default for $X C$ is "Inch Series"	Read/Write	0: A/B Series, 1: Inch Series
785-015	Text / Photo Separate Level	1~5	3: Normal	Read/Write	1: More Text, 2: Text, 3: Normal, 4: Photo, 5: More Photo
785-016	Photo Reproduction Level	1~5	3: Normal	Read/Write	1: More Text, 3: Normal, 5: More Photo
785-020	Copy Text/Photo Mode Special Color Reproduction	0~2	0: Normal	Read/Write	0: Normal, 1: Inkjet, 2: Highlighter
785-022	Background Color Suppression Level (Color Copy Text/Photo)	0~4	1: +1	Read/Write	0: $0,1:+1,2:+2,3:+3,4:+4$,
785-023	Background Color Suppression Level (Color Copy Text)	0~4	1: +1	Read/Write	0: 0, 1: +1, 2: +2, 3: +3, 4: +4,
785-024	Fine-tune 100\% Fast Scan Ratio	$\begin{aligned} & 980 \sim 102 \\ & 0 \end{aligned}$	1	Read/Write	980: 98.0\%~1020: 102.0% *0.1\% increments
785-025	Fine-tune 100\% Slow Scan Ratio	$\begin{aligned} & 980 \sim 102 \\ & 0 \end{aligned}$	100.0\%	Read/Write	980: 98.0\% ~1020: 102.0% *0.1\% increments
785-026	Enable/Disable Fine-tune 100\% DADF	0~1	1: Disable	Read/Write	0: Disable, 1: Enable
785-028	Enable/Disable CVT Original Size Required	0~1	1: ON	Read/Write	0: OFF, 1: ON
785-030	APS Applicable / Not Applicable (5.5.x8.5 (Statement))	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-031	APS Applicable/ Not Applicable (A5)	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-032	APS Applicable/Not Applicable (B5)	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-033	APS Applicable/Not Applicable (8.25x10.5 (Executive))	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-034	APS Applicable/Not Applicable (8x10)	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-035	APS Applicable/Not Applicable (16K)	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-036	APS Applicable/Not Applicable (8.5x11 (Letter))	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
785-037	APS Applicable/Not Applicable (A4)	0~1	Set for each region	Read/Write	0: Not Applicable, 1: Applicable

Table 7 IIT

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$785-038$	APS Applicable/Not Applicable (8.5x13 (Foolscap))	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-039$	APS Applicable/Not Applicable (8.5x14 (Legal))	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-040$	APS Applicable/Not Applicable (B4)	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-041$	APS Applicable/Not Applicable (8K)	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-042$	APS Applicable/Not Applicable (11x17 (Ledger))	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-043$	APS Applicable/Not Applicable (A3)	$0 \sim 1$	Set for each region	Read/Write	0: Not Applicable, 1: Applicable
$785-050$	Applicable Range of the Input Original Size when Original Size is Not Specified	$0 \sim 1$	$0:$ Applicable to such Originals only	Read/Write	0: Applicable to such Originals only, 1: Applicable to all the following non- standard Originals
$785-065$	Image Layout Center/Corner Switch for Large Size Paper 25501: Paste to Center		Read/Write	0: Paste to Corner 1: Paste to Center	
$785-080$	Edge Erase Settings for smaller paper	$0 \sim 10$	5	Read/Write	0~10mm (1mm increments)
$785-082$	SCAN Background Suppression Method	$1 \sim 0$	1	Read/Write	0: High Quality, 1: High Speed

Chain 790-xxx UI

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-001	Startup Display Setting	0~2	0: Settings List screen	Read Write	0: Settings List screen, 1: Job Management screen, 2: Machine Information screen
790-002	Function Setup Startup Display	0~255	0: Menu	Read/ Write	0: Menu, 1: Copy, 2:FAX/iFAX, 3:Scan to Email, 4:Scan to Mail Box, 5:Scan to Server, 6:Scan to PC, 7:Box, 8:Print, 9:Job Flow Service, 10:Job Memory, 11:Multi Service, 12:Gemini, 13:Docu Share, 14:Media Print (Digital Camera Print), 15:Media Print (Document print)
790-003	Fax Broadcast/Multi-Poll Confirmation Display (CE Setting)	0~1	1: Display	Read Write	0: Do not display 1: Display
790-004	Toner Near Empty - Advance Notification (Pre Near Empty) Display (CE Setting)	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-005	Address Keyboard, 10 Key Input Prohibited	0, 1	$\begin{aligned} & \text { 0: Do not pro- } \\ & \text { hibit } \end{aligned}$	Read/ Write	0: Do not prohibit, 1: Prohibit
790-019	Remaining Job Auto Clear Timer Settings When Accessory is Connected	1~59	15 sec	Read/ Write	
790-050	Pre Set Tray 1	0~255	1: Tray 1	Read/ Write	0: None (not in use), 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH,6: HCF1,7: HCF2

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-051	Pre Set Tray 2	0~255	2: Tray 2	Read Write	0: None (not in use), 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5:6: HCF1,SMH,7: HCF2
790-052	Pre Set Tray 3	0~255	$\begin{aligned} & \hline \text { 3: Tray 3 } \\ & \text { (HBUI), 5: } \\ & \text { SMH (FCWUI) } \end{aligned}$	Read Write	0: None (not in use), 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH,6: HCF1,7: HCF2
790-060	R/E Preset 1	0~12	2: R/E Preset 2	Read/ Write	0: None, 1~12: R/E Preset 1 to R/E Preset 12
790-061	R/E Preset 2	0~12	7: R/E Preset 7	Read/ Write	0: None, 1~12: R/E Preset 1 to R/E Preset 12
790-070	Default Tray Setting in Copy Mode	0~5	0: Auto	Read/ Write	0: Auto, 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH
790-071	Tray at Auto Cancellation	0~12	1: Tray 1	Read/ Write	1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4
790-072	Default R/E Setting in Copy Mode	0~255	0: 100\%	Read/ Write	0: 100\%, 1~12: R/E Preset 1 to R/E Preset 12, 255: Auto
790-073	R/E Preset 1 Setting	25~1025	1003: 50.00\%	Read/ Write	1~24: Not in use, 25~400:\%, 401~1000: Not in use, 1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: $57.70 \%, 1005: 61.20 \%, 1006: 64.70 \%, 1007: 70.70 \%, 1008: 78.50 \%, 1009: 81.60 \%, 1010: 86.60 \%$, 1011: 94.00%, 1012: 97.30%, 1013: 115.40\%, 1014: 122.50\%, 1015: 127.30\%, 1016: 129.40\%, 1017: 141.40%, 1018: 154.50\%, 1019: 163.20\%, 1020: 173.20\%, 1021: 180.00\%, 1022: 200.00\%, 1023: 220.00\%, 1024: 282.80\%, 1025: 400.00\%
790-074	R/E Preset 2 Setting	1001~1025	1007: 70.70\%	Read/ Write	$1 \sim 1000:$ Not in use,1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: $57.70 \%, 1005: 61.20 \%, 1006:$ $64.70 \%, 1007: 70.70 \%, 1008: 78.50 \%, 1009: 81.60 \%, 1010: 86.60 \%, 1011: 94.00 \%, 1012: 97.30 \%$, $1013: 115.40 \%, 1014: 122.50 \%, 1015: 127.30 \%, 1016: 129.40 \%, 1017: 141.40 \%, 1018: 154.50 \%$, $1019: 163.20 \%, 1020: 173.20 \%, 1021: 180.00 \%, 1022: 200.00 \%, 1023: 220.00 \%, 1024: 282.80 \%$, $1025: 400.00 \%$
790-075	R/E Preset 3 Setting	1001~1025	1009: 81.60\%	Read/ Write	ditto
790-076	R/E Preset 4 Setting	1001~1025	1010: 86.60\%	Read/ Write	ditto
790-077	R/E Preset 5 Setting	1001~1025	1013: 115.40\%	Read Write	ditto
790-078	R/E Preset 6 Setting	1001~1025	1014: 122.50\%	Read/ Write	ditto
790-079	R/E Preset 7 Setting	1001~1025	1017: 141.40\%	Read/ Write	ditto
790-089	Default Extracted Color for Dual Color	1~255	1: Except Black	Read/ Write	1 (0x01): Except Black, 2 (0x02): Red, 4 (0x04): Green, 8 (0x08): Blue, 16 (0x10): Yellow (Y), 32 (0x20): Magenta (M), 64 (0x40): Cyan (C)
790-090	Default Color Mode	0~5	2: BW	Read/ Write	0: None, 1: Auto, 2: BW, 3: 4 Color, 4: Single Color, 5: Dual Color
790-091	Default Single Color Selection	1~12	1: Custom Color 1	Read/ Write	1~6: Preset Color 1 to Preset Color 6, 7~12: Custom Color 1 to Custom Color 6
790-092	Reproduction Color Selection Default except for Extracted Part	0~12	0: Black	Read/ Write	0: Black, 1~6: Preset Color 1 to Preset Color 6, 7~12: Custom Color 1 to Custom Color 6

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-093	Default Reproduction Color in Extracted Part	0~12	$\begin{aligned} & \text { 1: Preset Color } \\ & 1 \end{aligned}$	Read Write	0: Black, 1~6: Preset Color 1 to Preset Color 6, 7~12: Custom Color 1 to Custom Color 6
790-096	Default Document Type (Color Machine)	0~10	$\begin{aligned} & \text { 4: Text/Photo } \\ & \text { (Print) } \end{aligned}$	Read Write	0: Auto, 1: Text (Normal Text), 4: Text/Photo (Print), 5: Text/Photo (Photograph Paper), 6: Text/Photo (Color Copy Originals), 7: Photo (Print), 8: Photo (Photograph Paper), 9: Photo (Color Copy Originals), 10: Map
790-097	Default Background Color Removal	0~1	1: ON	Read Write	0: OFF, 1: ON
790-098	Default Density Adjustment	0~6	3: Normal	Read/ Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
790-099	Default Mixed Size	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-100	Default Color Balance (Y: Low Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-101	Default Color Balance (Y: Medium Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-102	Default Color Balance (Y: High Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-103	Default Color Balance (M: Low Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-104	Default Color Balance (M: Medium Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-105	Default Color Balance (M: High Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-106	Default Color Balance (C: Low Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-107	Default Color Balance (C: Medium Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-108	Default Color Balance (C: High Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-109	Default Color Balance (K: Low Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-110	Default Color Balance (K: Medium Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-111	Default Color Balance (K: High Density)	0~6	0: Normal	Read/ Write	0~6: -3~3 (Lighter 3, Lighter 2, Lighter 1, Normal, Darker 1, Darker 2, Darker 3)
790-120	Default Color Shift	0~4	2: 0 degree	Read/ Write	0: -20 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
790-121	Default Color Saturation	0~4	2: Normal	Read/ Write	0: Stronger 2 (Highest), 1: Stronger (High), 2: Normal, 3: Softer 1 (Low), 4: Softer 2 (Lower)
790-122	Default Sharpness	0~4	2: Normal	Read/ Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer
790-123	Default Contrast	0~4	2: Normal	Read/ Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-124	Default Center/Corner Shift Position (Side1)	0~9	0: OFF	Read/ Write	0: OFF, 1: Center, 2: Top Right, 3: Bottom Right, 4: Top Left, 5: Bottom Left, 6: Top Center, 7: Bottom Center, 8: Left Center, 9: Right Center, 10: Symmetrical position with Side 1
790-125	Default Center/Corner Shift Position (Side2)	0~10	10: Symmetrical position with Side 1	Read/ Write	0: OFF, 1: Center, 2: Top Right, 3: Bottom Right, 4: Top Left, 5: Bottom Left, 6: Top Center, 7: Bottom Center, 8: Left Center, 9: Right Center, 10: Symmetrical position with Side 1
790-126	FAX Broadcast Control	0, 1	0: Do not broadcast	Read/ Write	0: Do not broadcast 1: Broadcast
790-127	Secondary Input Method of First Speed Dial Instruction Condition	0~2	0: Address Number	Read/ Write	0: Address Number 1: Full Dial 2: Do not perform secondary input
790-128	Default Center Erase	0~50	0: 0 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-129	Rotation Default Setting	0~2	1: ON for APS/ AMS only	Read/ Write	0: Always ON, 1: ON for APS/AMS only, 2: Always OFF
790-130	Image Orientation Default Setting	0~2	"0: Auto" with Finisher, "1: Portrait Originals - Left Edge" without Finisher	Read/ Write	0: Auto, 1: Portrait Originals - Left Edge, 2: Portrait Originals - Right Edge
790-131	Fixed Size 1 of Copy Document Size Input	2~255	10: A3 SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11×17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5×11 SEF, 92 : 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5x5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5x8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, 118: 8.5×13 SEF, 119: 7.25×10.5 LEF, 120: 7.25x10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5×5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}(8.46 \times 12.4)$ SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13×19 SEF, 148: 13×18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-132	Fixed Size 2 of Copy Document Size Input	2~255	12: A4 SEF	Read/ Write	ditto
790-133	Fixed Size 3 of Copy Document Size Input	2~255	11: A4 LEF	Read/ Write	ditto
790-134	Fixed Size 4 of Copy Document Size Input	2~255	14: A5 SEF	Read/ Write	ditto
790-135	Fixed Size 5 of Copy Document Size Input	2~255	16: A6 SEF	Read/ Write	ditto

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-136	Fixed Size 6 of Copy Document Size Input	2~255	66: B4 SEF	Read/ Write	ditto
790-137	Fixed Size 7 of Copy Document Size Input	2~255	68: B5 SEF	Read/ Write	ditto
790-138	Fixed Size 8 of Copy Document Size Input	2~255	67: B5 LEF	Read/ Write	ditto
790-139	Fixed Size 9 of Copy Document Size Input	2~255	80: 11×17 SEF	Read/ Write	ditto
790-140	Fixed Size 10 of Copy Document Size Input	2~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-141	Fixed Size 11 of Copy Document Size Input	2~255	89: 8.5x11 LEF	Read/ Write	ditto
790-180	Default [Document Orientation] in Copy Mode	0~1	0: Head to Top	Read/ Write	0: Head to Top, 1: Head to Left
790-181	Duplex feature default setting	0~3	0: No	Read/ Write	0: No (1 to 1 Sided), 1: 1 to 2 Sided, 2: 2 to 1 Sided, 3: 2 to 2 Sided
790-182	Default Collate Mode in Copy Mode	0~2	0: Auto	Read/ Write	0: Auto, 1: Collated, 2: Uncollated
790-183	Default Output Tray in Copy Mode	0~4	0: Center Tray	Read/ Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, 4: Top Tray *Options that are not installed cannot be selected
790-184	FAX Sending Display Availability	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-185	Receiver Initial Display Availability	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-186	Default Communication Mode	0~6	2: G3 Auto	Read/ Write	1: G4 Auto, 2: G3 Auto, 3: International Communication (Communication Speed is below 4800bps). The following is added in M/N, 4: G3, 5: G3 (ECM), 6: G3 (ECM) - Forced4800
790-187	Default Density (Scan Density)	0~6	3: Normal	Read/ Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
790-188	Default Image Quality (Document Type)	0~2	0: Text	Read/ Write	0: Text, 1: Photo, 2: Text/Photo
790-189	Default Resolution (Scan Resolution)	0~3	0: Standard	Read/ Write	0: Standard, 1: High Quality (200x200), 2: High Quality (400x400), 3: High Quality (600x600)
790-190	Default Monitor Print	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-192	Default Sender Records	0~1	1: ON	Read/ Write	0: OFF, 1: ON
790-193	Default display starting number of Receiver List	0~500	1	Read/ Write	1~500
790-194	Default Mixed Size	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-195	Default Receive Mode	0~1	0: Auto Receive	Read/ Write	0: Auto Receive, 1: Manual Receive

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-196	Delayed Send Time Settinghour	0~23	21	Read Write	Hour (0~23)
790-197	Delayed Send Time Settingminutes	0~59	0	Read Write	Minute (0~59)
790-198	Manual Send/Receive Settings	0~1	0: Manual Receive	Read Write	0: Manual Receive, 1: Manual Send
790-200	FAX Fixed R/E Default Setting 1	25~1025	1003: 50.00\%,	Read/ Write	1~24: Not in use, 25~400:\%, 401~1000: Not in use, 1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: $57.70 \%, 1005: 61.20 \%, 1006: 64.70 \%$, 1007: 70.70\%, 1008: 78.50\%, 1009: 81.60\%, 1010: 86.60\%, 1011: $94.00 \%, 1012: 97.30 \%, 1013: 115.40 \%, 1014: 122.50 \%, 1015: 127.30 \%, 1016: 129.40 \%, 1017$: 141.40%, 1018: 154.50\%, 1019: 163.20\%, 1020: 173.20\%, 1021: 180.00\%, 1022: 200.00\%, 1023 : 220.00\%, 1024: 282.80\%, 1025: 400.00\%
790-201	FAX Fixed R/E Default Setting 2	25~1025	1007: 70.70\%	Read/ Write	ditto
790-202	FAX Fixed R/E Default Setting 3	25~1025	1009: 81.60\%	Read Write	ditto
790-203	FAX Fixed R/E Default Setting 4	25~1025	1010: 86.60\%	Read/ Write	ditto
790-204	FAX Fixed R/E Default Setting 5	25~1025	1013: 115.40\%	Read/ Write	ditto
790-205	FAX Fixed R/E Default Setting 6	25~1025	1014: 122.50\%	Read/ Write	ditto
790-206	FAX Fixed R/E Default Setting 7	25~1025	1017: 141.40\%	Read/ Write	ditto
790-210	Fixed Size 1 of FAX Scan Size Input	1~255	10: A3 SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11x17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5x11 SEF, 92: 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5×8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, $118: 8.5 \times 13$ SEF, 119: 7.25×10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5×5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46x12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13x19 SEF, 148: 13×18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-211	Fixed Size 2 of FAX Scan Size Input	1~255	12: A4 SEF	Read/ Write	ditto
790-212	Fixed Size 3 of FAX Scan Size Input	1~255	11: A4 LEF	Read/ Write	ditto
790-213	Fixed Size 4 of FAX Scan Size Input	1~1025	14: A5 SEF	Read/ Write	ditto

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-214	Fixed Size 5 of FAX Scan Size Input	1~255	16: A6 SEF	Read/ Write	ditto
790-215	Fixed Size 6 of FAX Scan Size Input	1~255	66: B4 SEF	Read/ Write	ditto
790-216	Fixed Size 7 of FAX Scan Size Input	1~255	68: B5 SEF	Read/ Write	ditto
790-217	Fixed Size 8 of FAX Scan Size Input	1~255	67: B5 LEF	Read/ Write	ditto
790-218	Fixed Size 9 of FAX Scan Size Input	1~255	80: 11x17 SEF	Read/ Write	ditto
790-219	Fixed Size 10 of FAX Scan Size Input	1~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-220	Fixed Size 11 of FAX Scan Size Input	1~255	89: 8.5×11 LEF	Read/ Write	ditto
790-221	Default FAX Profile	1~2	0:TIFF-S	Read/ Write	0: TIFF-S, 1: TIFF-F, 2: TIFF-J
790-222	Default Mixed Size	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-223	Default Color Mode	0~3	2: B/W Binary	Read/ Write	0: Full Color, 1: Grayscale, 2: B/W Binary, 3: Auto
790-224	Default Document Type	0~2	0: Text	Read/ Write	0: Text, 1: Text/Photo, 2: Photo
790-225	Default Resolution	0~4	0: 200dpi	Read/ Write	0: 200dpi, 1: 300dpi, 2: 400dpi, 3: 600dpi, TBD: 100dpi
790-226	Default Top and Bottom Edge Erase	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-227	Default Left and Right Edge Erase	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-228	Default Center Erase	0~50	0 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-229	Default Density/Brightness Adjustment (Using data common to Density, Brightness)	0~6	3: Standard	Read/ Write	0: Brightness (Density) 3, 1: Brightness (Density) 2, 2: Brightness (Density) 1, 3: Standard, 4: Brightness (Density) -1, 5: Brightness (Density) -2, 6: Brightness (Density) -3
790-230	Default Contrast Adjustment	0~4	2: Standard	Read/ Write	0: Stronger 2, 1: Stronger 1, 2: Standard, 3: Softer 1, 4: Softer 2

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-231	Fixed Size 1 of Scan Document Size Input	1~255	10: A3 SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11×17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5x11 SEF, 92: 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5x8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, 118: 8.5×13 SEF, 119: 7.25×10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5×5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46x12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13x19 SEF, 148: 13×18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-232	Fixed Size 2 of Scan Document Size Input	1~255	12: A4 SEF	Read/ Write	ditto
790-233	Fixed Size 3 of Scan Document Size Input	1~255	11: A4 LEF	Read/ Write	ditto
790-234	Fixed Size 4 of Scan Document Size Input	1~255	14: A5 SEF	Read/ Write	ditto
790-235	Fixed Size 5 of Scan Document Size Input	1~255	16: A6 SEF	Read/ Write	ditto
790-236	Fixed Size 6 of Scan Document Size Input	1~255	66: B4 SEF	Read/ Write	ditto
790-237	Fixed Size 7 of the Subsequent >Scan Document Size Input	1~255	68: B5 SEF	Read/ Write	ditto
790-238	Fixed Size 8 of Scan Document Size Input	1~255	67: B5 LEF	Read/ Write	ditto
790-239	Fixed Size 9 of Scan Document Size Input	1~255	80: 11x17 SEF	Read/ Write	ditto
790-240	Fixed Size 10 of Scan Document Size Input	1~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-241	Fixed Size 11 of Scan Document Size Input	1~255	89: 8.5×11 LEF	Read/ Write	ditto
790-250	Fixed Size 1 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-251	Fixed Size 1 Slow Scan	0~432	NULL	Read Write	15~432mm *Default Value is " 0 "
790-252	Fixed Size 2 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-253	Fixed Size 2 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-254	Fixed Size 3 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-255	Fixed Size 3 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-256	Fixed Size 4 Fast Scan	0~297	NULL	Read Write	15~297mm *Default Value is " 0 "
790-257	Fixed Size 4 Slow Scan	0~432	NULL	Read/ Write	15~432mm *Default Value is " 0 "
790-258	Fixed Size 5 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-259	Fixed Size 5 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-260	Fixed Size 6 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-261	Fixed Size 6 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-262	Fixed Size 7 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-263	Fixed Size 7 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-264	Fixed Size 8 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-265	Fixed Size 8 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-266	Fixed Size 9 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-267	Fixed Size 9 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-268	Fixed Size 10 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-269	Fixed Size 10 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-270	Fixed Size 11 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is " 0 "
790-271	Fixed Size 11 Slow Scan	0~432	NULL	Read/ Write	15~432mm *Default Value is "0"
790-272	Default [Document Orientation] in SCAN Mode	0~1	1: Head to Left	Read/ Write	0: "Head to Top", 1: "Head to Left"
790-273	SCAN Fixed R/E Default Setting 1	25~1025	1003: 50.00\%,	Read/ Write	1~24: Not in use, 25~400:\%, 401~1000: Not in use, 1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: $57.70 \%, 1005: 61.20 \%, 1006: 64.70 \%$, 1007: 70.70\%, 1008: 78.50\%, 1009: 81.60\%, 1010: 86.60\%, 1011: 94.00%, 1012: 97.30%, 1013: 115.40\%, 1014: 122.50\%, 1015: 127.30\%, 1016: 129.40\%, 1017: $141.40 \%, 1018: 154.50 \%, 1019: 163.20 \%$, 1020: 173.20\%, 1021: 180.00\%, 1022: 200.00\%, 1023: 220.00\%, 1024: 282.80\%, 1025: 400.00\%
790-274	SCAN Fixed R/E Default Setting 2	25~1025	1007: 70.70\%	Read/ Write	ditto

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-275	SCAN Fixed R/E Default Setting 3	25~1025	1009: 81.60\%	Read/ Write	ditto
790-276	$\begin{aligned} & \text { SCAN Fixed R/E Default Setting } \\ & 4 \end{aligned}$	25~1025	1010: 86.60\%	Read/ Write	ditto
790-277	$\begin{aligned} & \text { SCAN Fixed R/E Default Setting } \\ & 5 \end{aligned}$	25~1025	1013: 115.40\%	Read/ Write	ditto
790-278	SCAN Fixed R/E Default Setting 6	25~1025	1014: 122.50\%	Read/ Write	ditto
790-279	SCAN Fixed R/E Default Setting 7	25~1025	1017: 141.40\%	Read/ Write	ditto
790-280	Output Size 1	0~255	10: A3 SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11x17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5x11 SEF, 92: 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5x5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5x8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, 118: 8.5×13 SEF, 119: 7.25×10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5x5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46×12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13x19 SEF, 148: 13×18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-281	Output Size 2	0~255	12: A4 SEF	Read/ Write	ditto
790-282	Output Size 3	0~255	11: A4 LEF	Read/ Write	ditto
790-283	Output Size 4	0~255	14: A5 SEF	Read/ Write	ditto
790-284	Output Size 5	0~255	16: A6 SEF	Read/ Write	ditto
790-285	Output Size 6	0~255	66: B4 SEF	Read/ Write	ditto
790-286	Output Size 7	0~255	68: B5 SEF	Read/ Write	ditto
790-287	Output Size 8	0~255	89: 8.5x11 LEF	Read/ Write	ditto
790-288	Default Background Color Removal in SCAN Mode	0~1	1: ON	Read/ Write	0: OFF, 1: ON
790-290	Basic Screen Preset R/E 1	1~7	2: R/E Preset 2	Read/ Write	1~7: R/E Reset 1~7
790-291	Basic Screen Preset R/E 2	1~7	4: R/E Preset 4	Read/ Write	1~7: R/E Reset 1~7

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-292	Basic Screen Preset R/E 3	1~7	7: R/E Preset 7	Read/ Write	1~7: R/E Reset 1~7
790-300	Enable/Disable Special Document Selection Display	0~1	0: Do not display	Read/ Write	0: Do not display 1: Display
790-301	Default Top Edge Erase Margin	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-302	Default Bottom Edge Erase Margin	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-303	Default Left Edge Erase Margin	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-304	Default Right Edge Erase Margin	0~50	2 (mm)	Read/ Write	1 mm unit from 0 (mm) to 50 (mm)
790-305	Direction Adjust in Scan	0~1	0: ON	Read/ Write	0: OFF, 1: ON
790-306	Bleed Prevention Default	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-307	Default Compression Ratio	0~4	2: Normal	Read/ Write	0: High Compression Rate Priority, 1: Moderate Compression Rate Priority, 2: Normal, 3: Moderate Image Quality Priority, 4: High Image Quality Priority
790-308	Default Transfer Protocol	0~2	0: FTP	Read/ Write	0: FTP, 1: SMB, 2: SMB (UNC)
790-309	Default File Format	0~4	0: TIFF/JFIF Auto Select	Read/ Write	0: TIFF/JFIF Auto Select, 1: TIFF (Single Page File), 2: TIFF (Multiple Pages), 3: PDF, 4: XDW (Not applicable for XC/XE)
790-310	IFax Send Confirmation Default	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-311	Default Sharpness Adjustment	0~4	2: Normal	Read/ Write	0: Stronger 2, 1: Stronger 1, 2: Normal, 3: Softer 1, 4: Softer 2
790-312	Enable/Disable Edge Erase	0~1	0: Enable	Read/ Write	0: Enable, 1: Disable
790-317	Color Space Display Settings	0~1	1: Do not display	Read/ Write	0: Display, 1: Do not display
790-320	BW Copy Document Type Default (when Document Type is "Auto")	1~10	1: Text (Normal Text)	Read/ Write	1: Text (Normal Text), 2: Text (Pencil Text (Black)), 4: Text/Photo (Print), 5: Text/Photo (Photograph Paper), 6: Text/Photo (Color Copy), 7: Photo (Print), 8: Photo (Photograph Paper), 9: Photo (Color Copy), 10: Map
790-321	Default Document Type for Color/Auto (ACS) (when Document Type is "Auto")	1~10	4: Text/Photo (Print)	Read/ Write	1: Text (Normal Text), 4: Text/Photo (Print), 5: Text/Photo (Photograph Paper), 6: Text/Photo (Color Copy), 7: Photo (Print), 8: Photo (Photograph Paper), 9: Photo (Color Copy), 10: Map
790-322	Default Side 2 Edge Erase	0~1	0: Same as Side 1	Read/ Write	0: Same as Side 1, 1: Side 1 as Target

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-350	Fixed Size 12 of Scan Document Size Input	1~255	$\begin{aligned} & \text { 88: Postcard } \\ & \text { SEF } \end{aligned}$	$\begin{array}{\|l} \hline \text { Read/ } \\ \text { Write } \end{array}$	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: 69: B6 LEF, 70: B6 SEF, 80: 11×17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90 : 8.5×11 SEF, 92 : 8.5×14 SEF, 94 : 12×18 SEF, $98: 12 \times 19$ SEF, 101: 16 K LEF, $102: 16 \mathrm{~K}$ SEF, $104: 8 \mathrm{~K}$ SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5×8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, 118: 8.5×13 SEF, 119: 7.25×10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5x5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: 215x315mm (8.46x12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13×19 SEF, 148: 13×18 SEF, 149: 12.6×19.2 SEF, 150: Letter Cover (9×11) SEF, 151: LetterCover (9×11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-351	Fixed Size 13 of Scan Document Size Input	1~255	80: 11x17 SEF	$\begin{array}{\|l} \hline \text { Read/ } \\ \text { Write } \end{array}$	ditto
790-352	Fixed Size 14 of Scan Document Size Input	1~255	$\begin{aligned} & \text { 92: } 8.5 \times 14 \\ & \text { SEF } \end{aligned}$	$\begin{aligned} & \hline \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-353	Fixed Size 15 of Scan Document Size Input	1~255	$\begin{aligned} & \text { 118: } 8.5 \times 13 \\ & \text { SEF } \end{aligned}$	$\begin{array}{\|l} \hline \text { Read/ } \\ \text { Write } \end{array}$	ditto
790-354	Fixed Size 16 of Scan Document Size Input	1~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	$\begin{array}{\|l} \hline \text { Read/ } \\ \text { Write } \end{array}$	ditto
790-355	Fixed Size 17 of Scan Document Size Input	1~255	89: 8.5x11 LEF	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-360	Fixed Size 12 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-361	Fixed Size 12 Slow Scan	0~432	NULL	$\begin{array}{\|l} \hline \text { Read/ } \\ \text { Write } \end{array}$	$15 \sim 432 \mathrm{~mm}$ *Default Value is "0"
790-362	Fixed Size 13 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-363	Fixed Size 13 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is "0"
790-364	Fixed Size 14 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-365	Fixed Size 14 Slow Scan	0~432	NULL	Read/ Write	15~432mm *Default Value is " 0 "
790-366	Fixed Size 15 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-367	Fixed Size 15 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is "0"
790-368	Fixed Size 16 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-369	Fixed Size 16 Slow Scan	0~432	NULL	Read/ Write	15~432mm *Default Value is "0"

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-370	Fixed Size 17 Fast Scan	0~297	NULL	Read/ Write	15~297mm *Default Value is "0"
790-371	Fixed Size 17 Slow Scan	0~432	NULL	Read/ Write	$15 \sim 432 \mathrm{~mm}$ *Default Value is " 0 "
790-380	$\begin{aligned} & \hline \text { SCAN Fixed R/E Default Setting } \\ & 8 \end{aligned}$	25~1025	1014: 122.50\%	Read/ Write	1~24: Not in use, 25~400:\%, 401~1000: Not in use, 1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: 57.70\%, 1005: 61.20\%, 1006:64.70\%, 1007: 70.70\%, 1008: 78.50\%, 1009: 81.60\%, 1010: 86.60\%, 1011: 94.00\%, 1012: $97.30 \%, 1013: 115.40 \%, 1014: 122.50 \%, 1015: 127.30 \%, 1016: 129.40 \%, 1017:$ 141.40\%, 1018: $154.50 \%, 1019: 163.20 \%, 1020: 173.20 \%, 1021: 180.00 \%, 1022: 200.00 \%, 1023:$ $220.00 \%, 1024: 282.80 \%, 1025: 400.00 \%$
790-381	SCAN Fixed R/E Default Setting 9	25~1025	1017: 141.40\%	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-382	SCAN Fixed R/E Default Setting 10	25~1025	1019: 163.20\%	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-383	$\begin{array}{\|l\|} \hline \text { SCAN Fixed R/E Default Setting } \\ 11 \end{array}$	25~1025	1022:200.00\%	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-384	$\begin{array}{\|l\|} \hline \text { SCAN Fixed R/E Default Setting } \\ 12 \end{array}$	25~1025	1025:400.00\%	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-390	Output Size 9	1~255	70: B6 SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11x17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5x11 LEF, 90: 8.5×11 SEF, 92 : 8.5×14 SEF, 94 : 12×18 SEF, $98: 12 \times 19$ SEF, 101 : 16 K LEF, 102 : 16 K SEF, $104: 8 \mathrm{~K}$ SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5×5.5) SEF, 107: PostCard (4×6) LEF, 108: PostCard (4×6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5×7) SEF, 111: 5.5×8.5 LEF, 112: 5.5x8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, 118: 8.5×13 SEF, 119: 7.25x10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5x5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46×12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13×19 SEF, 148: 13×18 SEF, 149: 12.6×19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9×11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-391	Output Size 10	1~255	$\begin{aligned} & \text { 135: 3.5x5 } \\ & \text { (Photo L) LEF } \end{aligned}$	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68: B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11x17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5x11 SEF, 92: 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5x5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5×8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, $118: 8.5 \times 13$ SEF, 119: 7.25x10.5 LEF, 120: 7.25x10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5x5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46x12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13x19 SEF, 148: 13x18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-392	Output Size 11	1~255	135: 3.5×5 (Photo L) LEF	Read/ Write	ditto
790-393	Output Size 12	1~255	88: Postcard SEF	Read/ Write	ditto
790-394	Output Size 13	1~255	80: 11x17 SEF	Read/ Write	ditto
790-395	Output Size 14	1~255	$\begin{aligned} & \text { 92: } 8.5 \times 14 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-396	Output Size 15	1~255	$\begin{aligned} & \text { 118: } 8.5 \times 13 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-397	Output Size 16	1~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-398	Output Size 17	1~255	89: 8.5×11 LEF	Read/ Write	ditto
790-401	Menu Screen Favorite Setting 1	0~255	1: Copy	Read/ Write	0: No features, 1: Copy, 2: FAX/iFAX, 3: Scan to E-mail, 4: Scan to Mailbox, 5: Scan to Server, 6: Scan to PC, 7: Box, 8: Print, 9: Job Flow Service, 10: Job Memory, 11: Multi Service, 12: Gemini, 13: DocuShare, 14: Media Print, 101: Auto Gradation Adjustment, 102: FAX Receive mode, 103: Activity Report, 104: Language, 105: Create, 106: Printer mode, 107: Help, 108:Recognition print, 109:Security print box, 110:Sample print box, 111:Specified print box time, 112:Private recognition print, 200:Screen brightness
790-402	Menu Screen Favorite Setting 2	0~255	2: FAX/iFAX	Read/ Write	ditto
790-403	Menu Screen Favorite Setting 3	0~255	104: Language	Read/ Write	ditto
790-404	Menu Screen Favorite Setting 4	0~255	3: Scan To Email	Read/ Write	ditto
790-405	Menu Screen Favorite Setting 5	0~255	$\begin{aligned} & \text { 4: Scan To } \\ & \text { Mail Box } \end{aligned}$	Read/ Write	ditto
790-406	Menu Screen Favorite Setting 6	0~255	105: Create	Read/ Write	ditto

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read Write	Description
790-407	Menu Screen Favorite Setting 7	0~255	5: Scan To Server	Read/ Write	ditto
790-408	Menu Screen Favorite Setting 8	0~255	6: Scan To PC	Read/ Write	ditto
790-409	Menu Screen Favorite Setting 9	0~255	106: Printer mode	Read Write	ditto
790-410	Menu Screen Favorite Setting 10	0~255	7: Box	Read Write	ditto
790-411	Menu Screen Favorite Setting 11	0~255	10: Job Memory	Read/ Write	ditto
790-412	Menu Screen Favorite Setting 12	0~255	102: FAX Receive mode	Read/ Write	ditto
790-413	Menu Screen Favorite Setting 13	0~255	9: Job Flow Service	Read/ Write	ditto
790-414	Menu Screen Favorite Setting 14	0~255	0: No features	Read/ Write	ditto
790-415	Menu Screen Favorite Setting 15	0~255	103: Activity Report	Read Write	ditto
790-416	Menu Screen Favorite Setting 16	0~255	$\begin{aligned} & \text { 103: Activity } \\ & \text { Report } \end{aligned}$	Read/ Write	ditto
790-417	Menu Display Utility Setting 1	0~255	0: No features	Read/ Write	0: No features, 101: Auto Gradation Adjustment, 102: FAX Receive mode, 103: Activity Report, 104: Language, 105: Create, 106: Printer mode, 107: Help, 108:Recognition print, 109:Security print box, 110:Sample print box, 111:Specified print box time, 112:Private recognition print, 200:Screen brightness
790-418	Menu Display Utility Setting 2	0~255	0: No features	Read/ Write	ditto
790-419	Menu Display Utility Setting 3	0~255	0: No features	Read/ Write	ditto
790-420	Menu Display Utility Setting 4	0~255	0: No features	Read/ Write	ditto
790-421	Basic Copy Favorite Function Number (0/3/6)	0~2	$\begin{aligned} & \text { 1: Customized } \\ & \text { L1 } \end{aligned}$	Read/ Write	0: Not Customized, 1: Customized L1, 2: Customized L2

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-422	Basic Copy Favorite Function Settings (L1-1)	0~255	26: Image Shift	Read/ Write	Refer to the UI Dialog Specifications for the setting range as the contents of this column varies according to the product or launch. 0: Not Set, 1: Color Mode, 2: Image Quality Presets, 3: Image Quality of Originals, 4: Copy Density/Contrast (Color machine), 5: Copy Density (Open), 6: Sharpness/Saturation (Color machine), 7: Sharpness (BW machine), 8: Background Color Suppression, 9: Color Balance, 10: Color Shift, 21: 2 Sided Selection, 22: Bound Document, 23: Book Duplex, 24: Document Size Input, 25: Edge Erase, 26: Image Shift, 27: Auto Image Rotation, 28: Mirror Image/Negative/Positive Inversion, 29: Document Setting Direction, 30: Mixed Size Originals, 41: Collate, 42: Booklet Creation, 43: Covers, 44: Transparency Separators, 45: Multiple Up, 46: Poster, 47: Repeat Image, 48: Chapter Division / Separators Insertion / Tab Paper Copy, 49: Annotation, 50: Duplication Management, 51: Face Up Specification, 52: Fold, 61: Build Job, 62: Image Composition (Simple Composition Copy), 63: Extract/ Delete, 65:Tab stock copy, 66:Luster, 67:Sample Copy, 68:Large amount of copy, 101: 2 Sided Selection (1 to 2 Sided (Head to Head)), 102: 2 Sided Selection (2 to 2 Sided (Head to Head)), 103: Mixed Size Originals (Direct Specification), 104: Image Shift (Center), 105: Collate (Collate), 106: Collate (Staple (Left Single)), 107: Collate (Staple (Left Double)), 108: Multiple Up (2 Up (Right to Left)), 109: Multiple Up (2 Up (Left to Right / Top to Bottom)), 110: Face Up Specification (Reverse Output Specification), 111: Fold (Z-Fold), 112: Sample Copy, 113: High Capacity Originals, 114: Double Copy, 115: Smaller
790-423	Basic Copy Favorite Function Settings (L1-2)	0~255	25: Edge Erase	Read/ Write	ditto
790-424	Basic Copy Favorite Function Settings (L1-3)	0~255	$\begin{aligned} & \text { 5: Copy Den- } \\ & \text { sity (Open) } \end{aligned}$	Read/ Write	ditto
790-425	Basic Copy Favorite Function Settings (L2-1)	0~255	26: Image Shift	Read/ Write	ditto
790-426	Basic Copy Favorite Function Settings (L2-2)	0~255	3: Image Quality of Originals	Read/ Write	ditto
790-427	Basic Copy Favorite Function Settings (L2-3)	0~255	5: Copy Density (Open)	Read/ Write	ditto
790-428	Basic Copy Favorite Function Settings (L2-4)	0~255	0: No features	Read/ Write	ditto
790-429	Basic Copy Favorite Function Settings (L2-5)	0~255	0: No features	Read/ Write	ditto
790-430	Basic Copy Favorite Function Settings (L2-6)	0~255	0: No features	Read/ Write	ditto
790-431	Basic Copy Favorite Function Settings (L2-7)	0~255	0: No Set	Read/ Write	ditto
790-432	Basic Scan Favorite Function Number	0~1	0: Not Customized	Read/ Write	0: Not Customized, 1: Customized L1
790-433	Basic Scan Favorite Function Settings (L1-1)	0~255	0: No Set	Read/ Write	0: Not Set, 1: 2 Sided Scan, 2: Scan Resolution, 3: Scan Density, 4: Scan Ratio
790-434	Basic Scan Favorite Function Settings (L1-2)	0~255	0: No Set	Read/ Write	0: Not Set, 1: 2 Sided Scan, 2: Scan Resolution, 3: Scan Density, 4: Scan Ratio
790-435	Current Display Language	1~32	1: Japanese	Read/ Write	1: Japanese, 2: English, 3: French, 4: German, 5: Italian, 6: Spanish, 7: Portuguese, 8: Russian, 9: Chinese, 10: Korean, 11: Thai, 12: Vietnamese, 13: Chinese (Taiwan), 14: Dutch, 15: Danish, 16: Swedish, 17: Finnish, 18: Norwegian, 19: Portuguese (Brazil), 20: Bulgarian, 21: Polish, 22: Hungarian, 23: Romanian, 24: Czech, 25: Greek, 26: Turkish, 27: Arabic, 28: Persian, 29: Hebrew

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-436	Service Customize Key 1	0~255	1: Copy	Read/ Write	0: No features, 1: Copy, 2: FAX/iFAX, 3: Scan to E-mail, 4: Scan to Mailbox, 5: Scan to Server, 6: Scan to PC, 7: Box, 8: Print, 9: Job Flow Service, 10: Job Memory, 11: Multi Service, 12: Gemini, 13: DocuShare, 14: Media Print, 101: Auto Gradation Adjustment, 102: FAX Receive mode, 103: Activity Report, 104: Language, 105: Create, 106: Printer mode, 107: Help, 108: Recognition print, 109: Security print box, 110: Sample print box, 111: specified print box of time, 112: Private recognition print
790-437	Service Customize Key 2	0~255	0: No features	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	ditto
790-438	Service Customize Key 3	0~255	0: No features	Read/ Write	ditto
790-439	Keyboard Types Switch	0~1	0: Qwerty	Read/ Write	0: Qwerty, 1: ABC
790-440	Supports ASCII Only keyboard	0~1	1: Displays non-ASCII items	Read/ Write	0: Displays only ASCII items, 1: Displays non-ASCII items
790-441	Display Language Limit - Language 1	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-442	Display Language Limit - Language 2	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-443	Display Language Limit - Language 3	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-444	Display Language Limit - Language 4	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-445	Display Language Limit - Language 5	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-446	Display Language Limit - Language 6	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-447	Display Language Limit - Language 7	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-448	Display Language Limit - Language 8	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-449	Display Language Limit - Language 9	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-450	Display Language Limit - Language 10	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-451	Display Language Limit - Language 11	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-452	Display Language Limit - Language 12	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-453	Display Language Limit - Language 13	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-454	Display Language Limit - Language 14	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-455	Display Language Limit - Language 15	0~1	1: Display	Read/ Write	0: Do not display 1: Display

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-456	Display Language Limit - Language 16	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-457	Display Language Limit - Language 17	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-458	Display Language Limit - Language 18	0~1	1: Display	Read Write	0: Do not display 1: Display
790-459	Display Language Limit - Language 19	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-460	Display Language Limit - Language 20	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-461	Display Language Limit - Language 21	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-462	Display Language Limit - Language 22	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-463	Display Language Limit - Language 23	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-464	Display Language Limit - Language 24	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-465	Display Language Limit - Language 25	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-466	Display Language Limit - Language 26	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-467	Display Language Limit - Language 27	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-468	Display Language Limit - Language 28	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-469	Display Language Limit - Language 29	0~1	1: Display	Read Write	0: Do not display 1: Display
790-470	Display Language Limit - Language 30	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-471	Display Language Limit - Language 31	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-472	Display Language Limit - Language 32	0~1	1: Display	Read/ Write	0: Do not display 1: Display
790-473	Job List Display Filter Control	0~3	0: Displays All	Read/ Write	0: Displays All, 1: Transfer, 2: Print, 3: Communications
790-478	Allow Key Reset Settings	0~1	1: ON	Read/ Write	0: OFF, 1: ON
790-488	Menu Screen Favorite Setting 17	0~255	0: No features	Read/ Write	0: No features, 1: Copy, 2: FAX/iFAX, 3: Scan to E-mail, 4: Scan to Mailbox, 5: Scan to Server, 6: Scan to PC, 7: Box, 8: Print, 9: Job Flow Service, 10: Job Memory, 11: Multi Service, 12: Gemini, 13: DocuShare, 14: Media Print, 101: Auto Gradation Adjustment, 102: FAX Receive mode, 103: Activity Report, 104: Language, 105: Create, 106: Printer mode, 107: Help, 108:Recognition print, 109:Security print box, 110:Sample print box, 111:Specified print box time, 112:Private recognition print, 200:Screen brightness

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-489	Menu Screen Favorite Setting 18	0~255	0: No features	Read/ Write	ditto
790-490	Menu Display Utility Setting 5	0~255	0: No features	Read/ Write	0: No features, 101: Auto Gradation Adjustment, 102: FAX Receive mode, 103: Activity Report, 104: Language, 105: Create, 106: Printer mode, 107: Help, 108:Recognition print, 109:Security print box, 110:Sample print box, 111:Specified print box time, 112:Private recognition print, 200:Screen brightness
790-491	Menu Display Utility Setting 6	0~255	0: No features	Read/ Write	ditto
790-492	Menu Display Utility Setting 7	0~255	0: No features	Read/ Write	ditto
790-493	Menu Display Utility Setting 8	0~255	0: No features	Read/ Write	ditto
790-494	Menu Display Utility Setting 9	0~255	0: No features	Read/ Write	ditto
790-550	FAX Fixed R/E Setting 8	25~1025	1014: 122.50\%	Read/ Write	1~24: Not in use, 25~400:\%, 401~1000: Not in use, 1001: 25.00\%, 1002: 35.30\%, 1003: 50.00\%, 1004: $57.70 \%, 1005: 61.20 \%, 1006: 64.70 \%, 1007: 70.70 \%, 1008: 78.50 \%, 1009: 81.60 \%, 1010: 86.60 \%$, 1011: 94.00%, 1012: 97.30%, 1013: 115.40\%, 1014: 122.50\%, 1015: 127.30\%, 1016: 129.40\%, 1017: 141.40%, 1018: 154.50\%, 1019: 163.20\%, 1020: 173.20\%, 1021: 180.00\%, 1022: 200.00\%, 1024 : 282.80\%, 1025: 400.00\%
790-551	FAX Fixed R/E Setting 9	25~1025	1017: 141.40\%	Read/ Write	ditto
790-552	FAX Fixed R/E Setting 10	25~1025	1019: 163.20\%	Read/ Write	ditto
790-553	FAX Fixed R/E Setting 11	0~1025	1022: 200.00\%	Read/ Write	ditto
790-554	FAX Fixed R/E Setting 12	25~1025	1025: 400.00\%	Read/ Write	ditto
790-560	Fixed Size 12 of FAX Scan Size Input	1~255	88: Postcard SEF	Read/ Write	1: Not fixed, 10: A3 SEF, 11: A4 LEF, 12: A4 SEF, 13: A5 LEF, 14: A5 SEF, 15: A6 LEF, 16: A6 SEF, 50: Envelope: C4 SEF, 51: Envelope: C5 LEF, 55: Envelope: DL LEF, 66: B4 SEF, 67: B5 LEF, 68 : B5 SEF, 69: B6 LEF, 70: B6 SEF, 80: 11×17 SEF, 87: Postcard LEF, 88: Postcard SEF, 89: 8.5×11 LEF, 90: 8.5x11 SEF, 92: 8.5x14 SEF, 94: 12×18 SEF, 98: 12×19 SEF, 101: 16K LEF, 102: 16K SEF, 104: 8K SEF, 105: PostCard (3.5×5.5) LEF, 106: PostCard (3.5×5.5) SEF, 107: PostCard (4x6) LEF, 108: PostCard (4x6) SEF, 109: PostCard (5x7) LEF, 110: PostCard (5x7) SEF, 111: 5.5x8.5 LEF, 112: 5.5×8.5 SEF, 113: PostCard (6x9) LEF, 114: PostCard (6x9) SEF, 115: 8×10 LEF, 116: 8×10 SEF, $118: 8.5 \times 13$ SEF, 119: 7.25×10.5 LEF, 120: 7.25×10.5 SEF, 123: Envelope: You Chou 3 LEF, 124: Envelope: Choukei 3SEF, 126: Envelope: Choukei 4SEF, 132: 11x15 SEF, 135: 3.5x5 (Photo L) LEF, 136: 3.5x5 (Photo L) SEF, 137: Envelope: Commercial\#10 LEF, 139: $215 \times 315 \mathrm{~mm}$ (8.46x12.4) SEF, 141: SRA3 SEF, 142: Special A3 SEF, 143: Special A4 LEF, 144: Special A4 SEF, 145: A4Cover SEF, 146: A4Cover LEF, 147: 13x19 SEF, 148: 13×18 SEF, 149: 12.6x19.2 SEF, 150: Letter Cover (9x11) SEF, 151: LetterCover (9x11) LEF, 152: Envelope: Monarch7.3/4 LEF, 154: Return Postcard LEF, 155: Return Postcard SEF, 156: 16K LEF (mainland China), 157: 16K SEF (mainland China), 159: 8K SEF (mainland China)
790-561	Fixed Size 13 of FAX Scan Size Input	1~255	80: 11×17 SEF	Read/ Write	ditto
790-562	Fixed Size 14 of FAX Scan Size Input	1~255	$\begin{aligned} & \text { 92: } 8.5 \times 14 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-563	Fixed Size 15 of FAX Scan Size Input	1~255	$\begin{aligned} & \text { 118: } 8.5 \times 13 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-564	Fixed Size 16 of FAX Scan Size Input	1~255	$\begin{aligned} & \text { 90: } 8.5 \times 11 \\ & \text { SEF } \end{aligned}$	Read/ Write	ditto
790-565	Fixed Size 17 of FAX Scan Size Input	1~255	89: 8.5×11 LEF	Read/ Write	ditto
790-566	FAX Pass Stamp UI Default	0~1	0: OFF	Read/ Write	0: OFF, 1: ON
790-570	User permission settings for PTT country modification	0~2	0: Prohibited	Read/ Write	0: Prohibited, 1: Allow for EU country settings, 2: Allow for NA country settings
790-621	The display after scanning by Scan Service is completed	0~2	0 : Do not display 7sec "Scanning completed" message and "Transferring data" screen	Read/ Write	0: Do not display 7sec "Scanning completed" message and "Transferring data" screen; 1: Display 7sec "Scanning completed" message but not the "Transferring data" screen; 2: Display 7sec "Scanning completed" message and the "Transferring data" screen
790-630	No. of digits for Assumed Speed Dial No.	0~6	0: Actual Address Book	Read/ Write	0: Actual Address Book 3: 3-digit Virtual Address Book 4: 4-digit Virtual Address Book 5: 5-digit Virtual Address Book 6: 6-digit Virtual Address Book (*1, 2 cannot be set up)
790-631	Move Registration Data in Address Book	0~1	0: Do not transfer	Read/ Write	0 : Do not transfer, 1: Transfer
790-632	Added Thumbnail Default (Net Save)	0, 1	1: Add	RW	0: Do not add, 1: Add
790-633	Added Thumbnail Default (Mail)	0,1	0: Do not add	RW	0: Do not add, 1: Add
790-640	Paper Type Change Screen Display	0~255	0 : Do not display	RW	0: Do not display, 1: Display
790-641	Paper Information Color Attribute Display Availability	0~255	0 : Do not display	Read/ Write	0: Do not display, 1: Display
790-642	Paper Information Other Attributes Display Availability	0~255	1: Display applied size	Read/ Write	0: Do not display, 1: Display applied size, 2: Display hole punch attributes, 3: Display color attributes
790-661	Report Storage Mailbox	1~500	1	Read/ Write	Mailbox No.
790-662	Consumables Check Auto Display Timing Settings	0~2	0: Do not display	Read/ Write	0: Do not display, 1: Display only after the Power ON initialization sequence has completed and the system is Ready, 2: Display every time auto clear occurred
790-664	Address Book Import Operation Mode	0, 1	0: Add Mode	Read/ Write	[0: Add Mode, 1: Substitute Mode]
790-665	Paper Tray Settings Screen Access on Setup Menu	0, 1	1: ON	Read/ Write	[0: OFF, 1: ON]
790-666	DADF Mixed Standard Size Scan Mode Display Settings	0, 1	1: Display	Read/ Write	0: Do not display, 1: Display
790-667	Blank Document Detection Feature Panel Default	0, 1	0: OFF	Read/ Write	[0: OFF, 1: ON]
790-668	Allow/Prohibit JT/FT/Address Book Registration Settings	0, 1	0: Prohibit	Read/ Write	[0: Prohibit, 1: Allow]

Table 8 UI

Chain-Link	NVM Name	Setup Range	Initial Value	Read/ Write	Description
790-670	Blank Document Detection Feature Display Settings	0, 1	0: Do not display	Read/ Write	0: Do not display 1: Display
790-671	Auto Resume Feature Settings	0, 1	1: Auto Resume	Read/ Write	0: Do not Auto Resume 1: Auto Resume
790-672	Auto Clear Time-Out Display Screen	0,1	1: Follow M/C configuration	Read/ Write	0: Maintain previous service 1: Follow M/C configuration
790-674	Basic FAX favorite setting (2nd row)	0~255	0: Not set	Read/ Write	0: Not set, 1: 2 Sided Document Feed, 2: Monitor Report, 3: Communication Mode, 4: Send Header
790-676	Separator Tray Default for Build Separator Insertion	1~8	5: SMH	Read/ Write	1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH, 6: Tray 6 (HCF), 7: Tray 7 (HCF), 8: Interposer
790-677	Side1 Cover Tray Default for Cover	1~8	5: SMH	Read/ Write	1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH, 6: Tray 6 (HCF), 7: Tray 7 (HCF), 8: Interposer
790-678	Side2 Cover Tray Default for Cover	1~8	5: SMH	Read/ Write	1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH, 6: Tray 6 (HCF), 7: Tray 7 (HCF), 8: Interposer
790-679	Side1 Cover Tray Default for Booklet	1~8	5: SMH	Read/ Write	1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH, 6: Tray 6 (HCF), 7: Tray 7 (HCF), 8: Interposer
790-680	Fax Number Double Input Restriction	0, 1	0: Do not allow double input	Read/ Write	0: Do not allow double input 1: Allow double input
790-682	Separator Sheet Default Tray Setting	0~8	5: SMH	Read/ Write	```0: Auto, 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: SMH, 6: Tray 6 (HCF), 7: Tray 7 (HCF), 8: Interposer Refer to the FF of Copy Service Func for the setup range.```
790-683	Brightness/Contrast Settings	$\begin{aligned} & \hline-127 \\ & \sim 127 \end{aligned}$	0	Read/ Write	-127~127 (Because the valid range for each MCW Panel is different, the upper and lower limit values are controlled through the UI Panel)
790-684	UI Screen Default Shortcut Screen Settings	0, 1	0: Do not display anything	Read/ Write	0 : Do not display anything, 1: Display login screen

Chain 790-xxx Chain 810-xxx Copy Service

Table 9 Copy Service						
Chain-Link	NVm Name	Setup Range	Initial Value	Read/Write	Description	
$790-600$	Poster Overlap Width	$1 \sim 25$	10 mm	Read/Write	$10 \mathrm{~mm} \sim 25 \mathrm{~mm}$	
$790-601$	Index Paper Copy Image Shift Amount	$0 \sim 15$	13 mm	Read/Write	$0 \mathrm{~mm} \sim 15 \mathrm{~mm}$	
$790-602$	Default Output Face	$0 \sim 3$	Auto	Read/Write	$0:$ Auto, 1: Output Side 2, 2: Output Side 1, 3: Output in reverse order	
$790-604$	Single Copy Output Face Switch	0,1	Face Up	Read/Write	$0:$ Face Up, 1: Face Down	
$790-605$	Sample Copy Default	$0 \sim 1$	0: Disable Sam- ple Copy	Read/Write	0: Disable Sample Copy, 1: Enable Sample Copy	

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
790-605	Sample Copy Default	0~1	0: Disable Sample Copy	Read/Write	0: Disable Sample Copy, 1: Enable Sample Copy
790-606	Print Pattern Default (Page Number)	1~6	1:N	Read/Write	1: $\mathrm{N}, 2:-\mathrm{N}-, 3:$ Page $\mathrm{N}, 4: \mathrm{N} / \mathrm{M}, 5:-\mathrm{N} / \mathrm{M}-$, 6: Page N / M
790-607	Print Position Default (Page Number)	1~6	6: Bottom Center	Read/Write	1: Top Left, 2: Top Right, 3: Top Center, 4: Bottom Left, 5: Bottom Right, 6: Bottom Center
790-609	Side 2 Position Specification (Page Number)	0~1	0: Opposite position	Read/Write	0: Opposite position, 1: Same Position
790-611	Print Position Default (Date)	1~6	5: Bottom Right	Read/Write	1: Top Left, 2: Top Right, 3: Top Center, 4: Bottom Left, 5: Bottom Right, 6: Bottom Center
790-613	Side 2 Position Specification (Date)	0~1	0: Opposite position	Read/Write	0: Opposite position, 1: Same Position
790-614	Print Position Default (Stamp)	1~9	5: Top Right	Read/Write	1: Top Left, 2: Top Right, 3: Top Center, 4: Bottom Left, 5: Bottom Right, 6: Bottom Center, 7: Bottom Left Center, 8: Bottom Right Center 9: Center
790-616	Color Default (Stamp)	1~7	1: Black	Read/Write	1: Black, 2: Red, 3: Green, 4: Blue, 5: Yellow, 6: Magenta, 7: Cyan
790-617	Permeability (Stamp)	0~2	0: 0\% (Solid)	Read/Write	0: [0\% (Solid), 1: 25\%, 2: 50\%
790-618	Side 2 Position Specification (Stamp)	0~1	1: Same Position	Read/Write	0: Opposite position, 1: Same Position
790-619	Based on the Mixed Document Direction for Stamp	0~1	1: Set for each sheet	Read/Write	0: Set by first sheet, 1: Set for each sheet
790-620	Allover Copy Execution Availability	1,2	1: [Do not execute (reduce slightly)]	Read/Write	1: [Do not execute (reduce slightly)] 2: [Execute Allover Copy]
810-002	Y Component	0~128	102: 80\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-003	M Component	0~128	128: 100%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-004	C Component	0~128	0: 0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-005	Y Component	0~128	118: 92\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-006	M Component	0~128	0: 0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-007	C Component	0~128	128: 100%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-008	Y Component	0~128	0: 0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-009	M Component	0~128	102: 80\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-010	C Component	0~128	128: 100\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-011	Y Component	0~128	128: 100%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-012	M Component	0~128	0: 0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-013	C Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-014	Y Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-015	M Component	0~128	128: 100%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-016	C Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-017	Y Component	0~128	0:0\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-018	M Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-019	C Component	0~128	128: 100\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-020	Y Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-021	M Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-022	C Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-023	Y Component	0~128	0:0\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-024	M Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-025	C Component	0~128	0:0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-026	Y Component	0~128	0: 0\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-027	M Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-028	C Component	0~128	0: 0\%	Read/Write	0\% 100\%, 1/128\% Units (0~128)
810-029	Y Component	0~128	0: 0\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-030	M Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-031	C Component	0~128	0:0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-032	Y Component	0~128	0: 0\%	Read/Write	0\% $100 \%, 1 / 128 \%$ Units (0~128)
810-033	M Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-034	C Component	0~128	0:0\%	Read/Write	0\%~100\%, 1/128\% Units (0~128)
810-035	Y Component	0~128	0: 0\%	Read/Write	0\% 100\%, 1/128\% Units (0~128)
810-036	M Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-037	C Component	0~128	0: 0\%	Read/Write	0\% ~100\%, 1/128\% Units (0~128)
810-038	Background Color Suppression	0~1	0: Disable	Read/Write	1: Enable, 0: Disable
810-039	Density Adjustment	0~6	2: Lighter 1	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-040	Color Balance (Y: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-041	Color Balance (Y: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-042	Color Balance (Y: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-043	Color Balance (M: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-044	Color Balance (M: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-045	Color Balance (M: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-046	Color Balance (C: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-047	Color Balance (C: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-048	Color Balance (C: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-049	Color Balance (K: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-050	Color Balance (K: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-051	$\begin{aligned} & \text { Color Balance (K: High Den- } \\ & \text { sity) } \end{aligned}$	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-052	Color Shift	0~4	2: 0 degree	Read/Write	0:-20 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
810-053	Color Saturation	0~4	0: Higher	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-054	Sharpness	0~4	2: Normal	Read/Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer
810-055	Contrast	0~4	2: Normal	Read/Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer
810-056	Background Color Suppression	0,1	0: Disable	Read/Write	1: Enable, 0: Disable
810-057	Density Adjustment	0~6	4: Darker 1	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-058	Color Balance (Y: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-059	Color Balance (Y: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-060	Color Balance (Y: High Density)	0~6	6: Darker 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-061	Color Balance (M: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-062	Color Balance (M: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-063	Color Balance (M: High Density)	0~6	6: Darker 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-064	Color Balance (C: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-065	Color Balance (C: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-066	Color Balance (C: High Density)	0~6	6: Darker 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-067	Color Balance (K: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-068	Color Balance (K: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-069	Color Balance (K: High Density)	0~6	6: Darker 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-070	Color Shift	0~4	2: 0 degree	Read/Write	0:-20 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
810-071	Color Saturation	0~4	1: High	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-072	Sharpness	0~4	0: Higher	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-073	Contrast	0~4	0: Higher	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-074	Background Color Suppression	0~1	1: Enable	Read/Write	1: Enable, 0: Disable

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-075	Density Adjustment	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-076	Color Balance (Y: Low Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-077	Color Balance (Y: Medium Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-078	Color Balance (Y: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-079	Color Balance (M: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-080	Color Balance (M: Medium Density)	0~6	4: Darker 1	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-081	Color Balance (M: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-082	Color Balance (C: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-083	Color Balance (C: Medium Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-084	Color Balance (C: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-085	Color Balance (K: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-086	Color Balance (K: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-087	Color Balance (K: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-088	Color Shift	0~4	2: 0 degree	Read/Write	0: -20 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
810-089	Color Saturation	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-090	Sharpness	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-091	Contrast	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-092	Background Color Suppression	0~1	1: Enable	Read/Write	1: Enable, 0: Disable
810-093	Density Adjustment	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-094	Color Balance (Y: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-095	Color Balance (Y: Medium Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-096	Color Balance (Y: High Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-097	Color Balance (M: Low Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-098	Color Balance (M: Medium Density)	0~6	0: Lighter 3	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-099	Color Balance (M: High Den- sity)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-100	Color Balance (C: Low Density)	0~6	4: Darker 1	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-101	Color Balance (C: Medium Density)	0~6	5: Darker 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-102	Color Balance (C: High Density)	0~6	5: Darker 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-103	Color Balance (K: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-104	Color Balance (K: Medium Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-105	Color Balance (K: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-106	Color Shift	0~4	2: 0 degree	Read/Write	0: -20 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
810-107	Color Saturation	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-108	Sharpness	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-109	Contrast	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-110	Background Color Suppression	0~1	1: Enable	Read/Write	1: Enable, 0: Disable
810-111	Density Adjustment	0~6	2: Lighter 1	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-112	Color Balance (Y: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-113	Color Balance (Y: Medium Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-114	Color Balance (Y: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-115	Color Balance (M: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-116	Color Balance (M: Medium Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-117	Color Balance (M: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-118	Color Balance (C: Low Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-119	Color Balance (C: Medium Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-120	Color Balance (C: High Density)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-121	Color Balance (K: Low Den- sity)	0~6	3: Normal	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-122	Color Balance (K: Medium Density)	0~6	1: Lighter 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3 Darker 3
810-123	Color Balance (K: High Den- sity)	0~6	5: Darker 2	Read/Write	0: Lighter 3, 1: Lighter 2, 2: Lighter 1, 3: Normal, 4: Darker 1, 5: Darker 2, 6: Darker 3
810-124	Color Shift	0~4	2: 0 degree	Read/Write	0: -2 degree, 1: -10 degree, 2: 0 degree, 3: +10 degree, 4: +20 degree
810-125	Color Saturation	0~4	2: Normal	Read/Write	0: Higher, 1: High, 2: Normal, 3: Low, 4: Lower
810-126	Sharpness	0~4	2: Normal	Read/Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer
810-127	Contrast	0~4	1: Sharp	Read/Write	0: Sharper, 1: Sharp, 2: Normal, 3: Soft, 4: Softer
810-129	Max. No. of Copy Sheets accumulated	1~999	999	Read/Write	1-999: [1~999 pages]
810-132	Enable/Disable ATS Implementation	0~2	1: APS Only	Read/Write	1: APS Only, 0: Always (Even for manual tray selection)
810-136	Availability of Duplex APS Chapters	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
810-156	Text Effect Default	1~3	1: Embossed	Read/Write	1: Embossed, 2: Outline, 3: Text
810-157	Text Size	1~125	48: 48 points	Read/Write	48: 48 points, 64: 64 points, 80: 80 points
810-158	Background Pattern	1~8	8: Fan	Read/Write	1: Wave, 2: Circle, 3: Stripe, 4: Chain, 5: Beam, 6: Rhombic, 7: Sunflower, 8: Fan
810-159	Background Color (Text Color)	9~12	9: Black	Read/Write	9: Black, 11: Magenta, 12: Cyan
810-160	Density	7~9	8: Normal	Read/Write	9: Light, 8: Normal, 7: Dark
810-161	Contrast	0~13	7	Read/Write	-
810-162	Printing Pattern (Date)	1~4	1	Read/Write	1: $20 \mathrm{yy} / \mathrm{mm} / \mathrm{dd}(\mathrm{hh}: \mathrm{mm}$), 2: mm/dd/20yy (hh: mm), 3: dd/mm/20yy (hh: mm), 4: 20yy year mm month dd date (hh hour mm minute) (hh hour mm min)
810-163	Copy Forced Analog WaterMark Output Settings	0~1	0: Do not print	Read/Write	0: Do not print, 1: Print
810-164	Client Print Forced Analog Watermark Output Settings	0~1	0: Do not print	Read/Write	0: Do not print, 1: Print
810-165	Device Activation Print Forced Analog Watermark Output Settings	0~1	0: Do not print	Read/Write	0: Do not print, 1: Print
810-166	Media Print Forced Analog Watermark Output Settings	0~1	0: Do not print	Read/Write	0: Do not print, 1: Print
810-212	Side 2 Print Page Position Fine Adjustment (Horizontal)	0~400	200	Read/Write	0~200: Settings $\times 0.5$ (mm)
810-213	Side 2 Print Page Position Fine Adjustment (Vertical)	0~400	200	Read/Write	0~200: Settings $\times 0.5$ (mm)
810-214	Stamp User Registered Text 1		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-215	Stamp User Registered Text 2		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-216	Stamp User Registered Text 3		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-217	Stamp User Registered Text 4		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-218	Stamp User Registered Text 5		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)

General procedures information
Controller \& Fax NVM List

Table 9 Copy Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
810-219	Stamp User Registered Text 6		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-220	Stamp User Registered Text 7		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-221	Stamp User Registered Text 8		NULL	Read/Write	64+1 Bytes (32 double byte characters, 64 single byte characters)
810-222	AWM User Registered Text 1		NULL	Read/Write	32+1 Bytes (16 double byte characters, 32 single byte characters)
810-223	AWM User Registered Text 2		NULL	Read/Write	$32+1$ Bytes (16 double byte characters, 32 single byte characters)
810-224	AWM User Registered Text 3		NULL	Read/Write	$32+1$ Bytes (16 double byte characters, 32 single byte characters)
810-225	Font Size (Stamp)	1~255	48 (Points)	Read/Write	6~64 (Points)
810-226	Font Size (Date) Default	1~255	10 (Points)	Read/Write	6~24 (Points)
810-227	Font Size (Page Number) Default	1~255	10 (Points)	Read/Write	6~24 (Points)
810-228	Text Default (Stamp)	1~71	1: CONFIDEN- TIAL	Read/Write	1: CONFIDENTIAL, 2: VOID, 4: Copy Prohibited, 6: IMPORTANT, 7: Circulate, 8: URGENT, 9: Ignore Side 2, 10: DRAFT, 64: Stamp Custom Text 1, 65: Stamp Custom Text 2, 66: Stamp Custom Text 3, 67: Stamp Custom Text 4, 68: Stamp Custom Text 5, 69: Stamp Custom Text 6, 70: Stamp Custom Text 7, 71: Stamp Custom Text 8
810-229	Text Default (AWM)	1~34	4: Copy Prohib- ited	Read/Write	3: Duplicate, 4: Copy Prohibited, 5: Copy, 32: AWM Custom Text 1, 33: AWM Custom Text 2, 34: AWM Custom Text 3

Chain 800-xxx Chain 806-xxx Print Service

Table 10 Print Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$800-001$	Operation when no tray contains the specified paper size	$1 \sim 8$	6: Display Add Paper.	Read/Write	6: Display Add Paper (No SPS), 5: Use Larger Size (No adjustment), 2: Use Nearest Size (Adjust), 7: Oceans2 only, do not use substitute tray (Abort) 8: (Added after Kutani) Feed from Bypass tray
$800-006$	Print Area	$1 \sim 2$	1: Normal	Read/Write	1: Normal, 2: Expand
$800-016$	ID Print	$1 \sim 5$	5: Disables ID Print	Read/Write	1: Prints on upper left, 2: Prints on upper right, 3: Prints on bottom left, 4: Prints on bottom right, 5: Disables ID Print

Table 10 Print Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$800-017$	Security Print Output Operation	$0 \sim 1$	1: TRUE: Allow Device Print	Read/Write	1: TRUE: Allow Device Print, 0: FALSE: Forbid Device Print
$800-018$	Force Extend Print	$0 \sim 2$	1: Do not force extend print	Read/Write	1: Do not force extend print, 2: Force extend print (For Kutani, installed from P/L)
$806-996$	Font Mismatch	$0 \sim 1$	0: Use a substitute font	Read/Write	0: Use a substitute font, 1: End the job
$806-997$	ATCX	$0 \sim 1$	$0:$ ON	Read/Write	0: ON, 1: OFF
$806-998$	PS Color Default	$0 \sim 1$	$1:$ Color	Read/Write	0: BW, 1: Color
$806-999$	DMS Settings	$0 \sim 1$	$1:$ Enable	Read/Write	0: Disable, 1: Enable

Chain 820-xxx Chain 823-xxx Chain 825-xxx FAX Service

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
820-006	Output Tray of Mail Box Print (Including printing by instruction)	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-010	Output Tray of Fax Receive Print receive by line 0 (Extension)	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-011	Output Tray of Fax Receive Print received by line 1	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-012	Output Tray of Fax Receive Print received by line 2	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-013	Output Tray of Fax Receive Print received by line 3	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-014	Output Tray of Fax Receive Print received by line 4	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-015	Output Tray of Fax Receive Print received by line 5	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-016	2 Sided print setting (Receive Print/Report Print/Confirmation Print)	0~2	0: 1 Sided	Read/Write	0:1 Sided, 1:2 Sided
820-019	When printing cannot be performed due o Forced Polling Selection printer failure, the acting document of the document received and other documents will be taken from the external FAX by Polling. ÆE Refer to Host(FAXCont).	0~1	0: OFF	Read/Write	0: OFF, 1: Forced Polling
820-024	Broadcast/Multi-Poll Report Instruction Dis- able	0~1	0: Permit	Read/Write	0: Permit, 1: Prohibit
820-025	90 Degree Rotation Storing at FAX Scan	0~1	1: 90 Degree Rota- tion Storing ON	Read/Write	0: 90 Degree Rotation Storing OFF, 1: 90 Degree Rotation Storing ON

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
820-026	Scan Illegal Operation (Operation when there was no specific Timing when an error occurs in storing)	0~1	1: Enable stored documents (Default value before PL2 was 0)	Read/Write	0: Discard stored documents, 1: Enable stored documents
820-027	Scan resolution in "G3 Auto" or "International Communication"	0~2	2=Fine (600/400) is Inch series, and others are millimeter series	Read/Write	0 : Select the resolution for millimeter series 1: Select the resolution for inch series 2: Fine (600/400) is for inch series and others for millimeter series
820-028	Letter/Legal Scan Instruction (Specify whether to reduce Letter/Legal to A4 to scan)	0~1	0: 100\%	Read/Write	0: 100\%, 1: Reduce to A4
820-030	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. 1= Can be used 255= Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 1: Can be used 255: Cannot be used
820-031	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. 2=G3 PSTN can be used $3=$ G3 ISDN can be used $4=$ G4 ISDN can be used $5=$ G3 can be used 255=Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-032	0= Preparing for use. Checking whether the machine can switch to Ready mode. $2=$ G3 PSTN can be used $3=$ G3 ISDN can be used $4=G 4$ ISDN can be used $5=G 3$ can be used 255=Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-033	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. $2=$ G3 PSTN can be used $3=$ G3 ISDN can be used $4=$ G4 ISDN can be used $5=$ G3 can be used $255=$ Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-034	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. 2=G3 PSTN can be used 3=G3 ISDN can be used $4=$ G4 ISDN can be used $5=$ G3 can be used 255=Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-035	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. 2=G3 PSTN can be used $3=$ G3 ISDN can be used $4=$ G4 ISDN can be used $5=$ G3 can be used 255=Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-036	$0=$ Preparing for use. Checking whether the machine can switch to Ready mode. 2=G3 PSTN can be used $3=$ G3 ISDN can be used $4=$ G4 ISDN can be used $5=$ G3 can be used 255=Cannot be used	0~255	-	Read	0: Preparing for use. Checking whether the machine can switch to Ready mode. 2: G3 PSTN can be used 3: G3 ISDN can be used 4: G4 ISDN can be used 5: G3 can be used 255: Cannot be used
820-037	Maximum No. of Storage	~999	999 sheets	Read/Write	1~999 sheets

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
820-038	Auto Fax Report Output Tray Selection	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray 2: Finisher Tray, *Options that are not installed cannot be selected
820-039	User-Select Fax Report Output Tray Selection	0~3	0: Center Tray	Read/Write	0: Center Tray, 1: Side Tray, 2: Finisher Tray, 3: Center Tray2, *Options that are not installed cannot be selected
820-040	Mailbox Document Attribute Delivery Prior-ity-0 (Highest)	0~4	0: F code	Read/Write	0: F code, 1: Caller ID, 2: Remote ID, 3: Remote Name, 4: Dialin Number
820-041	Mailbox Document Attribute Delivery Prior-ity- 1	0~4	1: Caller ID	Read/Write	0: F code, 1: Caller ID, 2: Remote ID, 3: Remote Name, 4: Dialin Number
820-042	Mailbox Document Attribute Delivery Prior-ity-2	0~4	2: Remote ID	Read/Write	0: F code, 1: Caller ID, 2: Remote ID, 3: Remote Name, 4: Dialin Number
820-043	Mailbox Document Attribute Delivery Prior-ity-3	0~4	3: Remote Name	Read/Write	0: F code, 1: Caller ID, 2: Remote ID, 3: Remote Name, 4: Dialin Number
820-044	Mailbox Document Attribute Delivery Prior-ity-4 (Lowest)	0~4	4: Dial-in Number	Read/Write	0: F code, 1: Caller ID, 2: Remote ID, 3: Remote Name, 4: Dialin Number
820-045	Fax Scan Edge Erase Margin Specification - Top/Bottom Edge Erase Margin	0~50	0mm	Read/Write	0~50 Unit: mm
820-046	Fax Scan Edge Erase Margin Specification - Left/Right Edge Erase Margin	0~50	0mm	Read/Write	0~50 Unit: mm
820-047	FAX Manual Send Menu Display Settings	0~1	1: Display	Read/Write	0: No display 1: Display
820-048	Sender Records for I-FAX Off Ramp (Sender Records for iFAX to FAX)	0~1	1: Yes	Read/Write	0 : No, 1: Yes
820-052	Immediate Send Shift Memory Threshold	0~99	No HDD=20\% HDD=0\% (Do not do Immediate Send)	Read/Write	0~99\% Step 1\%.
820-053	Immediate Send Scan Memory Threshold	0~100	$\begin{aligned} & \text { No HDD=5\% } \\ & \text { HDD=0\% } \end{aligned}$	Read/Write	0~100\% Step 1\%.
820-054	Immediate Receive Shift Memory Threshold	0~99	$\begin{aligned} & \text { No HDD=20\% } \\ & \text { HDD=0\% (Do not do } \\ & \text { Immediate Receive) } \end{aligned}$	Read/Write	0~99\% Step 1\%.
820-056	Print Received Fax Paper Tray Map 1	0~500	0: OFF	Read/Write	Mailbox Number for Tray 1
820-057	Print Received Fax Paper Tray Map 2	0~500	0: OFF	Read/Write	Mailbox Number for Tray 2
820-058	Print Received Fax Paper Tray Map 3	0~500	0: OFF	Read/Write	Mailbox Number for Tray 3
820-059	Print Received Fax Paper Tray Map 4	0~500	0: OFF	Read/Write	Mailbox Number for Tray 4
820-120	Upper Limit for Image Data Amount Allowed in 1 Transmission	0~255	:0 (No limit)	Read/Write	0~255, 0=No limit. Unit: 0.1 Mbyte
820-122	FAX PL2 DADF Document Scan Mode	1, 2	1: Non-standard Scan	Read/Write	1: Non-standard Scan, 2: Standard Scan
820-123	Blank Document Detection Feature	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
820-125	DIS Transmission Bit Disable Settings	0, 1	0: Do not disable	Read/Write	0: Do not disable 1: Disable
820-126	Blank Document Detection Reference Value	0~65535	34729	Read/Write	34729~52094

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
820-127	Blank Data Estimation Correction Coefficient	0~65535	1000	Read/Write	1000~1500
820-128	Blank Detection Threshold Correction Coefficient	0~65535	250	Read/Write	0~500
820-129	Resend Unsent Documents	0, 1	0: OFF	Read/Write	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
820-130	Delete Unsent Documents	0, 1	1: Auto delete after 24 hours have passed	Read/Write	0: Do not auto delete 1: Auto delete after 24 hours have passed
820-131	Resend Unsent Documents from Job Cancellation	0, 1	0: OFF	Read/Write	$\begin{aligned} & \text { 0: OFF } \\ & 1: \text { ON } \end{aligned}$
820-132	Official Stamp Capability (XIPS) Availability	0, 1	0: OFF	Read/Write	$\begin{aligned} & \text { 0: OFF } \\ & 1: \text { ON } \end{aligned}$
823-001	Receive Mode Setting	0~1	0: Auto Receive	Read/Write	0: Auto Receive (Auto Answer Incoming), 1: Manual Receive (No Auto Answer Incoming)
823-002	DM (Direct Mail) Prevention Function (Only faxes from a registered in the Speed Dial is received)	0~1	0: Do not prevent	Read/Write	0: Do not prevent, 1: Prevent, 1=Prevent
823-006	Receive header (CIL) in G4 Receive	0~1	0: No	Read/Write	0: No, 1: Yes
823-007	Send Header at Polling (except forced polling).	0~1	1: Yes	Read/Write	0: No, 1: Yes
823-011	The maximum user data field length of the data packet used in the Packet Size (Send) G4 Communication/Network Layer. For Ch0	0x07~0x0b	2048bytes	Read/Write	Send Packet Size $0 \times 07: 128$ $0 \times 08: 256$ $0 \times 09: 512$ $0 \times 0 a: 1024$ 0x0b: 2048
823-012	Enable/Disable Setting of the Symmetry process to the box that used the service	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
823-013	Enable/Disable Setting of the Symmetry process to the box by receive line	0~1	0: Disable	Read/Write	0: Disable, 1: Enable
823-014	Telephone Number Box Symmetry priority	0~1	Dial-in no. at highest priority	Read/Write	0: Dial-in no. at highest priority, 1: Dial-out tel. No. at highest priority
823-015	Line Monitor Settings. You can monitor the dial tone and the other party's response using the speaker from the start of auto dialing until the other party pick up the call.	0~1	1: Line Monitor ON	Read/Write	0: Line Monitor OFF, 1: Line Monitor ON
823-016	No. of Redials. The No. of Auto-Dials when there is no response due to line busy etc. after the first Auto-Dial.	0~9	5: 5 times	Read/Write	$0 \sim 9$ times (0: No Redial), step: 1 time
823-017	Redial Interval	0~15	1: 1 min	Read/Write	$0 \mathrm{~min}(0) \sim 15 \mathrm{~min}(0 \times 0 \mathrm{~F})$, step=1 min
823-018	Communication Interval (Time between Line opening and automated closing)	3~255	$8 \mathrm{sec}(8)$	Read/Write	3 second (3) ~ 255 second (0xFF), step=1 second

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
823-019	Receive Print/Page Composition (2up)	0~1	0: Page Composition OFF	Read/Write	0: Page Composition OFF, 1: Page Composition ON
823-020	Page Segmentation Threshold	0x00~0x7F	16mm (0x10)	Read/Write	Omm (0) ~127mm (0x7F), step=1mm
823-021	Auto Reduction Mode (Auto Reduction Receive: If the Receive Information has exceeded the length of paper used for recording but within the threshold limit, you can use variable zoom to reduce the information to fit into a sheet of paper.)	0~1	1: Auto Reduction	Read/Write	0: Print at 100\%, 1: Auto Reduce
823-022	Batch Send. If Send reservation for the same address is available after the last page is sent, the Send transmission will continue without disconnecting.	0~1	1: ON	Read/Write	0: OFF, 1: ON
823-023	Sending from LOCAL I.D	0~1	1: ON	Read/Write	0: Disable, 1: Enable
823-024	ISDN Local ID Send Setting for Ch0	0~1	0 : Do not send	Read/Write	0: Do not send, 1: Send
823-025	ISDN Local ID Send Setting for Ch1	0~1	0 : Do not send	Read/Write	0 : Do not send, 1: Send
823-026	ISDN Local ID Send Setting for Ch2	0~1	0 : Do not send	Read/Write	0 : Do not send, 1: Send
823-027	ISDN Local ID Send Setting for Ch3	0~1	0 : Do not send	Read/Write	0 : Do not send, 1: Send
823-028	ISDN Local ID Send Setting for Ch4	0~1	0 : Do not send	Read/Write	0 : Do not send, 1: Send
823-029	ISDN Local ID Send Setting for Ch5	0~1	0 : Do not send	Read/Write	0 : Do not send, 1: Send
823-030	Dial Type For Ch0	0~2	0	Read/Write	0: PB (DTMF), 1: DP (10 PPS), 2: DP (20 PPS)
823-031	Dial Type For Ch1	0~2	0	Read/Write	0: PB (DTMF), 1: DP (10 PPS), 2: DP (20 PPS)
823-032	Dial Type For Ch2	0~2	0	Read/Write	0: PB (DTMF), 1: DP (10 PPS), 2: DP (20 PPS)
823-033	Dial Type For Ch3	0~2	0	Read/Write	0: PB (DTMF), 1: DP (10 PPS), 2: DP (20 PPS)
823-034	[NVM Name] Dial Type For Ch4	0~2	0	Read/Write	0 = PB (DTMF), 1 = DP (10 PPS), 2 = DP (20 PPS)
823-035	Dial Type For Ch5	0~2	0	Read/Write	0: PB (DTMF), 1: DP (10 PPS), 2: DP (20 PPS)
823-036	Line Type For Ch0	0~1	1	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-037	Line Type For Ch1	0~1	0	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-038	Line Type For Ch2	0~1	0	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-039	Line Type For Ch3	0~1	0	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-040	Line Type For Ch4	0~1	0	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-041	Line Type For Ch5	0~1	0	Read/Write	0: PSTN (Public Telephone Network), 1: PBX (Private Branch Exchange)
823-042	Set the service (for which contract is made) in Ch0.	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
823-043	Set the service (for which contract is made) in Ch1	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line
823-044	Set the service (for which contract is made) in Ch 2	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line
823-045	Set the service (for which contract is made) in Ch 3	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line
823-046	Set the service (for which contract is made) in Ch 4	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line
823-047	Set the service (for which contract is made) in Ch 5	-	0: Normal line	Read/Write	Assign the service in Bits and display the service (for which the contract is made) in that disjunction. MSB LSB xxxx xxx1: Local ID Notification Service Line xxxx xx1x: Modem Dial-In Service Line
823-049	G3 ISDN Transmission Capability Setting	0~1	0: 3.1K Audio	Read/Write	0:3.1K Audio, 1: Speech
823-050	Calling frequency for Fax use (Ring Detect)	0~9	0: 0 times	Read/Write	0~9 (times)
823-051	Reception Paper Declaration Mode Selection (The Receiving Station performs the Receive Ability (Size) with respect to the Sending Station. With this, the user at receiving side can limit or select the Send document size from the Sender)	0~1	0: Tray Selection	Read/Write	0: Tray Selection, 1: User Selection
823-052	Selection of Log Paper in User declaration mode	-	All papers available	Read/Write	1st byte bit 1: A3SEF, bit 2: A4SEF, bit 5: B4SEF, 2nd byte bit 0: LetterSEF, 3rd byte bit 2: A4LEF, bit 3: A5LEF, bit 6: B5LEF, bit $=0$: No paper bit=1: Paper detected.
825-001	1300HZ Incoming Receive ON/OFF Setting	0~1	1=ON (Receive)	Read/Write	0: OFF (Reject), 1: ON (Receive)
825-002	Registers Power Cutoff/Reboot (including emergency) in Activity Report.	0~1	0 : Do not register	Read/Write	0: Do not register, 1: Register
825-009	Pause Time. Pause Symbol Wait Time.	0~12	60 (3sec)	Read/Write	$\begin{aligned} & \text { Osec (0) ~ 12sec (240) } \\ & \text { step=50msec } \end{aligned}$
825-017	Line Cutoff Detection for Ch0	0~1	1: Detect disconnection	Read/Write	0: Do not detect disconnection, 1: Detect disconnection

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-018	Line Cutoff detection For Ch1	0~1	1: Detect disconnec- tion	Read/Write	0: Do not detect disconnection, 1: Detect disconnection
825-019	Line Cutoff detection For Ch2	0~1	1: Detect disconnection	Read/Write	0: Do not detect disconnection, 1: Detect disconnection
825-020	Line Cutoff detection For Ch3	0~1	1: Detect disconnection	Read/Write	0: Do not detect disconnection, 1: Detect disconnection
825-021	Line Cutoff detection For Ch4	0~1	1: Detect disconnection	Read/Write	0: Do not detect disconnection, 1: Detect disconnection
825-022	Line Cutoff detection For Ch5	0~1	1: Detect disconnection	Read/Write	0: Do not detect disconnection, 1: Detect disconnection
825-024	To determine fallback redial from G4 to G3 when CAUSE \#42 and \#65 were received in ISDN communication.	0~1	0 = Fallback Redial OFF	Read/Write	0 = Fallback Redial OFF, 1 = Fallback Redial ON
825-025	Process to determine continuity in the Transmitter when RTN was received. This is meant for ZZF.	0~1	0: Continue	Read/Write	0: Determine the fallback from the TCF check result and continue sending. 1: Stop transmission. (The document becomes eligible for resend)
825-033	Timing of tone detection before dialing (PBX). The time required to detect the Tone before dialing. For PBX.	0~255	4	Read/Write	0 ~ 255 (Sec)
825-046	PB Send Level Ch0	0~15	6	Read/Write	0: $0 \mathrm{dBm}(0) \sim-15: 15 \mathrm{dBm}$ step: -1dBm
825-047	PB Send Level Ch1	0~15	6	Read/Write	0: 0dBm (0) ~-15: 15dBm step: -1dBm
825-048	PB Send Level Ch2	0~15	6	Read/Write	0: 0dBm (0) ~-15: 15dBm step: -1dBm
825-049	PB Send Level Ch3	0~15	6	Read/Write	0: 0dBm (0) ~-15: 15dBm step: -1dBm
825-050	PB Send Level Ch4	0~15	6	Read/Write	0: $0 \mathrm{dBm}(0) \sim-15: 15 \mathrm{dBm}$ step: -1dBm
825-051	PB Send Level Ch5	0~15	6	Read/Write	0: 0dBm (0) ~-15: 15dBm step: -1dBm
825-052	PB Send Level (high-pass - low-pass (dB)) For Ch0	0~15	0	Read/Write	$\begin{array}{\|l\|} \hline \text { High-pass - Low-pass (dB) 0: 2.0, 1: } \\ \text { 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:- } \\ \text { 1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5 } \end{array}$
825-053	PB Send Level (high-pass - low-pass (dB)) For Ch1	0~15	0	Read/Write	High-pass - Low-pass (dB) 0: 2.0, 1 : 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:-1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5
825-054	PB Send Level (high-pass - low-pass (dB)) For Ch2	0~15	0	Read/Write	High-pass - Low-pass (dB) 0: 2.0, 1: 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:- 1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5
825-055	PB Send Level (high-pass - low-pass (dB)) For Ch3	0~15	0	Read/Write	$\begin{array}{\|l\|} \hline \text { High-pass - Low-pass (dB) 0: 2.0, 1: } \\ \text { 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:- } \\ \text { 1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5 } \end{array}$
825-056	PB Send Level (high-pass - low-pass (dB)) For Ch4	0~15	0	Read/Write	High-pass - Low-pass (dB) 0: 2.0, 1 : 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:-1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5
825-057	PB Send Level (high-pass - low-pass (dB)) For Ch5	0~15	0	Read/Write	High-pass - Low-pass (dB) 0: 2.0,1: 2.52:3.0A3:3.5A4:4.0A5:4.5A6:5.0A7:5.5A8:-2.0A9:-1.5A10:- 1.0A11:-0.5A12:0 13:0.5A14:1.0A15:1.5

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-058	Busy Tone detection before dialing For Ch0	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-059	Busy Tone detection before dialing For Ch1	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-060	Busy Tone detection before dialing For Ch2	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-061	Busy Tone detection before dialing For Ch3	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-062	Busy Tone detection before dialing For Ch4	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-063	Busy Tone detection before dialing For Ch5	0~1	0: Do not detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-064	Dial Tone detection before dialing For Ch0	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-065	Dial Tone detection before dialing For Ch1	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-066	Dial Tone detection before dialing For Ch2	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-067	Dial Tone detection before dialing For Ch3	0~1	0: Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-068	Dial Tone detection before dialing For Ch4	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-069	Dial Tone detection before dialing For Ch5	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-070	Dial Tone detection before dialing (PBX)	0~1	0 : Do not detect dial tone	Read/Write	0: Do not detect dial tone, 1: Detect dial tone
825-071	Timing of tone detection before dialing for Ch0	0~255	4	Read/Write	0~255 (Sec)
825-072	Timing of tone detection before dialing For Ch1	0~255	10	Read/Write	0~255 (sec)
825-073	Timing of tone detection before dialing For Ch2	0~255	10	Read/Write	0~255 (sec)
825-074	Timing of tone detection before dialing For Ch3	0~255	10	Read/Write	0~255 (sec)
825-075	Timing of tone detection before dialing For Ch4	0~255	10	Read/Write	0~255 (sec)
825-076	Timing of tone detection before dialing For Ch5	0~255	10	Read/Write	0~255 (sec)
825-077	Call Restriction For Ch0	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only
825-078	Call Restriction for Ch1	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-079	Call Restriction for Ch2	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only
825-080	Call Restriction for Ch3	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only
825-081	Call Restriction for Ch4	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only
825-082	Call Restriction for Ch5	0~1	0: Outgoing/Incoming Call	Read/Write	0: Outgoing/Incoming Call, 1: Outgoing Call only
825-103	RX Gain in G3 Communication Mode	0~15	6 (-6dB)	Read/Write	0~-15dB
825-104	TX Gain in ISDN G3 Communication Mode	0~15	0	Read/Write	0~-15dB
825-115	PB Pause Time. PB (DTMF) Dial Inter-digit Pause Time.	0~255	102	Read/Write	0~255 (ms)
825-127	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 0.	8~15	8: 8dBm	Read/Write	8: 8dBm~15: 15 dBm , step: -1 dBm
825-128	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 1.	8~15	8: 8dBm	Read/Write	8: 8dBm~15: 15 dBm , step: -1 dBm
825-129	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 2.	8~15	8: 8dBm	Read/Write	8: 8dBm~15: 15 dBm , step: -1 dBm
825-130	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 3.	8~15	15: 15 dBm	Read/Write	8: 8dBm~15: 15dBm, step: -1dBm
825-131	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 4.	8~15	8: 8dBm	Read/Write	8: 8dBm~15: 15 dBm , step: -1 dBm
825-132	Attenuates analog transmission to attenuated Transmission Analog Output by modem for Channel 5.	8~15	15: 15dBm	Read/Write	8: $8 \mathrm{dBm} \sim 15: 15 \mathrm{dBm}$, step: -1 dBm
825-133	Busy Tone detection (On/Off) setting	0~1	1: Detect Busy Tone	Read/Write	0: Do not detect Busy Tone, 1: Detect Busy Tone
825-134	Dial Tone detection (On/Off) setting	0~1	0 : Do not detect dial tone	Read/Write	0 : Do not detect dial tone, 1: Detect dial tone
825-158	No. of sheets transmitted in the transmission result report (Cannot be changed because of ROM data)	0~1	0	Read/Write	0: Total No. of sheets for resending in the same transmission 1: Total No. of sheets for each connection
825-159	ECM Capability (Auto Error Resending feature): A feature that starts resending automatically when an error that occurred during transmission has been repaired.	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
825-160	Time before the CNG Signal starts to be sent. Time that has elapsed after dialing has completed and when the initial CNG signal starts to be sent	20~140	60: 3000 ms	Read/Write	20: 1 second 140: 7 seconds, 1:50msec

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-161	CED Send Frequency: CED signal frequency.	0~1	1:2100Hz	Read/Write	0: $1080 \mathrm{~Hz}, 1: 2100 \mathrm{~Hz}$
825-162	T1 Timer Value at Receive mode	1~90	39sec	Read/Write	1~90 (sec)
825-163	Timer Value of no tone timing recommended in T. 30	0~1	0: 75msec	Read/Write	0: 75msec, 1sec
825-164	FSK detection before image information is received (To be referred to at Non-ECM)	0~1	1: Detect	Read/Write	0: Do not detect, 1: Detect
825-165	FSK detection before image information is received	0~1	0: Do not detect	Read/Write	0: Do not detect, 1: Detect
825-166	G3M CSI Send CSI: Notification signal to the Sender of the ID Code registered at the Receiver.	0~1	0: Transmit	Read/Write	0: Transmit, 1: OFF
825-168	Sending of Local Name	0~1	1: ON	Read/Write	0: OFF, 1: ON
825-169	To determine resending of the Local Name	0~1	0: Do not resend	Read/Write	0: Do not resend, 1: Resend
825-170	ECM Frame Size (The frame is configured from the pixels which are divided into 8 bits for every 1 mm)	0~1	0: 256bytes	Read/Write	0: 256 bytes, 1:64 bytes
825-171	G3M ECM T5 Timer (2 channel common) Timer to the RNR Signal sent out when memory overflow etc. occurs at the Receiver, or when continuous receiving is not possible.	0~2	0: 1 (min)	Read/Write	0: 1 (min), 1:3 (min), 2: No limit
825-173	Send Reference of RTN Command (Proportion) RTN: The message is not received properly, indicating that Training is necessary.	0~3	0:5\%	Read/Write	0: $5 \%, 1: 10 \%, 2: 15 \%, 3: 20 \%$
825-174	Send Reference of RTN Command (No. of Continuous Lines)	0~3	2: 6line,	Read/Write	0: No limit, 1: 3line, 2: 6line, 3: 12line
825-175	No. of bytes of the DIS/DTC FIF Sending (DTC: Send command in response to DIS)	0~1	0: No limit	Read/Write	0: No limit, 1: 4bytes System
825-176	ECM Capability (Auto Error Resending feature): A feature to start resending when an error has been repaired during transmission. (For International communication)	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
825-177	CCITT Trellis Capability On/Off and types	0~2	2: V. 17 or later	Read/Write	0: V. 27 or later, 1: V. 29 or later, 2: V. 17 or later
825-178	CCITT Trellis Capability On/Off and types (Used in International Communication)	0~2	2: V. 17 or later	Read/Write	0: V. 27 or later, 1: V. 29 or later, 2: V. 17 or later
825-179	Ch0 ECM Block Synchronize	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$
825-180	ECM Block Synchronize for Ch1	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$,
825-181	ECM Block Synchronize for Ch2	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$,
825-182	ECM Block Synchronize for Ch3	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$,
825-183	ECM Block Synchronize for Ch4	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$
825-184	ECM Block Synchronize for Ch5	0~2	0: 200ms	Read/Write	0: $200 \mathrm{~ms}, 1: 500 \mathrm{~ms}, 2: 1 \mathrm{sec}$,

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-185	Ch0 ECM CTC Number	0~7	5	Read/Write	0: 000 ~ 7: 111
825-186	ECM CTC Number for Ch1	0~7	5	Read/Write	0:000 ~ 7: 111
825-187	ECM CTC Number for Ch2	0~7	5	Read/Write	0:000 ~ 7: 111
825-188	ECM CTC Number for Ch3	0~7	5	Read/Write	0:000 ~ 7: 111
825-189	ECM CTC Number for Ch4	0~7	5	Read/Write	0:000 ~ 7: 111
825-190	ECM CTC Number for Ch5	0~7	5	Read/Write	0: 000 ~ 7: 111
825-191	Ch0 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-192	Ch1 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-193	Ch2 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-194	Ch3 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-195	Ch4 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-196	Ch5 ECM CTC Speed Shift Down (CTC: Instructs to continue resending for the same block and to change the transmission speed where necessary, by the signal capable of transmission for every 3 times of resending)	0~1	1: Shift Down	Read/Write	0: Not, 1: Shift down
825-197	G3 DIS ignore for Channel 0 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-198	G3 DIS ignore for Channel 1 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once
825-199	G3 DIS ignore for Channel 2 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once
825-200	G3 DIS ignore for Channel 3 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once
825-201	G3 DIS ignore for Channel 4 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once
825-202	G3 DIS ignore for Channel 5 (No. of DIS ignored)	0~1	0: Ignore DIS	Read/Write	0: Ignore DIS 1: Ignore DIS once
825-203	Channel 0 G3 ECM EOR_Q Command (EOR: Stops resending by the signal capable of transmission for every 3 times of resending)	0~1	1: Continue	Read/Write	0: Stop, 1: Continue
825-209	G3 Modem Mode for Ch0	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-210	G3 Modem Mode For Ch1	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-211	G3 Modem Mode For Ch 2	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-212	G3 Modem Mode For Ch 3	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-213	G3 Modem Mode For Ch 4	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-214	G3 Modem Mode? For Ch 5	0~1	1: Auto	Read/Write	0: CCITT G3, 1: Auto
825-215	G3 RX Modem Speed Receive Transmission Speed Capability (Capability except V.34.) for Channel 0	1~8	14400bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-216	G3 RX Modem Speed Receive Transmission Speed Capability (Capability besides V.34.) for Channel 1	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, 7200 bps/V.17=0101, 9600 bps/V.29=0100, 7200 bps/V.29=0011, 4800 bps/V.27ter=0010, 2400 bps/V.27ter=0001
825-217	G3 RX Modem Speed Receive Transmission Speed Capability (Capability besides V.34.) for Channel 2	1~8	14400bps	Read/Write	1. ~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010,2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-218	G3 RX Modem Speed Receive Transmission Speed Capability (Capability besides V.34.) for Channel 3	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-219	G3 RX Modem Speed Receive Transmission Speed Capability (Capability besides V.34.) for Channel 4	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-220	G3 RX Modem Speed Receive Transmission Speed Capability (Capability besides V.34.) for Channel 5	1~8	14400bps	Read/Write	1. ~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-221	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 0	1~8	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-222	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 1	1~8	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, $9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400$ bps=0001
825-223	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 2	1~8	33600bps	Read/Write	1~14, 33600 bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-224	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 3	1~8	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-225	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 4	1~8	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-226	G3 RX Modem Speed Receive Communication Speed Capability (V. 34 Capability) for Channel 5	1~8	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-227	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 0	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-228	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 1	1~8	14400bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ $\mathrm{V} .17=0110,7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-229	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 2	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-230	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 3	1~8	14400bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010,2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-231	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 4	1~8	14400bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, $9600 \mathrm{bps} /$ $\mathrm{V} .17=0110,7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ $\mathrm{bps} / \mathrm{V} .29=0011,4800 \mathrm{bps} / \mathrm{V} .27=0010,2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-232	Maximum G3 TX Modem Speed (Send) (Capability except V.34) for Channel 5	1~8	14400bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010,2400 \mathrm{bps} / \mathrm{V} .27=0001$

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-233	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 0 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ $\mathrm{V} .17=0110,7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010,2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-234	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 1 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, 7200 bps/V.17=0101, 9600 bps/V.29=0100, 7200 bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-235	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 2 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-236	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 3 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1.~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, $4800 \mathrm{bps} / \mathrm{V} .27=0010$, $2400 \mathrm{bps} / \mathrm{V} .27=0001$
825-237	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 4 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1.~ 8, 14400 bps/V.17=1000, 12000 bps/V.17=0111, 9600 bps/ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-238	Maximum G3 TX Modem Speed (Send) (Capability except V.34.) for Channel 5 (To be referred to in overseas communication)	1~8	4800bps	Read/Write	1. ~ 8, $14400 \mathrm{bps} / \mathrm{V} .17=1000,12000 \mathrm{bps} / \mathrm{V} .17=0111,9600 \mathrm{bps} /$ V.17=0110, $7200 \mathrm{bps} / \mathrm{V} .17=0101,9600 \mathrm{bps} / \mathrm{V} .29=0100,7200$ bps/V.29=0011, 4800 bps/V.27=0010, 2400 bps/V.27=0001
825-239	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 0	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-240	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 1	1~14	33600bps	Read/Write	$1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100$, 26400 bps=1011, $24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200$ bps=1000, $16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101$, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-241	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 2	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-242	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 3	1~14	33600bps	Read/Write	1~14, 33600 bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, $16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101$, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-243	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 4	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-244	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 5	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-245	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 0 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-246	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 1 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, 24000 bps=1010, 21600 bps=1001, 19200 bps=1000, $16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101$, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-247	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 2 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-248	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 3 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, $24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200$ bps=1000, $16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101$, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-249	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 4 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$\begin{aligned} & 1 \sim 14,33600 \mathrm{bps}=1110,31200 \mathrm{bps}=1101,28800 \mathrm{bps}=1100, \\ & 26400 \mathrm{bps}=1011,24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200 \\ & \mathrm{bps}=1000,16800 \mathrm{bps}=0111,14400 \mathrm{bps}=0110,12000 \mathrm{bps}=0101, \\ & 9600 \mathrm{bps}=0100,7200 \mathrm{bps}=0011,4800 \mathrm{bps}=0010,2400 \\ & \mathrm{bps}=0001 \end{aligned}$
825-250	Maximum G3 TX Modem Speed (Send) (V. 34 capability) for Channel 5 (To be referred to in overseas communication)	1~14	33600bps	Read/Write	$1 \sim 14,33600$ bps=1110, 31200 bps=1101, 28800 bps=1100, 26400 bps=1011, $24000 \mathrm{bps}=1010,21600 \mathrm{bps}=1001,19200$ bps=1000, 16800 bps=0111, 14400 bps=0110, 12000 bps=0101, 9600 bps=0100, 7200 bps=0011, 4800 bps=0010, 2400 bps=0001
825-251	G3 RX Cable Equalizer for Channel 0	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-252	G3 RX Cable Equalizer for Channel 1	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-253	G3 RX Cable Equalizer for Channel 2	0~3	1: 4 dB	Read/Write	0: 0dB, 1: 4dB, 2: 8dB, 3: 12dB
825-254	G3 RX Cable Equalizer for Channel 3	0~3	1: 4 dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-255	G3 RX Cable Equalizer for Channel 4	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-256	G3 RX Cable Equalizer for Channel 5	0~3	1: 4dB	Read/Write	0: 0dB, 1: 4dB, 2: 8dB, 3: 12dB

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-257	Channel 0 G3 TSI/CIG Send TSI: Notification signal of the Sender ID by the signal for the CSI signal from the recipient. CIG: Indicates recognition information of the call station.	0~255	0: Auto	Read/Write	0~255, 0: Auto, 1: Forced transmit, 10: Not transmit
825-263	G3 TX Cable Equalizer for Channel 0	0~3	1: 4dB	Read/Write	0: 0dB, 1: 4dB, 2: 8dB, 3: 12dB
825-264	Implications of G3 TX Cable Equalizer for Channel 1 are different depending on machine model and configuration	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-265	Implications of G3 TX Cable Equalizer for Channel 2 are different depending on machine model and configuration	0~3	1: 4dB	Read/Write	0: 0dB, 1: 4dB, 2: 8dB, 3: 12dB
825-266	Implications of G3 TX Cable Equalizer for Channel 3 are different depending on machine model and configuration	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-267	Implications of G3 TX Cable Equalizer for Channel 4 are different depending on machine model and configuration	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-268	Implications of G3 TX Cable Equalizer for Channel 5 are different depending on machine model and configuration	0~3	1: 4dB	Read/Write	0: $0 \mathrm{~dB}, 1: 4 \mathrm{~dB}, 2: 8 \mathrm{~dB}, 3: 12 \mathrm{~dB}$
825-274	Error line ends in error when it reaches the specified value. When errors [No. of Lines], error line will send RTN when $1 / 2$ or more of the specified value is reached. Sends RTP when $1 / 4$ or more of the specified value is reached. Sends MCF when less than $1 / 4$ of the specified value is reached.	0~5	0: No limit	Read/Write	0: No limit, 1: 128line, 2: 256line, 3: 512line, 4: 1024line, 5: 2048line
825-275	Selection of error determination reference when RTN is sent.	0~1	0: Proportion	Read/Write	0: Proportion, 1: No. of lines
825-276	Tone Incoming Detection Level for Ch0	0~3	1: -43dBm	Read/Write	0: -48dBm, 1: -43dBm, 2: -38dBm, 3: -33dBm
825-277	Tone Incoming Detection Level for Ch1	0~3	1: -43dBm	Read/Write	0: -48dBm, 1: -43dBm, 2: -38 dBm , 3: -33 dBm
825-278	Tone Incoming Detection Level for Ch2	0~3	1: -43 dBm	Read/Write	0: -48dBm, 1: -43dBm, 2: -38 dBm , 3: -33 dBm
825-279	Tone Incoming Detection Level for Ch3	0~3	1: -43 dBm	Read/Write	0: $-48 \mathrm{dBm}, 1:-43 \mathrm{dBm}, 2:-38 \mathrm{dBm}, 3:-33 \mathrm{dBm}$
825-280	Tone Incoming Detection Level for Ch4	0~3	1: -43 dBm	Read/Write	0: -48dBm, 1: -43dBm, 2: $-38 \mathrm{dBm}, 3:-33 \mathrm{dBm}$
825-281	Tone Incoming Detection Level for Ch5	0~3	1: -43 dBm	Read/Write	0: -48dBm, 1: -43dBm, 2: -38dBm, 3: -33dBm
825-285	Communication declaration paper size	$\begin{aligned} & 0 \times 0000 \sim 0 \times 0 \\ & 200 \end{aligned}$	0x014c 0726: A3, A4, B4, A4LEF, A5LEF, B5LEF, Letter, Legal, Ledger, Letter LEF	Read/Write	0x0000 0002: A3, 0x0000 0004: A4, 0x0000 0020: B4, 0x0000 0100: Letter, 0×0000 0200: Legal, 0x0000 0400: Ledger, 0×0000 0800: 8.5×13 inch, 0×0004 0000: A4LEF, 0×0008 0000: A5LEF, 0x0040 0000: B5LEF, 0×0100 0000: Letter LEF, 0×0200 0000: Letter Half LEF
825-322	Set the enabling/disabling of the capability regarding the V34 modulation method.	0~1	1: Enable	Read/Write	0: Disable, 1: Enable
825-421	CED Send Start Time	0~3	2: 1.0sec	Read/Write	0: 2.0sec, 1:0.2sec, 2: 1.0sec, 3: 2.3 sec

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	
$825-422$	Send Mode depending on the availability of Outside Line Recognition No. (Line 0)	$0 \sim 2$			
Description					

Table 11 NVM 825 FAX Service

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
825-445	Ringer Threshold for CH2	0~1	0	Read/Write	0: 11~22Vms, 1: 17~33Vms. This is usually adjusted in the hardware to "11~22Vms"
825-446	Ringer Threshold for CH4	0~1	0	Read/Write	$0: 11 \sim 22 \mathrm{Vms}, 1: 17 \sim 33 \mathrm{Vms}$. This is usually adjusted in the hardware to "11~22Vms"

Chain 830-xxx iFAX Service

Chain-Link	NVM Name	PSW Display	Setup Range	Initial Value	Read/Write	Description
830-007	POP User Name (1)	POP User Name		NULL	Read/Write	ASCII 64 Characters
830-009	POP User Name (2)	POP User Name 2		NULL	Read/Write	ASCII 64 Characters
830-011	POP User Name (3)	POP User Name 3		NULL	Read/Write	ASCII 64 Characters
830-013	POP User Name (4)	POP User Name 4		NULL	Read/Write	ASCII 64 Characters
830-015	POP User Name (5)	POP User Name 5		NULL	Read/Write	ASCII 64 Characters
830-022	SMTP/POP3 Receive Start Up	SMTP / POP3 Receiving Start	0~1	$\begin{aligned} & \text { 0: SMTP } \\ & \text { Receive } \end{aligned}$	Read/Write	0: "SMTP Receive", 1: "POP Receive"
830-023	POP Receive Interval	POP Receiving Interval	1~120	10min	Read/Write	1~120min
830-024	Deletion after POP is obtained	Delete after POP Receiving	0~1	0: Delete	Read/Write	1: Do not delete, 0: Delete
830-025	Print Control of Mail Header and Content in iFAX Receive Print	Target of Mail Header Printing	0~3	1: Print basic headers and contents	Read/Write	: Print all headers and contents, 1: Print basic headers and contents, 2: Do not print headers or contents, 3: Auto print according content
830-026	Printing of error mail	Error Mail Print Enable	0~1	1: Always print headers and contents	Read/Write	0: Do not print, 1: Always print headers and contents
830-027	Sending of error notification mail	Error Mail Send Enable	0~1	0: Do not send	Read/Write	1: Send, 0: Do not send
830-030	Mail Receive Limitation	Mail Receiving Limit Enable	0~2	0: Do not limit	Read/Write	0: Do not limit, 1: Set domains to allow, 2: Set domains to prohibit
830-081	Fax Transmission Limitation by Address Book (Speed Dial)	FAX Forward Limit Enable by Address Note	0~1	0: Do not limit	Read/Write	1: Limit, 0: Do not limit
830-083	SMTP Send Start Up	SMTP Send Enable	0~1	1: Start	Read/Write	0: Stop 1: Start
830-084	Profile selection at Broadcast	Profile of Broadcast	0~2	0:TIFF-S	Read/Write	0: TIFF-S, 1: TIFF-F, 2: TIFF-J
830-085	Send Mode selection at Broadcast	Sending Mode of Broadcast	0~2	0: G3 Auto	Read/Write	0: G3 Auto, 1: International Communication, 2: G4 Auto
830-086	Mail Segmentation Send Threshold - B And W2 Value	Mail Send Page Segmentation Thresh-old-B And W2Bit	0~999	10	Read/Write	0~999 pages (No limit when it is 0)
830-087	Broadcast Delivery Confirmation Selection	Delivery check when broadcast trans	0~1	0: OFF	Read/Write	0: OFF, 1: ON
830-088	Delivery Confirmation Method	Delivery check system	0~1	1: MDN	Read/Write	0: DNS, 1: MDN
830-090	Upper Limit Size for Fax Transmission	Fax Relay Limit Size	0~65535	8192	Read/Write	0~65535KB (0: No limit)
830-091	POP Authentication (1)	POP Certification (1)	0~1	0	Read/Write	0: Panel authentication, 1: APOP authentication
830-092	POP Server Port No.	POP Server Port Number	1~65535	110	Read/Write	1~65535
830-103	Print Delivery Confirmation Mail	DNS Return Mail Print	0~2	2	Read/Write	0: Do not print, 1: Always print headers and contents, 2: Print only when fail

Table 12 iFAX Service

Chain-Link	NVM Name	PSW Display	Setup Range	Initial Value	Read/Write	Description
830-109	Reply MDN Request	Reply MDN Mail	0~1	1	Read/Write	0: Never reply, 1: Always reply
830-116	Ifax Sending Path Specification	IFAX Neto Config Route	1~2	1	Read/Write	1: By MTA, 2: By P2P, 3: By user specification (not immediat
830-118	P2P Ifax Retry Attempts	IFAX Neto Config Retry Coun	0~5	1	Read/Write	0: Do not retry, 1-5: Retry attempts
830-119	P2P Ifax Retry Interval (Unit: Minutes)	IFAX Neto Config Retry Interval	0~60	1	Read/Write	0: Immediate retry, 1-60: Interval (Minutes)
830-120	Print Mode when Receiving IFAX	IFAX Print Mode	0, 1	0: Auto distribute	Read/Write	0: Auto distribute, 1: Print as IFAX data

Chain 850-xxx EP-SV

Table 13 EP-SV

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
850-001	EP-SV, EP Accessory Connection	0~1	0: OFF	Read/Write	0: OFF, 1: ON
850-002	Telephone line connection	0~1	0: OFF	Read/Write	0: OFF, 1: ON
850-003	EP Data Send Type (This data is the same as that of EP-DX)	0~2	$\begin{aligned} & \text { 0: Send to } \\ & \text { EP-SV } \end{aligned}$	Read/Write	0: Send to EP-SV, 1: Send to EP-DX, 2: Send to both
850-004	Enable Display at bundling (This data is the same as that of EP-DX)	0~1	0: Prohibit	Read/Write	0: Prohibit, 1: Implement
850-007	Types of accessories	0~12	-	Read/Write	0: Off, 1: CopyLyzer (Addition), 2: CopyLyzer (Subtraction), 3: Dispenser, 4: Coin Kit5, 5: Combination of CopyLyzer and Copy Dispenser, 6: Combination of CopyLyzer and Coin Kit 5, 7: Combination of Dispenser and Coin Kit 5, 10: IC Card Gate
850-009	Print Control Function	0~1	0: Do not control operation	Read/Write	0: Do not control operation, 1: Control operation
850-010	Interrupt operation when connected to subtraction type	0~1	1: Interrupt Off	Read/Write	0: Interrupt On, 1: Interrupt Off
850-011	CRU Replacement Notification Enable/Disable	0~1	0: Prohibit	Read/Write	0: Prohibit, 1: Permit
850-012	CRU Warning Notification Enable/ Disable	0~1	0: Prohibit	Read/Write	0: Prohibit, 1: Permit
850-015	Scan/Fax/l-Fax Control Feature	0~1	0: Do not control operation	Read/Write	0: Do not control operation, 1: Control operation
850-016	Operation for Disable Receive when connected to subtraction type	0~1	0: Cancel Job (Cancel)	Read/Write	0: Cancel Job (Cancel), 1: Pause Job
850-017	Use Card Number in Print Control	0~1	1: Use Card No.	Read/Write	0: Do not use Card No., 1: Use Card No.
850-018	Paper feeding mode for 2 Sided Printing when connected to the conventional subtraction type accessory	0~1	1: One sheet mode	Read/Write	0: Clear one sheet mode and speed up, 1: One sheet mode

Table 14 EP-DX

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$860-011$	Remote Center Call Feature OFF/ON	1	$1:$ ON	Read/Write	$0:$ OFF, 1: ON
$860-012$	Alert Call Feature ON/OFF	1	0: OFF	Read/Write	$0:$ OFF, $1:$ ON
$860-032$	No. of CRU Replacements	$0 \sim 0 x F F F F F F F F$	0	Read/Write	$0 \sim 0 x F F F F F F F F$

Chain 870-xxx Chain 900-xxx Diag

Table 15 Diagnostics

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
$870-010$	XERO: CRU \#1 Wear Reduction Cur- rent Value	$0 \sim 99999999$	-	Read	-
$870-011$	XERO: CRU \#2 Wear Reduction Cur- rent Value	$0 \sim 99999999$	-	Read	- Read 2

Table 15 Diagnostics

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
870-027	Xfer: IBT Belt (IMPS)	0~99999999	-	Read	-
870-028	Xfer: IBT Belt (CYCLE)	0~99999999	-	Read	-
870-029	Xfer: 1st BTR	0~99999999	-	Read	-
870-030	Xfer: Backup Roll	0~99999999	-	Read	-
870-031	Xfer: 2nd BTR Unit	0~99999999	-	Read	-
870-032	Xfer: Bearing BTR	0~99999999	-	Read	-
870-033	Xfer: Trim within Transfer Module	0~99999999	-	Read	-
870-034	Xfer: Belt Cleaner Blade	0~99999999	-	Read	-
870-035	Xfer: Belt Cleaner Film Seal	0~99999999	-	Read	-
870-036	PH: No. of 1 Tray Feed	0~99999999	-	Read	-
870-037	PH: No. of MSI Feed	0~99999999	-	Read	-
870-038	PH: No. of 3TM 2Tray Feed	0~99999999	-	Read	-
870-039	PH: No. of 3TM 3Tray Feed	0~99999999	-	Read	-
870-040	PH: No. of 3TM 4Tray Feed	0~99999999	-	Read	-
870-041	PH: No. of 1TM 2Tray Feed	0~99999999	-	Read	-
870-042	PH: No. of TTM 2Tray Feed	0~99999999	-	Read	-
870-043	PH: No. of TTM 3Tray Feed	0~99999999	-	Read	-
870-044	PH: No. of TTM 4Tray Feed	0~99999999	-	Read	-
870-045	Fuser, NOHAD: PV (CV) Counter for checking the replacement Life of the Filter used for ROS contamination	0~99999999	-	Read	-
870-200	Input Tray Settings	0~9	1: Tray 1	Read/Write	0: Auto, 1: Tray 1, 2: Tray 2, 3: Tray 3, 4: Tray 4, 5: Tray 5, 6: SMH, 7: HCF1, 8: HCF2, 9: Interposer
870-201	Output Tray Settings	0~255	1: Main Tray	Read/Write	0: Auto, 1~255: Bin No
870-202	Copies (Output Sheet Count) Settings	1~65535	1:1 set	Read/Write	1~65535 sets
870-203	1 Sided Output/2 Sided Output Settings	0~2	0:1 Sided	Read/Write	0: 1 Sided, 1:2 Sided (Head to Head), 2: 2 Sided (Head to Bottom)
870-204	Paper Type Settings	0~66	0: Plain Paper	Read/Write	0: Plain Paper, 1: Recycled Paper, 2: Bond paper, 3: Lightweight, 4: Heavyweight 1, 5: Heavyweight 2, 6: Heavyweight 1 Side 2, 7: Heavyweight 2 Side 2, 8: Super Heavyweight, 9: Super Heavyweight Side 2, 10: Transparency, 11: Tacked Paper, 12: Labels, 13~31: Plain Paper A~S, 32: Heavyweight 1A, 33: Heavyweight 1B, 34: Heavyweight 1S, 35: Heavyweight 1 (Side 2) A, 36: Heavyweight 1 (Side 2) B, 37: Heavyweight 1 (Side 2) S, 38: Heavyweight 2A, 39: Heavyweight 2B, 40: Heavyweight 2S, 41: Heavyweight 2 (Side 2) A, 42: Heavyweight 2 (Side 2) B, 43: Heavyweight 2 (Side 2) S, 44: Heavyweight 1C, 45: Heavyweight 1C (Side 2), 46: Heavyweight 2C, 47: Heavyweight 2C (Side 2), 48: Heavyweight 2D, 49: Heavyweight 2D (Side 2), 50: Coated Paper 1, 51: Coated Paper 1 (Side 2), 52: Coated Paper 2, 53: Coated Paper 2 (Side 2), 54: Coated Paper 1 Special (Special Glossy Paper), 55~59: Custom Paper 1~5, 60: Tracing Paper, 61: Backing Paper, 62: Tab Paper Heavyweight 1, 63: Tab Paper Heavyweight 2, 64: Labels 1, 65: Labels 2, 66: Perforated (Punched)
870-205	Color Mode Settings	0~3	0: 4 Colors	Read/Write	0: 4 Colors, 1:3 Colors, 2: Mono Color, 3: BW
870-206	Single Color Settings	0~6	0: Black	Read/Write	0: Black, 1: Yellow, 2: Magenta, 3: Cyan, 4: Red, 5: Green, 6: Blue

Table 15 Diagnostics

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
870-207	Screen Settings	0~10	0: Text	Read/Write	0: Text, 1: Photo, 2: Binary ED, 3: 24ED, 4: 300DACS, 5: 600, 6: 300, 7: 200c 8: 200R, 9: 150, 10: Fine 200C, 8: 200R, 9: 150, 10: Fine
870-208	LUT Settings	0~3	3: IOT And Ctrack On	Read/Write	0: All Off, 1: IOT On, 2: Ctrack On, 3: IOT And Ctrack On
870-209	Density Settings	0~100	0:0\%	Read/Write	0~100\%
870-210	Resolution Settings	0~4	0: 1200x1200	Read/Write	0: 1200x1200, 1: 1200x600, 2: 600x600, 3: 300×300
870-211	Paper Size (Standard) Settings	0~50	5: A4LEF	Read/Write	0: A6SEF, 1: A6LEF, 2: A5SEF, 3: A5LEF, 4: A4SEF, 5: A4LEF, 6: A3SEF, 7: B6SEF, 8: B6LEF, 9: B5SEF, 10: B5LEF, 11: B4SEF, 12: 5.5×8.5 (Statement) SEF, 13: 5.5x8.5 (Statement) LEF, 14: 7.25x10.5 (Executive) SEF, 15: 7.25×10.5 (Executive) LEF, 16: 8×10SEF, 17: 8×10LEF, 18: LetterSEF, 19: LetterLEF, 20: 8.46x12.4 (Spanish) SEF, 21: 8.5×13 (Legal13) SEF, 22: 8.5x14 (Legal14) SEF, 23: 11x15SEF, 24: 11x17 (Ledger) SEF, 25: A4CoverLEF, 26: 9x11 (LetterCover) LEF, 27: 12.0x18.0SEF, 28 : 12.6x17.7 (SRA3) SEF, 29: $12.6 \times 19.2 S E F, 30: 13 \times 18$ SEF, 31: 13x19SEF, 32: 16K (TFX) SEF, 33: 16K (TFX) LEF, 34: 8K (TFX) SEF, 35: 16K (GCO) SEF, 36: 16K (GCO) LEF, 37: 8K (GCO) SEF, 38: Official Postcard SEF, 39: Official Postcard LEF, 40: Return Postcard SEF, 41: PostCard (4×6) SEF, 42: PostCard (4x6) LEF, 43: PostCard (5x7) SEF, 44: Envelope SEF, 45: Envelope LEF, 46: Com10LEF, 47: MonarchLEF, 48: DL LEF, 49: Envelope SEF, 50: Envelope LEF
$\begin{array}{\|l\|} \hline 900- \\ 001 ~ 999 \end{array}$	Tag 1V~Tag 999V	0~1	0	Read/Write	Tag Information 1V ~999V[0: OFF, 1: ON]

Chain-Link	NVM Name	Setup Range	Initial Value	Read/Write	Description
880-001	Job Flow Sheet Pool Server Usage	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
880-002	Port Number	1~65535	80	Read/Write	1~65535
880-003	Connection Schema	1,2	1: HTTP	Read/Write	1:HTTP 2:HTTPS
880-004	Device Specific Authentication Information Usage	0, 1	0: Disable	Read/Write	0: Disable, 1: Enable
880-005	Time-Out Time	1~300	60	Read/Write	1~300
880-006	Job Flow Sheet Repository	0, 1	0: Device	Read/Write	0: Device, 1: Pool Server
880-007	Job Flow Sheet Search Keyword 1		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-008	Job Flow Sheet Search Keyword 2		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-009	Job Flow Sheet Search Keyword 3		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-010	Job Flow Sheet Search Keyword 4		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-011	Job Flow Sheet Search Keyword 5		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-012	Job Flow Sheet Search Keyword 6		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-013	Job Flow Sheet Search Keyword 7		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-014	Job Flow Sheet Search Keyword 8		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-015	Job Flow Sheet Search Keyword 9		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-016	Job Flow Sheet Search Keyword 10		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-017	Job Flow Sheet Search Keyword 11		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-018	Job Flow Sheet Search Keyword 12		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-019	Job Flow Sheet Search Keyword 13		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-020	Job Flow Sheet Search Keyword 14		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)
880-021	Job Flow Sheet Search Keyword 15		NULL	Read/Write	Single-byte symbols, double-byte Katakana, Hiragana, Chinese characters, Max. 6 characters (Local); ASCII Max. 12 characters (M/N)

Table 1 Analog Monitor Code List

Chain-Link	Nvm Name	PSW Display	Function Description
$010-200$	Heat Roll NC Sensor: Inf		NC Sensor Detection AD Value at the center of Heat Roll
$010-201$	Heat Roll NC Sensor: temp		NC Sensor Compensation AD Value at the center of Heat Roll
$010-202$	Heat Roll NC Sensor: Diff		NC Sensor Difference AD Value at the center of Heat Roll
(Compensation AD Value - Detection AD Value) x 14.333			

Serial Number/Billing Meter Data

Purpose

Displays the Serial Number, Product Number, and Billing Data. 1

Procedure

1. Enter UI Diagnostic Mode.
2. Select Adjustment/Others.
3. Select Machine ID/Billing Data

NOTE: Serial Numbers, the Product Number, and Billing Data is displayed for IOT, Sys1, and Sys2.

CAUTION

Failure to perform GP 4 Replacing Billing PWBs, if the MCU PWB, or the MCU PWB EPROM, or the ESS PWB or the ESS PWB EPROM is replaced could result in NVM corruption and disabling the machine. Refer to REP 9.1.1 MCU PWB or REP 9.1.2 MCU PWB EPROM or REP 9.2.1 ESS PWB or REP 9.2.2 ESS PWB EPROM before installing a new MCU PWB, MCU PWB EPROM, ESS PWB, or ESS PWB EPROM.

NOTE: GP 4 Replacing Billing PWBs, procedure is used to serialize components and load billing data on the new MCU PWB, or MCU PWB EPROM, or ESS PWB, or ESS PWB EPROM.

NOTE: Machine Serial Number Plate is located on side frame below rear yellow Fuser mounting screw.

Printing HFSI

Procedure

1. Enter UI Diagnostic Mode).
2. Select NVM Read/Write.
3. Refer to Table 1 and enter a counter number for any High Frequency Service Item (HFSI) counters to be checked.
Table 1 High Frequency Service Items

Counter	Name	Threshold	Service Action to be performed
954-800 Reset only	Tray 1 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-801$	Tray 2 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-802$	Tray 3 Feed counter	300 K	Replace the Feed Roll, Retard Roll, Nudger Roll.
$954-803$	MSI Feed Roll / Retard Pad	50 K	Replace the Feed Roll, Retard Pad
$954-824$	IBT Unit	480 K	Information not available at this time
$954-825$	IBT Cleaner Unit	100 K	Information not available at this time
$954-826$	BTR2 Unit	300 K	Replace the Bias Transfer Roll.
$954-830$	Developer time K	420 K	Replace K Developer Housing.
$954-831$	Developer time Y	420 K	Replace Y Developer Housing.
$954-832$	Developer time M	420 K	Replace M Developer Housing.
$954-833$	Developer time C	420 K	Replace C Developer Housing.
$955-837$	Xerographic Module	10 M	Replace the Xero Module
$954-842$	Fuser Assembly	10 M	Replace the Fuser Assembly

Initialize HFSI Counters

Purpose

Initialize the HFSI Counter.

Procedure

Reading and resetting HFSI

2. Select Adjustment/Other.
3. Select Initialize HFSI Counter.
4. Reset Correct Value
a. Enter the Chain-Link No.
b. Select Reset Correct Value. Diagnostics routine completed will be displayed NOTE: Diagnostics routine completed will be displayed. The HFSI Counter is reset.
5. Enter UI Diagnostic Mode.

Table 1 IOT HFSI

Chain-Link	Name	Initial Value	Value	1Count	Remarks
954-807	Last 2Digits of Fuser discharging Number	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-807	5th\&6thDigits of Fuser discharging Number	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-807	3rd\&4thDigits of Fuser discharging Number	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-807	First 2Digits of Fuser discharging Number	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-800	Tray1 Last 2Digits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-800	Tray1 5th\&6thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-800	Tray1 3rd\&4thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-800	Tray1 First 2Digits of Feed Capacity (8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-801	Tray2 Last 2Digits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-801	Tray2 5th\&6thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-801	Tray2 3rd\&4thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('O clearance' means all bytes changes 0 at the same time.)
954-801	Tray2 First 2Digits of Feed Capacity (8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-802	Tray3 Last 2Digits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-802	Tray3 5th\&6thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-802	Tray3 3rd\&4thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-802	Tray3 First 2Digits of Feed Capacity (8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-804	HCF Last 2Digits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)

Table 1 IOT HFSI

Chain-Link	Name	Initial Value	Value	1Count	Remarks
954-804	HCF 5th\&6thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-804	HCF 3rd\&4thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('O clearance' means all bytes changes 0 at the same time.)
954-804	HCF First 2Digits of Feed Capacity (8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-805	MSI Last 2Digits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-805	MSI 5th\&6thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-805	MSI 3rd\&4thDigits of Feed Capacity (8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-805	MSI First 2Digits of Feed Capacity (8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-808	Last 2Digits of the number of Sheets Reaching BIAS transfer Roll(8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-808	5th\&6thDigits of the number of Sheets Reaching BIAS transfer Roll(8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('O clearance' means all bytes changes 0 at the same time.)
954-808	3rd\&4thDigits of the number of Sheets Reaching BIAS transfer Roll(8 Digits)	0	0~99	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)
954-808	First 2Digits of the number of Sheets Reaching BIAS transfer Roll(8 Digits)	0	0~3	1	Only 0 clearance is possible in the write mode.('0 clearance' means all bytes changes 0 at the same time.)

Table 2 IIT HFSI

Chain-Link	Name	Initial Value	Setting Range	Count Condition	Remarks
956-802	IIT Scan	0	0~6,881,175	Scan Count (including pre-Scan) Counts up with each scan. HFSI to Scan count after clearing HFSI Counter Recycle to Total Scan count without clearing	1 time increments Max count value=above 6,000,000 times Only count Platen Scans, not CVT Scans.
956-803	Lamp ON Time	0	0~7,864,200	Lamp ON Time Starts timing when the lamp turns on. Stops timing when the lamp turns off. Writes to the NVM during CRG Initialize. HFSI to Lamp ON time after clearing HFSI Counter Recycle to Total Lamp ON time without clearing	Lamp Life 2000 hours 1 time increments Max count value $=7,200,000 \mathrm{sec}$ and above Times the total duration when the lamp is on (including AGOC, Lamp Check).
956-804	Lamp ON Count	0	0~6,881,175	Lamp ON count after clearing HFSI Counter Counts up when the lamp turns on. Writes to the NVM during CRG Initialize.	Lamp Life 6,000,000 times 1 time increments Max count value=above 6,000,000 times Counts the no. of times the lamp turns on (including AGOC, Lamp Check).
956-808	Platen Open/Close Count (Platen models)	0	0~1,966,050	Counts up when the Angle Sensor is forced fully open.	1 time increments Max count value=above 1,000,000 times
955-806	Document Feed (CVT, DADF models)	0	0~5,000,000	Counts up when the Feed Sensor turns on. HFSI to Document Feed count after clearing HFSI Counter Recycle to Total Document Feed count without clearing	No. of sheets fed from the CVT Tray The NVM is controlled by the CVT.
955-807	Document Feed Simp (CVT, DADF models)	0	0~5,000,000	Counts the no. of document sheets fed in Simplex mode.	The NVM is controlled by the CVT. * Life is common to 955-808.
955-808	Document Feed Dup (CVT, DADF models)	0	0~5,000,000	Counts the no. of document pages fed in Duplex mode. Counts up when Invert Sensor turns off during Duplex transport.	The NVM is controlled by the CVT. * Life is common to 955-807.
955-810	Platen Open/Close Count (CVT, DADF models)	0	0~1,000,000	Counts up when the Platen Interlock is open.	Belt/CVT judgement is processed in the IISS. The NVM is controlled by the CVT.
955-829	Invert Solenoid ON Count	0	0~5,000,000	Counts up when the Invert Solenoid turns on. HFSI to Invert Solenoid ON count after clearing the counter Recycle to Total Invert Solenoid ON count without clearing	CVT(PF2) The NVM is controlled by the CVT.

Adjust Toner Density

Purpose

To perform manual adjustment for toner density.

Procedure

1. Select Maintenance/Diagnostics.
2. Select Max Setup.
3. Select Adjust Toner Density.
4. The following current value data will be displayed at the current value area.
a. ATC Target Value: Numeric display.
b. ATC Measured: Numeric display.
5. Select and adjustment value by entering a quantity between -99 and +99 .
6. Select Start.
7. Exit Diag. and check the copy quality.
8. Repeat step 4 to 9 until copy quality meet with specification or customer desired level.

MSI Guide Adjustment

Purpose

This guide adjustment item is provided for the following purposes:

- To check that size detection of the MSI Guide width detection is properly performed.
- To set the sensor output values for the maximum and minimum positions for the MSI Guide using NVM.
- To display the detected size in the width direction of the MSI Guide.

Procedure

1. Select Maintenance/Diagnostics.
2. Select Adjustment/Others.
3. Select MSI Guide Adjustment.
4. Set the MPT Guide on the machine at the minimum position.
5. Select Minimum Size Position, then push Start button.
6. Result appears in Result column.

When "OK": The minimum position is set by the NVM.
When NG: Repeat the procedure.
7. Set the MSI Guide on the machine at the maximum position.
8. Select Maximum Position.
9. Result appears in Result column.

When "OK": Set the value of the maximum position by the NVM.
When NG: Repeat the procedure.
10. Select Close].

Initialize NVM

Purpose

This procedure may be needed when the machine is unrecoverable, including problems such as producing blank copies/prints, continuous system faults, etc. It is also required as part of the software upgrade process.

Fax configured machine only
NOTE: The fax module must be started up (the fax icon must be displayed) before the initialization is performed.
If the initialization is performed with the fax module off, the initialization will not finish.
(The fax module requires powering off then on.)

Initial Actions

- Disconnect any Foreign Interface devices.
- Obtain all of the following information:
- NVM value factory setting report Log Book Storage (typically it is located in the Inner Cover pocket)
- Any customer setting Auditron account from the system administrator
- Any setting changes (specifically NVM settings) shown on the machine's service log. - Any customer settings in the Tools mode.

Procedure

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics in UII Diagnostic Mode).
b. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
2. Select Maintenance/Diagnostics.
3. Select Initialize NVM.
4. Select the desired item, then press the Start button.
5. After initialization is complete, use the data accumulated in Initial Actions to restore the machine to its previous configuration.

Name	Description
IOT	The following NVM locations will be initialized: - Chain - Link 740-001, 022 through 31, 062, 090 - Chain - Link 741-001 - Chain - Link 742-001 through 012, 015, 018, 027 through 030, 075, 083, 084, 086, 098 through 101 Chain - Link 744-005, 006, 010, 043, 045, 046, 061, 065, 077, 078, $080,081,086,133$ through 135,180 through $184,220,301$ through 306 Chain - Link 746-500, 502 through 516 Chain - Link 749-001 through 003, 006, 007, 009 through 016, 516, 521 through 524, 527 Chain - Link 751-010, 011, 034 through 037, 511, 560, 631, 699, 701, $703,710,718$ through $748,750,752,754,756,758,760,762,764$ through 792, 794, 796, 798, 800, 802, 804, 806, 808 through 836, 838, 840, 842, 844, 846, 848 through 850, 881 through 889 Chain - Link 752-003, 509, 893 through 895 Chain - Link 753-003, 008, 009, 612, 619, 645, 705, 716, 717, 724 through 726, 729, 731 Chain - Link 760-001 through 003, 005 through 012, 016 through 029, 031 through 040 Chain - Link 764-001, 002, 005, 100 through 104, 112
IIT/IPS	The following NVM locations will be initialized: - Chain - Link 710-501, 550, 551, 554 through 568, 600 through 612 - Chain - Link 715-013, 017, 018, 023 through027, 050 through 096, 102 through 108, 110 through 113, 201, 241 through 244, 280 through 293, 299 through 311, 344 through 349, 362, 363, 418, 550 through 555, 560, 600 through 622, 630 through 649, 660 through 664, 668, 669, 680 through 691, 702 through 705, 720 through 726, 780 through 791 - Chain - Link 716-001 through 030, 032, 033, 035, 037 through 047, 050 through 064, 070 through 081, 100 through 102, 110, 112, 113, 120 through 122, 126 through 128 Chain - Link 717-001 through 015

Table 1 NVM Initialization

Name	Description
SYS-System	The following NVM locations will be initialized: - Chain - Link 700-071, 075, 076, 078, 080 through 088, 127, 128, 368, 389, 390, 396, 398, 410 through 412 Chain - Link 780-072, 073, 141, 145 - Chain - Link 790-003 - Chain - Link 800-018 - Chain - Link 810-130 - Chain - Link 820-003, 024, 026, 038 through 047, 052 through 054, 060 through 119, 121 - Chain - Link 823-042 through 047 - Chain - Link 830-081, 090 - Chain - Link 850-001 through 004, 007, 009 through 012, 015 through 018 - Chain - Link 870-010 through 045
SYS-User	All user settable NVM locations in the following chains will be reset: - Chain - Link 700-071, 075, 076, 078, 080 through 088, 368, 389, 390

Component Control

Purpose

The purpose of the Component Control is to display the logic state of input signals and to energize output components

NOTE: Refer to Table 1, Table 3, Table 5 for a list of all Input Components listed by Chain/Link ID number. Refer to Table 2, Table 4, Table 6 for a list of all Output Components listed by Chain/Link ID number.

Procedure

1. Enter UI Diagnostic Mode.
2. Select Maintenance/Diagnostics.
3. Select IO Check.
4. Select Component Control.
5. Input Enter number, then select Chain Link.

- In case of INPUT Component:

Indicates current status in Status column.
Count up (+1) when switching. (High to Low, Low to High)

- In case of OUTPUT Component

Activates component
6. Press Stop button after confirming.

Stacking Component Codes

NOTE: Some components cannot be energized at the same time as another component. If you activate such a combination of components, the first component switched on will be automatically switched off.

1. When perform multiple component checking. input new Chain-Link number after one (or several) component(s) is (are) in operating.
NOTE: Only latest Chain-Link number indicates.
2. When confirm the status of another component still in progress, select Enter Number then input Chain-Link number of applicable component.
3. Select Stop key after confirming.

Stop operation of component indicated on screen.
NOTE: There are no Cyclic Component in below category:

- IIT Input Component.
- IIT Output Component.
- IOT Input Component.

Table 1 Input Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Remarks
012-110	Registration Clutch ON	H	IOT Regi Clutch ON	
012-111	IOT Exit Sensor	H	with paper	
012-150	Compile Exit Sensor	H	with paper	
012-151	Compile Tray No Paper Sensor	H	with paper	
012-190	H-Transport Ent. Sensor	H	with paper	
012-191	H-Transport Exit Sensor	H	with paper	
012-220	Front Tamper Home Sensor	H	other than home position	
012-221	Rear Tamper Home Sensor	H	other than home position	
012-240	Stapler Move Home Sensor	H	other than home position	
012-241	Stapler Move Position Sensor	H	other than home position	
012-242	Low Staple Sensor	H	without pin	
012-243	Self Priming Sensor	H	Not Ready	
012-244	Staple Home Sensor	H	other than home position	
012-250	Eject Clamp Home Sensor	H	other than home position	
012-251	Set Clamp Home Sensor	H	other than home position	
012-260	Upper Limit Sensor	H	upper limit position	
012-262	Stacker No Paper Sensor	H	without finisher	
012-267	Stacker Height Sensor	H	With Paper	
012-268	Stacker Stock A Sensor	H	Cover Position	
012-269	Stacker Stock B Sensor	H	Cover Position	
012-280	Compiler Cover Safety Switch	H	Compiler Upper Chute Open	
012-301	Top Cover Switch	H	Top Cover is closed	
012-302	Finisher Front Cover Switch	H	Finisher Front Cover is closed	
012-303	H-Transport Interlock Sensor	H	H-Transport is closed	
042-200	Belt Home Position Sensor	L	Same as Name	-
047-200	FACE UP TRAY DETECTED	L	Detected	EXIT
047-201	OCT2 DETECTED	L	Detected	EXIT
047-205	OCT1 HOME POSITION SENSOR	L	OCT1 is at its home position	EXIT
047-206	OCT2 HOME POSITION SENSOR	L	OCT2 is at its home position	EXIT
061-200	Polygon Motor Lock	L	PLYGON_MOT_LOCK signal is displayed.	
061-201	ROS Motor Fan	H	ROS_FAN_FAIL signal is displayed.	

Table 1 Input Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Remarks
071-100	\#1 Pre-Feed Sensor	L	with paper	
071-101	\#1 No Paper Sensor	L	with paper	
071-102	\#1 Level Sensor	H	with paper	
071-103	\#1 Tray Paper Size Sensor	H	with paper	
072-100	\#2 Pre-Feed Sensor	L	with paper	
072-101	\#2 No Paper Sensor	L	with paper	
072-102	\#2 Level Sensor	L	with paper	
072-103	\#2 Feed Out Sensor	H	with paper	
072-104	\#2 Tray Paper Size Sensor	H	with paper	
073-100	\#3 Pre-Feed Sensor	L	with paper	
073-101	\#3 No Paper Sensor	L	with paper	
073-102	\#3 Level Sensor	H	with paper	
073-103	\#3 Feed Out Sensor	H	with paper	
073-104	\#3 Tray Paper Size Sensor	H	with paper	
075-100	MSI No Paper Sensor	H	Same as Name	
077-100	Regi Sensor	L	Same as Name	
077-101	\#1 Feed Out Sensor	L	Same as Name	
077-102	\#2 Exit Sensor	L	Same as Name	
077-103	\#2 OCT Home Position Sensor	L	Same as Name	
077-104	Dup Wait Sensor	L	Same as Name	
077-105	\#1 Exit Sensor	H	Same as Name	
077-106	Dup Regi Sensor	-	Same as Name	
077-107	Dup Regi CL	-	Dup Regi Clutch Hotline	
077-200	\#2 Exit Unit Detect Line	-	Same as Name	
077-201	Face Up Tray Detect Switch	-	Same as Name	
077-300	Left Hand Interlock Switch	-	Same as Name	
077-301	Left Hand Low Cover Switch	-	Same as Name	
077-302	Left Hand High Cover Switch	-	Same as Name	
077-303	Front Interlock Switch	-	Same as Name	
077-305	Dup Cover Switch	-	Same as Name	
077-306	TM Left Hand Interlock Switch	-	Same as Name	
089-100	Registration SENSOR	L	with paper	
089-101	Registration SENSOR (DM)	H	with paper Sensor level detected by DM	DM
089-200	Registration CLUTCH (DM)	L	in ON state Signal detected by DM MODULE	DM
089-201	Registration CLUTCH(EXIT)	L	in ON state Signal detected by EXIT MODULE	EXIT
091-200	Waste Toner Bottle Sensor	-	Same as Name	
091-201	Waste Toner Bottle Near Full Sensor	-	Same as Name	
093-200	Rotary Home Position Sensor		Same as Name	
094-200	2nd BTR Retract Sensor	-	2nd BTR Retract Sensor on/off is detected. [I/O]2nd BTR Retract Sensor	

Table 1 Input Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Remarks
$094-201$	IBT CLN Retract Sensor	-	BTR CLN Retract Sensor on/off is detected. $[/ / O]$	
$094-202$	TRO Sensor	-	Same as Name	
$094-203$	POB Sensor	-	Same as Name	

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
010-001	Fuser Motor (Normal Speed)	H	Fuser motor rotation at $158 \mathrm{~mm} / \mathrm{sec}$. [I/O] Fuser Motor On [I/O] Fuser Gain1	X	X	
010-002	Fuser Motor (Half Speed)	L	Fuser motor rotation at $79 \mathrm{~mm} / \mathrm{sec}$. [[/O] Fuser Motor On [I/O] Fuser Gain1	X	X	
012-020	Front Tamper Motor Low FRONT ON/OFF	-	Same as Name	X	X	
012-021	Front Tamper Motor Middle FRONT ON/ OFF	-	Same as Name	X	X	
012-022	Front Tamper Motor High FRONT ON/ OFF	-	Same as Name	X	X	
012-023	Front Tamper Motor Low REAR ON/OFF	-	Same as Name	X	X	
012-024	Front Tamper Motor Middle REAR ON/ OFF	-	Same as Name	X	X	
012-025	Front Tamper Motor High REAR ON/OFF	-	Same as Name	X	X	
012-026	Rear Tamper Motor Low FRONT ON/OFF	-	Same as Name	X	X	
012-027	Rear Tamper Motor Middle FRONT ON/ OFF	-	Same as Name	X	X	
012-028	Rear Tamper Motor High FRONT ON/OFF	-	Same as Name	X	X	
012-029	Rear Tamper Motor Low REAR ON/OFF	-	Same as Name	X	X	
012-030	Rear Tamper Motor Middle REAR ON/ OFF	-	Same as Name	X	X	
012-031	Rear Tamper Motor High REAR ON/OFF	-	Same as Name	X	X	
012-040	Stapler Move Motor Low FRONT ON/OFF	-	Same as Name	X	X	
012-042	Stapler Move Motor High FRONT ON/OFF	-	Same as Name	X	X	
012-043	Stapler Move Motor Low REAR ON/OFF	-	Same as Name	X	X	
012-045	Stapler Move Motor High REAR ON/OFF	-	Same as Name	X	X	
012-046	Staple Motor FORWARD ON/OFF	H	Same as Name	X	X	
012-047	Staple Motor REVERSE ON/OFF	H	Same as Name	X	X	
012-051	Set Clamp Paddle	-	Same as Name	X	X	
012-060	Stacker Motor UP ON/OFF	H	Same as Name	X	X	
012-061	Stacker Motor DOWN ON/OFF	H	Same as Name	X	X	
012-080	Main Drive Motor ON/OFF	L	Same as Name	X	X	

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
012-081	Eject Motor FORWARD ON/OFF	-	Same as Name	X	X	
012-082	Eject Motor REVERSE ON/OFF	-	Same as Name	X	X	
012-083	Eject Clamp Low DOWN	-	Same as Name	X	X	
012-084	Eject Clamp Middle DOWN	-	Same as Name	X	X	
012-085	Eject Clamp UP	-	Same as Name	X	X	
012-086	Set Clamp Paddle Solenoid ON	L	Same as Name	X	X	
042-001	Main Motor ON (Normal Speed)	L	Main motor rotation at normal process speed. [I/O] Main Motor [I/O] Main Motor Gain1 [I/O] Main Motor Gain2 [I/O] Main Motor Clock (normal process speed is determined depending on combination on Main Motor Gain 1, Main Motor Gain 2, and Main Motor Clock).	-	X	
042-002	Main Motor ON (Half Speed)	L	Main motor rotation speed at half process speed. [I/O] Main Motor [//O] Main Motor Gain1 [//O] Main Motor Gain2 [//O] Main Motor Clock (half process speed is determined depending on combination o Main Motor Gain 1, Main Motor Gain 2, and Main Motor Clock).	-	X	
042-003	Auger Motor	L	Auger motor rotation [I/O] Auger Motor [I/O] Auger Motor CLK	-	X	
042-004	Developer Motor	L	Developer motor rotation [I/O] Deve Motor [//O] Deve Motor CLK	-	X	
042-005	Fuser Fan	L	Fuser fan rotation Fuser fan rotates at high speed per start command. Fuser fan rotates at low speed per stop command	-	X	
042-006	Rear Fan	L	Rear fan rotation	-	X	
047-001	OFFSET MOTOR1 FORWARD ROTATION	-	Same as Name	X	X	EXIT
047-003	OFFSET MOTOR2 FORWARD ROTATION	-	Same as Name	X	X	EXIT
047-004	OFFSET MOTOR2 REVERSE ROTATION	-	Same as Name	X	X	EXIT

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
047-005	OFFSET MOTOR1 REVERSE ROTATION	-	Same as Name	X	X	EXIT
047-022	EXIT DRIVE MOTOR FORWARD (Eject Paper out)	-	Same as Name	X	X	Not Available
047-023	EXIT DRIVE MOTOR REVERSE (send paper into Dup)	-	Same as Name	X	X	Not Available
047-024	Exit Gate Solenoid	H	Switch Gate to Exit2/FUT	X	X	Not Available
047-025	FACE UP GATE SOLENOID	L	Switch FUT Gate to Face Up Tray	X	X	EXIT
047-026	EXIT 2 FAN	-	Exit 2 FAN rotating	X	X	Not Available
061-001	ROS Motor ON	-	Send a pulse to PLYGON_MOT_CLK (this pulse is generated when ROS main task is initiated).	X	X	
061-002	ROS Fan ON	-	ROS Fan is activated	X	X	
071-001	Tray 1 Feed/Lift Up Motor (CW2)	-	Turn Lift Up Motor on for two seconds when Tray 1 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 1 Level Sensor is "H"(lifted up).	0	X	
071-002	Tray 1 Feed/Lift Up Motor (CCW2)	-	Turn Lift Up Motor on for two seconds when Tray 1 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 1 Level Sensor is "H"(lifted up).	O	X	
071-003	Tray 1 Feed/Lift Up Motor (CW12)	-	Turn Lift Up Motor on for two seconds when Tray 1 Level Sensor is "L" (lifted down). Lifter Motor will not rotate when Tray 1 Level Sensor is "H"(lifted up).	O	X	
071-004	Tray 1 Feed/Lift Up Motor (CCW12)	-	Turn Lift Up Motor on for two seconds when Tray 1 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 1 Level Sensor is "H"(lifted up).	0	X	
072-001	Tray 2 Feed/Lift Up Motor (CW)	-	Turn Lift Up Motor on for two seconds when Tray 2 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 2 Level Sensor is "H"(lifted up).	O	X	
072-002	Tray 2 Feed/Lift Up Motor (CCW)	-	Turn Lift Up Motor on for two seconds when Tray 2 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 2 Level Sensor is "H"(lifted up).	O	X	

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
073-001	Tray 3 Feed/Lift Up Motor (CW)		Turn Lift Up Motor on for two seconds when Tray 3 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 3 Level Sensor is "H"(lifted up).	0	X	
073-002	Tray 3 Feed/Lift Up Motor (CCW)	-	Turn Lift Up Motor on for two seconds when Tray 3 Level Sensor is "L"(lifted down). Lifter Motor will not rotate when Tray 3 Level Sensor is "H"(lifted up).	0	X	
075-001	MSI Feed Solenoid	-	MSI Feed Solenoid is turned on for 200mseconds.	X	X	DM
077-001	Take Away Clutch		Take Away Clutch is turned on. [I/O]TA Clutch (doubled as MSI TA clutch) [Component] By combining with Main Drive Motor [042-001], Take Away Clutch can be driven by \#1 Take Away Roll and MSI Take Away Roll.	0	X	Stack Code:042-001-Main Drive Motor
077-002	Regi Clutch		Registration Clutch is turned on.? [I/O]TA Clutch (doubled as MSI TA clutch) [Component] By combining with Main Drive Motor[042-001], Regi Clutch can be driven by Regi Roll.	0	X	Stack Code:042-001-Main Drive Motor
077-003	Exit Gate Solenoid		Exit Gate is turned off/on. Off: Printed sheets are ejected to Exit 1 On: Printed sheets are ejected to Exit2. [//O] Exit Gate Solenoid	0	X	
077-004	Face Up Gate Solenoid	-	Face Up Gate is turned off/on. Off: Printed sheets are ejected to Exit2. On: Printed sheets are ejected to Face Up Tray. [I/O] Face Up Gate Solenoid	0	X	
077-005	\#2 Exit Motor Fan	-	Air is sent to Exit 2 Drive Motor. [I/O] Exit MOTOR FAN	0	X	
077-006	DUP Motor	-	Duplex Unit Feed Roll is driven. [//O] DUP MOTOR	0	X	
077-007	Exit 2 Drive Motor (Full Speed CW)	-	Same as Name	0	X	
077-008	Exit 2 Drive Motor (Full Speed CCW)	-	Same as Name	0	X	
077-009	Exit 2 Drive Motor (Half Speed CW)	-	Same as Name	0	X	
077-011	OCT 2 Motor (CW)	-	Same as Name	0	X	
077-012	OCT 2 Motor (CCW)	-	Same as Name	0	X	

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks

Table 2 Output Component Control Codes IOT

| Chain-Link | Name | | Connector
 Level | Meaning | Timer Off | Cycle Operation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Remarks | Rer |
| :--- |

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
094-004	2st BTR Contact		2nd BTR contact motion. 2nd BTR contact motion stops when 2nd BTR Retract Sensor detects that 2nd BTR is in the contact position. 1) I/O]2nd BTR Retract Clutch is turned on. 2) [$1 / O] 2$ nd BTR Retract Clutch is turned off within a period of time specified by the timer (nxfr_2ndCntStpTime) after 2nd BTR Retract Sensor is turned on. [Component] Auger Mot needs to be activated in advance.	0	0	The BCR AC, BCR DC, DEVE DC and BTR output simultaneously. * $\mathrm{CF}=53-45$ (CL=751560) to 1 (single output) enables independent outputs.
094-005	2st BTR Retract	-	2nd BTR retract motion. 2nd BTR retract motion stops when 2nd BTR Retract Sensor detects that 2nd BTR is in retract position. 1) $[1 / O] 2 n d$ BTR Retract Clutch is turned on. 2) $[1 / O] 2 n d$ BTR Retract Clutch is turned off within a period of time specified by the timer (nxfr_2ndRetStpTime) after 2nd BTR Retract Sensor is turned off. [Component] Auger Mot needs to be activated in advance.	0	0	The BCR AC, BCR DC, DEVE DC and BTR output simultaneously. * CF=53-45(CL=751560) to 1 (single output) enables independent outputs.
094-006	IBT CLN Contact	-	IBT cleaner contact motion. IBT cleaner retract motion stops when IBT Cleaner Retract Sensor detects that IBT cleaner is in contact position. 1) $[/ / O]$ IBT CLN Retract Clutch is turned on. 2) [//O]IBT CLN Retract Clutch is turned off within a period of time specified by the timer (nxfr_CInCntStpTime) after IBT Cleaner Retract Sensor is turned on. [Component] Auger Mot needs to be activated in advance.	0	0	The BCR AC, BCR DC, DEVE DC and BTR output simultaneously. * CF=53-45(CL=751560) to 1 (single output) enables independent outputs.

Table 2 Output Component Control Codes IOT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Cycle Operation	Remarks
094-007	IBT CLN Retract		IBT cleaner contact motion. IBT cleaner retract motion stops when IBT Cleaner Retract Sensor detects that IBT cleaner is in contact position. 1) [//O]IBT CLN Retract Clutch is turned on. 2) [//O]IBT CLN Retract Clutch is turned off within a period of time specified by the timer (nxfr_CInCntStpTime) after IBT Cleaner Retract Sensor is turned on. [Component] Auger Mot needs to be activated in advance.	0	0	The BCR AC, BCR DC, DEVE DC and BTR output simultaneously. * CF=53-45(CL=751560) to 1 (single output) enables independent outputs.
094-008	IBT CLN Auger Clutch		BT CLN Auger Clutch is turned on/ off.	0	0	
094-009	2nd BTR Retract Clutch	-	2nd BTR Retract Clutch is turned on/ off. [//O]2nd BTR Retract Clutch	0	0	
094-010	IBT CLN Retract Clutch	-	BTR CLN Retract Clutch is turned on/off. [I/O]BTR CLN Retract Clutch			

Table 3 Input Component Control Codes IIT

Chain-Link	Name	Connector Level	Meaning	Remarks
$005-102$	Document Sensor	H	No paper detected by Document Sensor	
$005-110$	Regi Sensor (Belt DADF/CVT)	L	Paper detected by Regi Sensor	
$005-205$	DADF Feed Out Sensor	H	Paper detected by Feed Out Sensor	
$005-206$	DADF Pre-Reg.Sensor	P	Paper detected by Pre-Reg. Sensor	
$005-211$	DADF Invert Sensor	Feeder Cover by Inverter Sensor		
$005-212$	DADF Feeder Cover Interlock Switch	-	Platen Interlock open	
$005-213$	DADF Platen Interlock Switch	H	Light is not blocked by the actuator	
$005-215$	DADF \#1 Tray APS Sensor	L	Light is not blocked by the actuator	
$005-216$	DADF \#2 Tray APS Sensor	L	paper detected by APS No.1 Sensor	
$005-217$	DADF \#3 Tray APS Sensor	p	paper detected by APS No.1 Sensor	
$005-218$	DADF \#1 APS Sensor	paper detected by APS No.1 Sensor		
$005-219$	DADF \#2 APS Sensor	paper detected by Tray Size SNR No.1		
$005-220$	DADF \#3 APS Sensor	paper detected by Tray Size SNR No.2		
$005-221$	DADF Tray Size SNR No.1	L	Scan Start Signal ON	
$005-222$	DADF Tray Size SNR No.2	L		
$005-224$	Scan Start	H	The Nudger Roll is at UP position.	
$005-225$	Nudger Position Snr	Document Regist		
$062-201$	Sheet Abort	L		

Table 3 Input Component Control Codes IIT

Chain-Link	Name	Connector Level	Meaning	Remarks
$062-212$	IIT Regi Sensor	L	De-actuation of Regi Sensor	
$062-240$	ADF Exist	H	DADF is not installed	
$062-251$	APS Sensor1	APS SNR1:L APS ON: H	Document detected	
$062-253$	APS Sensor3	APS SNR3:L APS ON: H	Document detected	
$062-272$	Scan Start	Scan available		
$062-280$	CCD Fan Fail	H	Same as Name	
$062-281$	IPS Fan Fail	S	Same as Name	
$062-280$	Lamp Fan Fail	Same as Name		
$062-300$	Platen I/L Switch	Platen closed		
$062-301$	Angle Sensor	Platen opened		

Table 4 Output Component Control Codes IIT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Multiple Output Prohibited Items	Remarks
005-001	DADF Feed Motor(Speed1)	-	ON for 50sec -> Auto OFF	0	005-002~005-014	
005-002	DADF Feed Motor(Speed2)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001 } \\ & \text { 005-003~005-014 } \end{aligned}$	
005-003	DADF Feed Motor(Speed3)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-002 } \\ & 005-004 \sim 005-014 \end{aligned}$	
005-004	DADF Feed Motor(Speed4)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-003 } \\ & 005-005 \sim 005-014 \end{aligned}$	
005-005	DADF Feed Motor(Speed5)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-004 } \\ & 005-006 \sim 005-014 \end{aligned}$	
005-006	DADF Feed Motor(Speed6)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-005 } \\ & \text { 005-007~005-014 } \end{aligned}$	
005-007	DADF Feed Motor(Speed7)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-006 } \\ & 005-008 \sim 005-014 \end{aligned}$	
005-008	DADF Feed Motor(Speed8)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005- } \\ & 007005-009 \sim 005- \\ & 014 \end{aligned}$	
005-009	DADF Feed Motor(Speed9)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-008 } \\ & 005-010 \sim 005-014 \end{aligned}$	
005-010	DADF Feed Motor(Speed10)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-009 } \\ & \text { 005-013~005-014 } \end{aligned}$	
005-013	DADF Feed Motor(Speed11)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-001~005-010 } \\ & \text { 005-014 } \end{aligned}$	
005-014	DADF Feed Motor(Reverse)	-	ON for 50sec -> Auto OFF	0	005-001~005-013	
005-026	DADF Reg.Motor(Speed1)	-	ON for 50sec -> Auto OFF	0	005-027~005-036	
005-027	DADF Reg.Motor(Speed2)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-026 } \\ & \text { 005-028~005-036 } \end{aligned}$	
005-028	DADF Reg.Motor(Speed3)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-026~005-027 } \\ & 005-029 \sim 005-036 \end{aligned}$	

Table 4 Output Component Control Codes IIT

Chain-Link	Name	Connector Level	Meaning	Timer Off	Multiple Output Prohibited Items	Remarks
005-029	DADF Reg.Motor(Speed4)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-026~005-028 } \\ & 005-030 \sim 005-036 \end{aligned}$	
005-030	DADF Reg.Motor(Speed5)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & 005-026 \sim 005-029 \\ & 005-031 \sim 005-036 \end{aligned}$	
005-031	DADF Reg.Motor(Speed6)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \hline 005-026 \sim 005-030 \\ & 005-032 \sim 005-036 \end{aligned}$	
005-032	DADF Reg.Motor(Speed7)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & \text { 005-026~005-031 } \\ & 005-033 \sim 005-036 \end{aligned}$	
005-033	DADF Reg.Motor(Speed8)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & 005-026 \sim 005-032 \\ & 005-034 \sim 005-036 \end{aligned}$	
005-034	DADF Reg.Motor(Speed9)	-	ON for 50sec -> Auto OFF	0	$\begin{aligned} & 005-026 \sim 005-033 \\ & 005-035 \sim 005-036 \end{aligned}$	
005-036	DADF Reg.Motor(Reverse)	-	ON for 50sec -> Auto OFF	0	005-026~005-036	
005-072	Nip Release Solenoid	L	3 sec on	0	-	
005-083	Doc Ready	L	Turn ON the Doc Ready signal.	X	-	
005-084	Doc Set LED	L	Belt: Turn ON the DOC SET LED	X(Belt) O(DADF)	-	
005-088	Image Area	H	ON for 5sec	0	-	
005-090	Nudger initialize	-	Performs Nudger Roll initialization.	0	-	
062-002	IIT Exposure Lamp	L	Turn the Lamp ON for 180sec -> Auto OFF	0	-	Turn it OFF when Stop command is received before Auto OFF.
062-004	IPS Cooling Fan (Low speed)	L	Same as name	0	-	
062-005	IIT Scan Motor (Scan)	Each has 4 phases. H/L Switching	Move it 50 mm from current position in Scan direction -> Auto OFF	0	062-006	Stop command is not accepted before Auto OFF.
062-006	IIT Scan Motor (Return)	Each has 4 phases. H/L Switching	Move it 50 mm from current position in Return direction -> Auto OFF	0	062-005	Stop command is not accepted before Auto OFF.
062-014	IPS Cooling Fan (High speed)	H	Same as name	0	-	
062-015	Lamp Cooling Fan	H	Same as name	0	-	
062-017	CCD Cooling Fan	H	Same as name	0	-	
062-086	IIT Image Area	(Differential) H	IMAGE-AREA Signal Output	X	-	
062-091	Exchange To ADF	L	Turn ON the document exchange command signal to the DADF	X	-	

Table 5 Input Component Control Codes A-Finisher

Chain-Link	Name	Connector Level	Meaning	Remarks
012-110	Regi Clutch ON	Low	IOT Regi Clutch status	Clutch ON
012-111	IOT Exit SNR	High	IOT Exit SNR status (Hot Line)	Paper exists.
012-140	Ent SNR	High	Paper Detection by Ent SNR SNR	Paper exists.
012-150	Compile Exit SNR	High	Paper Detection by Compiler Exit SNR	Paper exists.
012-220	Front Tamper Home SNR	High	Detection of Front Tamper Position	Not Home (receiving light)
012-221	Rear Tamper Home SNR	High	Detection of Rear Tamper	Not Home (receiving light)
012-242	Low Staple SNR	High	Detection of staples in Stapler and of Staple Cartridge	No staples
012-243	Self Priming SNR	High	Detection of the status where Stapler Staple is ready	Not Ready
012-244	Staple Home SNR	High	Detection of Staple Head Position	Not Home
012-251	Set Clamp Home SNR	High	Detection of Set Clamp Position	Not Home (receiving light)
012-252	Eject Home SNR	High	Detection of Eject Belt Position	Not Home (receiving light)
012-267	Stack Height Sensor	Low	Detection of paper on Stacker Tray	Detects Stacker height.
012-278	Stack Sensor1	High	$\begin{aligned} & \text { Detection of Stacker Tray } \\ & \text { Position } \end{aligned}$	Shield exists.
012-279	Stack Sensor2	High	$\begin{aligned} & \text { Detection of Stacker Tray } \\ & \text { Position } \end{aligned}$	Shield exists.
012-300	Top Cover Interlock	High	Detection of Open/Closed Top Cover	Open
012-302	Finisher Front Door SW	High	Detection of Open/Closed Front Door	Open

Table 6 Output Component Control Codes A-Finisher

Table 6 Output Component Control Codes A-Finisher					
Chain-Link Name Connector Meaning Time Off	Multiple Output Prohibited Items				
$012-013$	Sub Paddle Solenoid ON/OFF	L: ON H: OFF	Sub Paddle rotation	660 ms	$012-014$

Table 6 Output Component Control Codes A-Finisher

Chain-Link	Name	Connector	Meaning	Time Off	Multiple Output Prohibited Items
012-014	Sub Paddle Rotation	$\begin{aligned} & \text { equal to 012-13 and 012- } \\ & 95 \end{aligned}$	Sub Paddle makes one rotation. (Rotates Transport Motor FORWARD at the same time as Sub Paddle Solenoid turns ON.)	Mot: 3162 Pulse Sol: 660ms	012-013 $012-095$ $012-096$ $012-097$
012-017	Set Clamp Motor ON/OFF	Pulse: ON H: OFF	Set Clamp Motor rotates forward.	250 pulses	012-061
012-020	Front Tamper Mot Low FRONT ON/OFF	$\begin{aligned} & \text { Pulse: ON } \\ & \text { H: OFF } \end{aligned}$	Front Tamper moves to Front at low speed.	100 pulses	$012-021$ $012-022$ $012-023$ $012-024$ $012-025$
012-021	Front Tamper Mot Middle FRONT ON/ OFF	Pulse: ON H: OFF	Front Tamper moves to Front at medium speed.	100 pulses	$012-020$ $012-022$ $012-023$ $012-024$ $012-025$
012-022	Front Tamper Mot High FRONT ON/OFF	Pulse: ON H: OFF	Front Tamper moves to Front at high speed.	100 pulses	$012-020$ $012-021$ $012-023$ $012-024$ $012-025$
012-023	Front Tamper Mot Low REAR ON/OFF	Pulse: ON H: OFF	Front Tamper moves to Rear at low speed.	100 pulses	$012-020$ $012-021$ $012-022$ $012-024$ $012-025$
012-024	Front Tamper Mot Middle REAR ON/OFF	$\begin{aligned} & \text { Pulse: ON } \\ & \text { H: OFF } \end{aligned}$	Front Tamper moves to Rear at medium speed.	100 pulses	$012-020$ $012-021$ $012-022$ $012-023$ $012-025$
012-025	Front Tamper Mot High REAR ON/OFF	Pulse: ON H: OFF	Front Tamper moves to Rear at high speed.	100 pulses	$012-020$ $012-021$ $012-022$ $012-023$ $012-024$
012-026	Rear Tamper Mot Low FRONT ON/OFF	$\begin{aligned} & \text { Pulse: ON } \\ & \text { H: OFF } \end{aligned}$	Rear Tamper moves to Front at low speed.	100 pulses	$012-027$ $012-028$ $012-029$ $012-030$ $012-031$

Table 6 Output Component Control Codes A-Finisher

Chain-Link	Name	Connector	Meaning	Time Off	Multiple Output Prohibited Items
012-027	Rear Tamper Mot Middle FRONT ON/ OFF	Pulse: ON H: OFF	Rear Tamper moves to Front at medium speed.	100 pulses	012-026 $012-028$ $012-029$ $012-030$ $012-031$
012-028	Rear Tamper Mot High FRONT ON/OFF	Pulse: ON H: OFF	Rear Tamper moves to Front at high speed.	100 pulses	$012-026$ $012-027$ $012-029$ $012-030$ $012-031$
012-029	Rear Tamper Mot Low REAR ON/OFF	$\begin{aligned} & \text { Pulse: ON } \\ & \text { H: OFF } \end{aligned}$	Rear Tamper moves to Rear at low speed.	100 pulses	$012-026$ $012-027$ $012-028$ $012-030$ $012-031$
012-030	Rear Tamper Mot Middle REAR ON/OFF	$\begin{aligned} & \text { Pulse: ON } \\ & \text { H: OFF } \end{aligned}$	Rear Tamper moves to Rear at medium speed.	100 pulses	$012-026$ $012-027$ $012-028$ $012-029$ $012-031$
012-031	Rear Tamper Mot High REAR ON/OFF	Pulse: ON H: OFF	Rear Tamper moves to Rear at high speed.	100 pulses	$012-026$ $012-027$ $012-028$ $012-029$ $012-030$
012-046	Staple Motor FORWARD ON/OFF	H: ON L: OFF	Staple MOT rotates forward.	Staple Home OFF then ON makes the motor stop. (a little longer when a failure occurs)	012-047
012-047	Staple Motor REVERSE ON/OFF	H: ON L: OFF	Staple MOT reverses.	180 ms	012-046
012-054	Eject Motor Low FORWARD ON/OFF	Pulse: ON H: OFF	Eject MOT rotates forward at low speed.	2000 pulses	$\begin{aligned} & 012-055 \\ & 012-056 \\ & 012-057 \end{aligned}$
012-055	Eject Motor High FORWARD ON/OFF	Pulse: ON H: OFF	Eject MOT rotates forward at high speed.	2000 pulses	$\begin{aligned} & 012-054 \\ & 012-056 \\ & 012-057 \end{aligned}$
012-056	Eject Motor Low REVERSE ON/OFF	Pulse: ON H: OFF	Eject MOT reverses at low speed.	2000 pulses	$\begin{aligned} & \hline 012-054 \\ & 012-055 \\ & 012-057 \end{aligned}$
012-057	Eject Motor High REVERSE ON/OFF	Pulse: ON H: OFF	Eject MOT reverses at high speed.	2000 pulses	$\begin{aligned} & \hline 012-054 \\ & 012-055 \\ & 012-056 \end{aligned}$
012-060	Stacker Motor UP ON/OFF	H: ON L: OFF	Stacker Tray goes up.	80ms	012-061
012-061	Stacker Motor DOWN ON/OFF	H: ON L: OFF	Stacker Tray goes down.	80ms	012-060

Table 6 Output Component Control Codes A-Finisher

Chain-Link	Name	Connector	Meaning	Time Off	Multiple Output Prohibited Items
012-095	Transport Motor Low ON/OFF	Pulse: ON H: OFF	Transport Mot rotates for- ward at low speed (equal to full IOT speed).	012-014 $012-096$ $012-097$	
$012-096$	Transport Motor Hi ON/OFF	Pulse: ON H: OFF	Transport Mot rotates for- ward at high speed (trans- port speed in Finisher).	012-014 $012-095$ $012-097$	
012-097	Transport Motor Half Speed ON/OFF	Pulse: ON H: OFF	Transport Mot rotates for- ward at half speed (equal to half IOT speed).	012-014 $012-095$ $012-096$	

Hard Disk Diagnostic Program

Purpose

NOTE: HDD initialization using the UI-Diagnostic is only for Partition A.

Procedure

1. Access Diagnostic Routines.
a. Enter UI Diagnostics (Entering UI Diagnostics in UI Diagnostic Mode).
b. Access Diagnostic Routines (Accessing Diagnostic Routines in UI Diagnostic Mode).
2. Select Sub System
3. Select Initialize Hard Disk and select Partition A
4. Press the Start button and select Yes.
5. When Partition A has been initialized is displayed, select Confirm.

NOTE: After the above procedure, Partition A will be initialized.

Test Pattern Print

Purpose

Prints the test patterns in the machine, to help identify Image Quality problems.

Procedure

1. Enter UI Diagnostic Mode.
2. Select Print Test Pattern.
3. Enter Pattern Number. Select a Test Pattern number from Table 1.
4. Select Paper Supply
5. Select Paper Tray.
6. Select Save.
7. Select Output Color.

Ensure that the Output Color is 4C.
8. Select Save.
9. Select Quantity.

Enter the number of print desired by pressing the Up/Down arrows.
10. Select $\mathbf{C i n} \%$. The higher the percentage, the darker the image will be.

NOTE: Choose 20% to 50% initially for good image visibility.
11. Press Start.

NOTE: If IOT Subsystem Fail occurs during Test Print, IOT and subsequent Diagnostics cannot be processed causing an error. Test Print cannot be canceled and the power must be turned Off/On (However, it is possible to exit Diagnostics).
If Not Ready states such as Device Error, Jam and No Paper are the cause of the error, Diagnostics can be processed and Test Print can be canceled.
As the MC competes with the contents of the instructions from the UI, the machine may print the specified test pattern or use the priority tray, or it may not print and send a message indicating that a conflict occurred.
The UI receives this message from the MC and displays a message indicating that an error occurred and printing is possible due to a conflict in the operation.
When a jam occurs, the machine stops processing (do not continue or process again). The Clear Jam screen appears and a message asking the user to clear the jam will be displayed on the UI.

Test Patterns

For details on the test pattern generation location and output path, see Table 1.
Table 1 Pattern Outline

No.	Pattern Name	Output Color and paper size available for this pattern	Built-in Image Sub
1	YCMK Grid Pat- tern	4C 11×17" paper	IOT
51	Grid Pattern	4C	IOT
52	Total Chart-MT-K1	4C	IOT
53	Process Control	4C	IOT

Table 1 Pattern Outline

No.	Pattern Name	Output Color and paper size available for this pattern	Built-in Image Sub
54	Process Control	4C	IOT
55	HT-Chart1-K2	4C	IOT
56	HT-Chart2-K2	4C	IOT
57	HT-Chart3-K2	4 C	IOT
58	K Grid Pattern	4C	IOT
59	HT Page	4C, 4C, K, Y, C, M, R, G, B Half Tone Density Set by Cin\%	IOT
60	HT stripe and ROS lines	4 C	IOT
61	Color Regi Chart Rev. 72	4 C	IOT
91	Process Control	4 C	IOT

NOTE: •(*1): Displays 294mmx17inch (A3 breadth x Ledger length) (means that A3 and Ledger are both supported sizes)

- Prints only from the specified tray. (ATS and APS are not processed.)
- If there was an invalid print specification in 1, an error occurs
- Prints in the paper size of the selected tray. (Print areas outside the paper size will not be printed)
- If the Finisher is installed, No Paper Run cannot be processed. No Paper Run is controlled by dummy $8.5 \times 11 L E F$ timing regardless of whether there is paper or paper size.
- If IOT Built-in PG is specified, 2 Sided (Dup) is prohibited when specifying MSI.
(*1):Length is longer than A4 length and breadth is longer than Letter breadth.

Webpage Administrator Password

Required to change settings on machine.
User Name: (five one's) 11111
Password: x-admin

Center Tray Offsetting

This procedure enables offsetting in Center Tray.

Procedure

Customer can perform following steps if system admin is accessible with code (five one's) 11111, or code is available.

1. Press the Log In / Out Button on the Control Panel and enter (five one's) 11111 using the number keypad and select Confirm.
2. Select System Settings.
3. Select System Settings again.
4. Select Common Settings.
5. Select Other Settings.
6. Select Offset Stacking and select Change Setting.
7. Select Offset per Set.
8. Select Save.
9. Select Close
10. Select Close again.
11. Select Close again.
12. Select Exit. Power off and on if the setting is not active.

E-Mail Icon

This procedure restores E-Mail icon in display on machines with this capability.

Procedure

Customer can perform following steps if system admin is accessible with code (five one's) 11111, or code is available.

1. Press the Log In / Out Button on the Control Panel and enter (five one's) 11111 using the number keypad and select Confirm.
2. Select System Settings.
3. Select System Settings again.
4. Select Network Settings.
5. Select Port Settings.
6. Select down arrow and scroll to Send E-mail.
7. Select Send E-mail and select Change Setting, twice.
8. Select Enabled and select Save.
9. Select Close.
10. Select Close again.
11. Select Close again.
12. Select Close again.
13. Select Exit. Power off and on if the setting is not active.

FAX Output Separation

This procedure provides a method for customer to easily identify FAX output.

Procedure

If colored paper is available, load colored paper in Tray 1 SEF.
NOTE: FAX and FAX reports are printed on SEF by default.
To prevent the machine from feeding Short Edge Paper (Color), when copying Short Edge Documents (on Platen Glass or DADF) set the Tray 1 Paper Attributes as'Custom1' and Paper Type Priority as' Second'.

Customer can perform following steps if system admin is accessible with code (five one's) 11111, or code is available.

1. Press the Log In / Out Button on the Control Panel and enter (five one's) 11111 using the number keypad and select Confirm.
2. Select System Settings.
3. Select System Settings again.
4. Select Common Settings.
5. Select Paper Tray Attributes.
6. Select Paper Type Priority.
7. Select Custom Paper 1.
8. Select Change Setting and select Second.
9. Select Save.
10. Select Close.
11. Select Paper Type.
12. Select 1. Tray 1 and select Change Settings.
13. Select Custom 1.
14. Select Save.
15. Select Close
16. Select Close again.
17. Select Close again.
18. Select Close again.
19. Select Exit. Power off and on if the setting is not active.

GP 1 Intermittent Problem RAP

The purpose of this RAP is to provide guidance for resolving an intermittent problem. This is not an exact procedure, but a set of recommended actions that use the resources of the service manual to help locate the cause of an intermittent problem.

Procedure

1. Check the service log. Recent service actions may provide information about the problem. For example, a component that was recently replaced to correct another problem may be the cause of the new intermittent problem.
2. Run the machine in a mode that vigorously exercises the function that is suspected. The machine may fail more frequently or may fail completely under these conditions. Look for signs of failure or abnormal operation.
An intermittent problem can usually be associated with a RAP, since when it does fail, it results in a fault code, a jam code, or some other observable symptom.
3. Using the RAP that is associated with the symptom of the intermittent problem, examine all of the components that are referenced in the RAP. Look for:

- Contamination, such as a feed roller that has a build up of dirt or toner
- Wear, such as gear teeth that are rounded or have excessive backlash
- HFSI, even if they are not near or have not exceeded the SPEC LIFE or COPY COUNT value
- Wires chafing against components of the machine, especially against moving components
- Misaligned, mis-adjusted, or incorrectly installed components
- Slow or slipping clutches; slow or binding solenoids
- Damaged components
- Excessive heat, or symptoms of excessive heat, such as the discoloration of a component
- Loose cables or wires

4. Using the RAP that is associated with the symptom of the intermittent problem, perform all of the adjustments for the components or functions that are referenced in the RAP. Check to ensure that the adjustment can be made and that there is an adequate range of adjustment, and that it can be set to or near the nominal value. Any abnormality that is observed may be an indication of the cause of the problem. For example, a component can be adjusted to the nominal value, but it is at the limit of the adjustment range. This is not normal and may be an indication of the cause of the problem.
5. Operate all of the components in the appropriate RAP that is associated with the symptom of the intermittent problem with Component Control. Observe the components for any symptoms of abnormal operation, such as a hesitation, or an unusual sound.
6. Check that the AC and DC power are within specifications.
7. Get technical advice or assistance where appropriate. This will depend upon the situation and the established local procedures.
8. Examine the components that are not in the RAP, but are associated with the function that is failing. Refer to the BSDs. Look for:

- Contamination, such as a feed roller that has a build up of dirt or toner
- Wear, such as gear teeth that are rounded or have excessive backlash
- HFSI, even if they are not near or have not exceeded the SPEC LIFE or COPY COUNT value
- Wires chafing against components of the machine, especially against moving components
- Misaligned, mis-adjusted, or incorrectly installed components
- Slow or slipping clutches; slow or binding solenoids
- Damaged components
- Excessive heat, or symptoms of excessive heat, such as the discoloration of a component
- Loose cables or wires

9. Perform the adjustments for the components that are not in the RAP, but are associated with the function that is failing. Refer to the BSDs. Check to ensure that the adjustment CAN BE MADE and that there is an adequate range of adjustment, and that it can be set to or near the nominal value. Any abnormality that is observed may be an indication of the cause of the problem. For example, a component can be adjusted to the nominal value, but it is at the limit of the adjustment range. This is not normal and may be an indication of the cause of the problem
10. Operate all of the components that are not in the RAP, but are associated with the function that is failing with Component Control. Refer to the BSDs. Observe the components for any symptoms of abnormal operation, such as a hesitation, or an unusual sound.
11. Replace any components or consumable that are known to be a frequent cause of the problem. When doing this, consider the cost and time required. If the suspected item is inexpensive, can be installed quickly, and has a high probability of resolving the problem, then it is reasonable to replace it.
12. Leave an accurate and detailed record of your actions in the service log. Describe what you have observed, what actions you took, and what else needs to be done.

GP 2 Fax Diagnostics

Purpose

This procedure describes the process for running fax diagnostic tests found in UI Diagnostic Mode.

Procedure

To Access Fax Diagnostics:

1. Enter UI Diagnostic Mode.
2. Press the Log In/Out button on the Control Panel
3. On the display, select System Settings, then Common Settings, then Maintenance/ Diagnostics.
4. Select Sub System.
5. Select Fax Diagnostics.

There are two tests for Fax Diagnostics, the Signal Sending Test and the Relay On/Off Test

Signal Sending Test

This test checks the ability of the Fax system to generate and transmit a specific signal.
To run this test:

1. From the Fax Diagnostics screen, select Signal Sending Test.
2. Select the line number you wish to test (standard line is $\mathbf{1}$. Lines $\mathbf{3}$ and $\mathbf{5}$ are for optional additional lines, $\mathbf{0}, \mathbf{2}$, and $\mathbf{4}$ are for FX use only).
3. Enter the Signal Number you wish to test and select Send Signals. Refer to Table 1 for the list of signal numbers.
4. An audio tone or tones corresponding to the selected signal should be heard. This verifies communication from the UI to the ESS PWB, and demonstrates the ability of the system to generate the specific signal being tested.
If an error occurs, a Fault Code will be displayed.
5. To stop the test, select Cancel Sending.

Relay On/Off Test

This test turns on/off various relays that are used in the NCU.
To run this test:

1. From the Fax Diagnostics screen, select Relay On/Off Test.
2. Select the Line Number and select Relay On

If an error occurs, a Fault Code will be displayed. Listen for the Relay to pick up the Line.
3. To stop the test, select Relay Off.

Table 1 Fax Diagnostic signal numbers

Signal No.	Output	Description
011	Tonal Signal Output	462 Hz
012	Tonal Signal Output	1080 Hz
013	Tonal Signal Output	1100 Hz
014	Tonal Signal Output	1300 Hz

Table 1 Fax Diagnostic signal numbers

Signal No.	Output	Description
015	Tonal Signal Output	1650 Hz
016	Tonal Signal Output	1850 Hz
017	Tonal Signal Output	2100 Hz
019	DTMF Signal Output	Dual Tone 1
020	DTMF Signal Output	Dual Tone 2
021	DTMF Signal Output	Dual Tone 3
022	DTMF Signal Output	Dual Tone 4
023	DTMF Signal Output	Dual Tone 5
024	DTMF Signal Output	Dual Tone 6
025	DTMF Signal Output	Dual Tone 7
026	DTMF Signal Output	Dual Tone 8
027	DTMF Signal Output	Dual Tone 9
028	DTMF Signal Output	Dual Tone 0
029	DTMF Signal Output	Dual Tone *
030	DTMF Signal Output	Dual Tone \#
031	DTMF Signal Output	Dual Tone A
032	DTMF Signal Output	Dual Tone B
033	DTMF Signal Output	Dual Tone C
034	DTMF Signal Output	Dual Tone D
035	V. 21 (H) Signal Output	HDLC Flag
036	V.27ter Signal Output	2400 bps (HDLC Flag)
037	V.27ter Signal Output	4800 bps (HDLC Flag)
038	V. 29 Signal Output	7200 bps (HDLC Flag)
039	V. 29 Signal Output	9600 bps (HDLC Flag)
040	V. 17 Signal Output	7200 bps (HDLC Flag)
041	V. 17 Signal Output	9600 bps (HDLC Flag)
042	V. 17 Signal Output	12000 bps (HDLC Flag)
043	V. 17 Signal Output	14400 bps (HDLC Flag)
080	V. 8 Signal Output	ANSam
081	V. 8 Signal Output	CM
082	V. 8 Signal Output	JM
083	V. 8 Signal Output	INFOc
084	V. 8 Signal Output	INFOa
085	V. 8 Signal Output	PPh+ALT
096	V. 34 Signal Output	2400/2400 (HDLC Flag)
097	V. 34 Signal Output	4800/2400 (HDLC Flag)
098	V. 34 Signal Output	7200/2400 (HDLC Flag)
099	V. 34 Signal Output	9600/2400 (HDLC Flag)
100	V. 34 Signal Output	12000/2400 (HDLC Flag)
101	V. 34 Signal Output	14400/2400 (HDLC Flag)
102	V. 34 Signal Output	16800/2400 (HDLC Flag)

General procedures information
 GP 2

Table 1 Fax Diagnostic signal numbers		
Signal No.	Output	Description
103	V.34 Signal Output	$19200 / 2400$ (HDLC Flag)
104	V.34 Signal Output	$21600 / 2400$ (HDLC Flag)
106	V.34 Signal Output	$4800 / 2743$ (HDLC Flag)
107	V.34 Signal Output	$7200 / 2743$ (HDLC Flag)
108	V.34 Signal Output	$9600 / 2743$ (HDLC Flag)
109	V.34 Signal Output	$12000 / 2743$ (HDLC Flag)
110	V.34 Signal Output	$14400 / 2743$ (HDLC Flag)
111	V.34 Signal Output	$16800 / 2743$ (HDLC Flag)
112	V.34 Signal Output	$19200 / 2743$ (HDLC Flag)
113	V.34 Signal Output	$21600 / 2743$ (HDLC Flag)
114	V.34 Signal Output	$24000 / 2743$ (HDLC Flag)
117	V.34 Signal Output	$4800 / 3000$ (HDLC Flag)
118	V.34 Signal Output	$7200 / 3000$ (HDLC Flag)
119	V.34 Signal Output	$9600 / 3000$ (HDLC Flag)
120	V.34 Signal Output	$12000 / 3000$ (HDLC Flag)
121	V.34 Signal Output	$14400 / 3000$ (HDLC Flag)
122	V.34 Signal Output	$16800 / 3000$ (HDLC Flag)
123	V.34 Signal Output	$19200 / 3000$ (HDLC Flag)
124	V.34 Signal Output	$21600 / 3000$ (HDLC Flag)
125	V.34 Signal Output	$24000 / 3000$ (HDLC Flag)
126	V.34 Signal Output	$26400 / 3000$ (HDLC Flag)
127	V.34 Signal Output	$28800 / 3000$ (HDLC Flag)
129	V.34 Signal Output	$4800 / 3200$ (HDLC Flag)
130	V.34 Signal Output	$7200 / 3200$ (HDLC Flag)
131	V.34 Signal Output	$9600 / 3200$ (HDLC Flag)
132	V.34 Signal Output	$12000 / 3200$ (HDLC Flag)
133	V.34 Signal Output	$14400 / 3200$ (HDLC Flag)
134	V.34 Signal Output	$16800 / 3200$ (HDLC Flag)
135	V.34 Signal Output	$19200 / 3200$ (HDLC Flag)
136	V.34 Signal Output	$21600 / 3200$ (HDLC Flag)
137	V.34 Signal Output	$24000 / 3200$ (HDLC Flag)
138	V.34 Signal Output	$26400 / 3200$ (HDLC Flag)
139	V.34 Signal Output	$28800 / 3200$ (HDLC Flag)
140	V.34 Signal Output	$31200 / 3200$ (HDLC Flag)
142	V.34 Signal Output	$4800 / 3429$ (HDLC Flag)
143	V.34 Signal Output	$7200 / 3429$ (HDLC Flag)
144	V.34 Signal Output	$9600 / 3429$ (HDLC Flag)
145	V.34 Signal Output	$12000 / 3429$ (HDLC Flag)
146	V.34 Signal Output	$14400 / 3429$ (HDLC Flag)
147	V.34 Signal Output	$16800 / 3429$ (HDLC Flag)
148	V.34 Signal Output	$19200 / 3429$ (HDLC Flag)

Table 1 Fax Diagnostic signal numbers

Signal No.	Output	Description
149	V.34 Signal Output	$21600 / 3429$ (HDLC Flag)
150	V.34 Signal Output	$24000 / 3429$ (HDLC Flag)
151	V.34 Signal Output	$26400 / 3429$ (HDLC Flag)
152	V.34 Signal Output	$28800 / 3429$ (HDLC Flag)
153	V.34 Signal Output	$31200 / 3429$ (HDLC Fag)
154	V.34 Signal Output	$33600 / 3429$ (HDLC Flag)
160	DTMF Signal Output	Signal Tone 697Hz
161	DTMF Signal Output	Signal Tone 770 Hz
162	DTMF Signal Output	Signal Tone 852 Hz
163	DTMF Signal Output	Signal Tone 941 Hz
164	DTMF Signal Output	Signal Tone 1209 Hz
165	DTMF Signal Output	Signal Tone 1336 Hz
166	DTMF Signal Output	Signal Tone 1477 Hz
167	DTMF Signal Output	Signal Tone 1633 Hz

GP 3 Resetting the Administrator Password

Purpose

The purpose of this procedure is to allow the CSE to recover the Administrator Password in sit uations where the customer has changed the password from the default value, and subsequently lost or forgotten the password.

Procedure

1. Enter UI Diagnostic Mode.
2. Press the Log In/Out button on the Control Panel
3. Select System Settings.
4. Select Common Settings.
5. Select Diagnostics / Maintance.
6. Select NVM Read/Write.
7. Enter location 700-171 and press Confirm/Change. This is the current password. You can provide this number to the customer, or set the location to the default value five one's (11111) and allow the customer to enter a new number from Tools mode.

GP 4 Replacing Billing PWBs

Purpose

This procedure is used to maintain serial number, product number, and billing data integrity when PWBs with billing data must be replaced.

Procedure

PART 1

1. Gather the NVM information.
a. Service log settings
b. Factory settings
2. Document the Settings in Access Mode.

NOTE: These are the customer settings that should be reinstalled at the end of this procedure.
3. Do a Save and Restore (GP 9) with the PWS Tool.
4. Replace the PWB in question and return to this procedure.

PART 2

CAUTION

To maintain the integrity of the serial number and billing data never replace all of the PWBs at once. If any of the following billing data PWBs needs replacing, replace them ONE AT A TIME and perform this procedure after each one is replaced:

- ESS PWB.
- MCU PWB.

Ensure that the correct version of software is installed on the PWBs before and after PWB replacement. Print the System Settings List (GP 5), and compare the ROM values to the table in the software installation instructions on the current software upgrade CD.

1. Enter UI Diagnostic Mode.
2. Press the Log In/Out button on the Control Panel
3. Select System Settings.
4. Select Common Settings.
5. Select Maintenance/Diagnostics.
6. Select Adjustment/Others.
7. Select Machine ID/Billing Data.
8. Select the PWB that has not been replaced.
9. Press the Start button.

CAUTION

Perform GP 4 Part 2 after each PWB is replaced. To maintain the integrity of the serial number and billing data never replace all of the PWBs at once. Replacing all PWBs at once will cause unrecoverable NVM corruption. If a PWB needs replacing, only replace ONE AT A TIME and perform this procedure after each one is replaced. If the problem is not resolved, reinstall the original PWB and re-enter the serial number (if necessary) before attempting to replace a different PWB.
10. Check that all Serial Numbers match each PWB listed and is a match to the data plate.
11. Check that all Billing Data match each PWB listed.
12. Check that the Product Number match each PWB listed.
13. If any PWB will not synchronize, replace that PWB and re-synchronize.
14. Restore all Service Log Settings, Factory Settings and Customer Settings (GP 9)

GP 5 Printing Reports

Description

This procedure describes how to print reports.

Procedure

Refer to types of reports below

System Settings List

Printing the System Settings List (Configuration Report) without entering Diagnostics Mode.
NOTE: Other report titles are also listed for your information
NOTE: If paper size errors occur when attempting to print reports, check that NVM location 700-397 is set for the appropriate paper size (44 = 8.5×11 in.; $5=$ A4) (refer to NVM Read/ Write).

1. Press the Machine Status button on the Control Panel.
2. Select Billing Meter/Print Report tab on the display.
3. Select Print Report/List.
4. Select the following tabs to print the selected reports.

- Job Status/Activity Report
- Job History Report
- Activity Report
- Error History Report
- Stored Documents List
- Scan Mode Settings
- Settings List
- Job Template List
- Address Book
- Copy Mode Settings
- Settings List-Common Items
- FAX Mode Settings
- Settings Lis
- Address Book
- Comments List
- Print Mode Settings
- \quad Settings List-Common Items (will be selected in next step)
- PCL Settings List
- PCL Form List
- PDF Settings List
- TIFF Settings List
- TIFF Logical Printers List
- PS Logical Printers List
- Fonts List
- PostScript Fonts List

5. Select Settings List-Common Items.
6. Press the Start button

Other Reports

The following reports can be printed from the UI Diagnostic Mode:

1. Enter the Diagnostic Mode (Entering UI Diagnostics).
2. Press the Machine Status button on the Control Panel.
3. Select the Billing Meter/Print Reports tab on the display.
4. Select the Print Reports/List button.
5. Select the scroll down arrow.
6. Select the CE button.
7. The following reports can be printed.
a. Debug Log Report
b. HFSI Report
c. Jam Report
d. Shutdown Report
e. Failure Report
f. Protocol Monitor Report
8. Select the requested log button and press the Start button. The selected log will be printed.

GP 6 Special Boot Modes

Purpose

This procedure describes methods of recovering from certain uncertain faults.

Procedure

Some boot-up failures, as well as some uncertain fault codes, may be caused by software corruption, or by structural flaws in a command sent to the machine. In these cases, it is sometimes possible to bypass or delete the offending code during the startup process.

CAUTION

There are four special boot modes. Each mode performs a different set of initializations to bypass a specific set of problems. There is information lost in each procedure, thus, they should not be used unless specific directions are given. The following list gives these procedures, in the order from least-invasive to most-invasive. If you are instructed to perform a specific initialization, perform only that procedure. If you are asked to perform the entire series, perform the steps in the order given, until the problem is resolved.

Log Initialization

This step will delete any print or copy job that is in process, and then perform a reboot.
To execute: Simultaneously press and hold the 1, the Stop, and the Power Save buttons on the Control Panel while switching on the power. Hold the buttons down until the boot up screen appears and the second segment of the progress bar appears.

Spool Initialization

This step will delete all pending print or copy jobs in the job queue, and then perform a reboot.
To execute: Simultaneously press and hold the 6, the Stop, and the Power Save buttons on the Control Panel while switching on the power. Hold the buttons down until the boot up screen appears and the second segment of the progress bar appears.

HDD Initialization

This step will delete all pending print or copy jobs in the IOT job queue, initializes the IOT HDD, and will and then perform a reboot. All customer data on the HDD will be deleted.

To execute: Simultaneously press and hold the 4, the Stop, and the Power Save buttons on the Control Panel while switching on the power. Hold the buttons down until the boot up screen appears and the second segment of the progress bar appears.

ESS NVM Initialization

CAUTION

This routine will set all IOT ESS NVM values to default. Do not attempt this procedure unless there is a usable Machine Settings floppy, an accurate Configuration Report and/or other data that will enable you to reload the correct NVM values for this machine.
This step will initialize the IOT ESS NVM (SYS-System and SYS-User) and then perform a reboot

To execute: Simultaneously press and hold the 3, the Stop, and the Power Save buttons on the Control Panel while switching on the power. Hold the buttons down until the boot up screen appears and the second segment of the progress bar appears.

GP 7 Country Code Setting

Purpose

To input country code.

Procedure

1. Access Diagnostic Routines.
a. Enter UI Diagnostic Mode.
2. Select NVM Read Write.
3. Perform NVM Read/Write on Chain Link 700-165.

0 : No customer setting (default)
1: Customer setting for other than North America.
2: Customer setting for North America.
4. Select Close and Exit.

Change country code at Customer site.

1. Enter System Administrator mode.
a. Press Log In/Out button on Control Panel.
b. Enter (five one's) 11111.
2. Select System Setting $->$ Common Settings $->$ Other Settings.
3. In the menu, 15. Country to be selected.

This menu shall appear only when Chain-Link 700-840 is set to 1 or 2.
4. Select Change Settings.
5. Country menu appears.
6. Select the country.
7. Select Save.
8. Select Close 3 times and Exit.

GP 8 Firmware Version

Description

This procedure describes how to determine firmware version of machine subsystems that are administered by Firmware Version designations.

Procedure

Firmware Version of Controller+PS ROM, IOT ROM, Finisher ROM, IIT ROM, ADF ROM, and FAX ROM

NOTE: If paper size errors occur when attempting to print reports, check that NVM location $700-397$ is set for the appropriate paper size ($44=8.5 \times 11$ in.; $5=$ A4) (refer to NVM Read/ Write).

1. Press the Machine Status button on the Control Panel.
2. Select Billing Meter/Print Report tab on the display.
3. Select Print Report/List.
4. Select Print Mode Settings.
5. Select Settings List-Common Items.
6. Press the Start button.

NOTE: Page 1 of the report will list Firmware Version of Controller+PS ROM, IOT ROM, Finisher ROM, IIT ROM, ADF ROM, and FAX ROM

Firmware Version of Duplex, and TTM/2TM

NOTE: Obtaining the Firmware Level for the Duplex Module, and the TTM (Tandem Tray Module)/ 2TM (2 Tray Module) requires reading two NVM locations, adding a decimal point behind the first read, adding a leading zero if the second read is a single digit, and combining the second read behind the decimal point to formulate a Firmware Level.

1. Enter UI Diagnostic Mode.
2. Select Maintenance/Diagnostics.
3. Select NVM Read/Write.
4. To check Duplex go to step 5 .

To check TTM/2TM go to 6 .
5. Perform following to check Duplex.
a. Enter 742-227 using number keypad and select Confirm/Change.
b. Record the Current Value. Place a decimal point after the value.
c. Select Cancel.
d. Enter 742-228 using number keypad and select Confirm/Change.
e. Record the Current Value. If Current Value is a single digit, add a leading zero and record behind decimal from first read. This is the Duplex Firmware Version.
f. Select Cancel as required to exit or proceed to next step.
6. Perform following to check TTM/2TM.
a. Enter 742-229 using number keypad and select Confirm/Change.
b. Record the Current Value. Place a decimal point after the value.
c. Select Cancel.
d. Enter 742-230 using number keypad and select Confirm/Change.
e. Record the Current Value. If Current Value is a single digit, add a leading zero and record behind decimal from first read. This is the Duplex Firmware Version.
f. Select Cancel as required to exit.

GP 9 Save and Restore

Description

The purpose of this procedure is to use the Save and Restore Tool to Save and Restore NVM values.

Procedure

Save Machine Settings

1. Remove the cover from the USB Diagnostic port (Figure 1).
2. Connect the USB cable to the IOT USB Diagnostic port (on the ESS Controller) and to the PWS laptop.
3. Close all applications, including virus scan and Bus Station.
4. Insert a blank formatted floppy (storage media) in your floppy drive.
5. Ensure that the machine is in the ready to copy mode.
6. On the PWS laptop, select Start / Programs / Xerox Applications / PWS Diagnostic Tools / Xerox Workcentre 7132 PWS Diagnostics Tool.
7. Select Enter Diagnostics.
8. Select dC351.
9. Select the All radio button, then Save Machine Settings.
10. When Save is complete, then Close Diagnostic Tool by selecting File then Exit.
11. When Save As dialog box opens, save file to default location (C:\Xerox \backslash PWS Diagnostic Tool \Data \WC_7132 \Backup).

Restore Machine Settings

1. When the machine is Ready to Copy, select Start / Programs / Xerox Applications / PWS Diagnostic Tools / Xerox Workcentre 7132 PWS Diagnostics Tool.
2. Check Use Saved Database box.
3. Select Enter Diagnostics.
4. Select the File that was saved when the NVM's were saved, then select Open.
5. Select dC351.
6. Select the All radio button then Restore Machine Settings.
7. Select Yes when the dC351 Restore Conform Dialog box opens.
8. When Restore is complete, then close Diagnostic Tool by selecting File then Exit.
9. Select Cancel when Save As dialog box opens.

GP 10 Loading And Upgrading Software

Description

This procedure enables updating the machine software (ESS, FAX, IISS, IOT) or when rein stallation of the software is required due to a failure. The WC 7132 PWS Diagnostic tool for software download comes with the system software disc.

CAUTION

This procedure is generic in nature and is intended as an overview only. Always follow the instructions that come with the software. There may be additional steps added, or other special requirements that vary from version to version.

Procedure

1. Using the instructions on the pull out sheet that comes with the system software disc, load the WC 7132 software download tool on you PWS.
2. Make a copy of the color test pattern 82E13120 and check for Image Quality problems Resolve any problems before performing the software loading.
3. Print a copy of the Systems Settings List.
4. Switch off the WC 7132.
5. Disconnect the RJ45 Network Connector to the customer's network.
6. Connect the PWS to the USB 1.1 port on the WC 7132.

7. Switch on the WC 7132.
8. The Found New Hardware wizard will appear. It will ask to install the Fuji Xerox PWS USB Interface Driver for 2nd Generation. Select Install the Software Automatically and select Next. Follow the prompts to complete the driver installation.
9. Go to Product Tools and start the WC 7132 PWS Diagnostic Tool.

NOTE: The actual instructions that accompany the software may have additional steps here, such as a list of NVM values that need to be recorded.
10. When the tool is connected, select Enter Diagnostics.
11. Select dC 351, ensure that the All button is selected
12. Select Save Machine Settings. When the upload is complete select File and Exit the Diagnostics Tool. When prompted, save the Machine Data file
13. Switch off the WC 7132.
14. Switch on the power while pressing the Power Saver switch. Download Mode will be displayed on the UI.
NOTE: A new hardware wizard may appear and you will be asked to install the Fuji Xerox Firmware Download Device on your PWS. Select Cancel.
15. Start the WC 7132 PWS Diagnostic Tool. When connected select Enter Software Download.

NOTE: The actual instructions will list the files that need to be selected.
Generally the Add all 1 File selection is used when upgrading to a newer version of the software. Use the Add All 1 File (Postscript) selection if a PostScript module is installed.
NOTE: The presence of the PostScript module can be verified from the System Settings List under Software Version. If the statement "Controller+PS ROM" appears, the PostScript module is installed. Alternatively you can remove the ESS cover and verify if a PostScript module is installed on the Printer PWB.
If there is no PostScript module, used the Add All 1 File (Standard)
If reinstalling software at the same version, use individual files as the Add All 1 File option as this will not overwrite a file of the same version.
16. Select the appropriate file(s) for download.
17. Select Start Download... the screen will display Processing (Load time is approximately 15 minutes).
18. When the download is completed, the machine will reboot. Exit the PWS tool.

Perform any additional steps or procedures per the actual instructions that accompany the software.
19. Print a new copy of the System Settings List and verify that the software has been upgraded or reloaded to the correct version.
20. Reconnect the customer's network to the RJ45 port on the WorkCentre 7132.

GP 11Software Option Installation and Removal

Description

This procedure provides the steps necessary for installing one or more of the following Software Options:

- Email
- Network Scanning
- Internet Fax
- Data Security
- Network Accounting

This procedure also provides the steps necessary for verifying or determining what Software Options are installed in a machine as well as the procedure for removing all of the installed Software Options all at once.

Install Software Options:

NOTE: The Internet Fax option requires the 1 Line Fax kit or the 3 Line Fax kit be installed before it can be installed. The Email and Network Scanning options do not require any additional kits or hardware.

1. Switch the machine on.
2. Press the <Log In 1 Out> button on the machine Control Panel.
3. Enter the User ID on the numeric keypad on the Control Panel or the keyboard screen, then select [Confirm]

NOTE: The default Key Operator ID is (five one's) 11111. If the Auditron feature is enabled, you may be required to enter the Key Operator ID and the password. The default password is x-admin (lower case letters).
4. Select [System Settings] on the [System Administration menu] screen.
5. Select [System Settings] on the [System Settings] screen.
6. Select [Common Settings] on the [System Settings] screen.
7. Select [Maintenance] on the [Common Settings] screen.
8. Select [Software Options] on the [Maintenance] screen.
9. Select [Keyboard], then type in the Password for the Software Option that is being installed and select [Save].
NOTE: The Password can be found inside the front cover of the Software Option booklet(s) that are provided to the customer at machine install based on the Software Options that the customer purchased.
NOTE: The Password must be typed into the machine exactly as it appears in the booklet. The Password may contain upper and lower case letters, numbers and characters such as dashes or stars.

NOTE: If the customer purchased more than one Software Option, then each of the Passwords can be typed in and saved individually prior to rebooting the machine.
10. Select [Reboot] once all of the Passwords have been typed in.
11. Use the procedure "Determine what Software Options are installed:" to confirm that the Software Options have been installed.

Determine what Software Options are installed:

1. Press the <Log In\Out> button on the machine Control Panel.
2. Enter the correct User ID using the numeric keypad on the Control Panel or the keyboard screen, then select [Confirm].

NOTE: The default Key Operator ID is (five one's) 11111. If the Auditron feature is enabled, you may be required to enter the Key Operator ID and the password. The default password is x-admin (lower case letters).
3. Select [System Settings] on the [System Administration menu] screen.
4. Select [System Settings] on the [System Settings] screen.
5. Select [Common Settings] on the [System Settings] screen.
6. Select [Screen/Button Settings] on the [Common Settings] screen.
7. Select [All Services], then select [Change Settings] on the [Screen/Button Settings] screen.
8. Select one of the buttons labeled [Not Set] and the list of installed Software Options will be displayed.
NOTE: It may be necessary to scroll to the next screen by selecting the Down Arrow button to find a button labeled [Not Set].
NOTE: The default items that will be listed if no Software Options have been installed are: Copy, Check Mailbox and Stored Programming. The Fax option will also be listed if the Fax hardware kit is installed.
9. Select [Cancel], then select [Close] several times and then select [Exit] to exit out of Tools mode.

NOTE: If $x x x$ is installed, then $x x x$ is also installed, but does not show on the display.

Uninstall Software Options:

NOTE: This procedure will uninstall all Software Options at once; there is no way to select specific Software Options to uninstall.
NOTE: Be sure that the Software Option booklet(s) are available because if any of the uninstalled Software Options need to be reinstalled, the Passwords located in the booklets will be required.

1. Press the <Log In\Out> button on the machine Control Panel.
2. Enter the correct User ID using the numeric keypad on the Control Panel or the keyboard screen, then select [Confirm]

NOTE: The default Key Operator ID is (five one's) 11111. If the Auditron feature is enabled, you may be required to enter the Key Operator ID and the password. The default password is x-admin (lower case letters).
3. Select [System Settings] on the [System Administration menu] screen.
4. Select [System Settings] on the [System Settings] screen.
5. Select [Common Settings] on the [System Settings] screen.
6. Select [Maintenance] on the [Common Settings] screen.
7. Select [Software Options] on the [Maintenance] screen.
8. Select [Keyboard], then type in ClearAllFlag (all one word and case sensitive) and select [Save].
9. Select [Reboot] to reboot the machine.
10. Use the procedure "Determine what Software Options are installed:" to confirm that the Software Options have been uninstalled.

NOTE: The default items that will be listed when all Software Options have been removed are: Copy, Check Mailbox and Stored Programming. The option Fax will also be listed if the Fax hardware is installed.
11. Use the procedure "Uninstall Software Options:" to reinstall the Software Options that the customer has purchased.

Elan Boot Sequence

Figure 1 Elan Boot Sequence

GP 13 Network Scanning Template Removal and Repository Reset Procedure

Procedure

This procedure provides the steps necessary for removing Network Scanning Templates from a machine when all other removal methods were unsuccessful.

Network Scanning Template Removal:

NOTE: The following procedure will remove all displayed Network Scanning Templates as well as any Fonts, Forms and Logos that the customer may have downloaded to the machine. Inform the customer of this prior to proceeding with this procedure.

1. Switch the machine on.
2. Press the <Log In\Out> button on the machine Control Panel.
3. Enter the correct User ID using the numeric keypad on the Control Panel or the keyboard screen, then select [Confirm].

NOTE: The default Key Operator ID is (five one's) 11111. If the Auditron feature is enabled, you may be required to enter the Key Operator ID and the password. The default password is x-admin (lower case letters).
4. Select [System Settings] on the [System Administration menu] screen.
5. Select [System Settings] on the [System Settings] screen.
6. Select [Common Settings] on the [System Settings] screen.
7. Select [Maintenance] on the [Common Settings] screen.
8. Select [Initialize Hard Disk] on the [Maintenance] screen
9. Select [Partition A], then select [Start], then select [Yes] to confirm that you want to perform this operation.
10. Select [Confirm] once the procedure has completed.
11. Select [Close] several times, then select [Exit]. The machine will reboot automatically.

Network Scanning Repository Reset Procedure:

NOTE: This procedure will reset all 5 Network Scanning Repositories to factory defaults. As a result, all Templates that utilize the Repositories will no longer function.

NOTE: NOTE: This procedure will also delete the following settings:

- *
- *
-
- *

1. Switch the machine on.
2. Enter UI Diagnostic Mode. The Touch screen background should turn black.
3. Press the <Log In/Out> button.
4. Select [System Settings] on the [System Administration menu] screen.
5. Select [Common Settings] on the [System Settings] screen.
6. Select [Maintenance / Diagnostics] on the [Common Settings] screen.
7. Select [Initialize NVM] on the [Maintenance] screen.
8. Select [Sys_SYSTEM], then select [Start], then select [Yes] to confirm that you want to perform this operation.
9. Select [Confirm] once the procedure has completed.
10. Select [Exit (Keep Log)] then select [Yes] to confirm your choice.
11. Select [Close] several times, then select [Exit]. The machine will reboot automatically

GP 14 Setup and Scan to PWS

Procedure

This procedure is intended to provide instructions for setting up the PWS and WC 7132 to enable scanning to the PWS. Once the PWS is configured, it can be used as a tool to confirm that a WC 7132 can scan and deliver a file via a network connection. Future attempts to verify scanning to the PWS can be done by configuring the PWS to Obtain an IP Address Automatically. Then simply enter the Scan folder name, User name, and Password into the WC 7132 as described in the following procedures (Preparing the WC 7132).

The first part of this procedure provides instructions to configure the PWS. For the PWS to accept scanned files from the machine, it must be configured with an authorized user account that the machine will use to log in with. The PWS also needs a shared folder that will be used as a target location to copy the file into.

Preparing the PWS

Select the PWS Network Settings;

1. Select Start/Settings/Network Connections/Local Area Connections.
2. Access Properties. Scroll down and select Internet Protocol (TCPIP).
3. Select Properties and then select Obtain an IP Address Automatically.
4. Click on the Advanced button. Select the WINS tab.
5. Select Default inside the NetBIOS setting area of the window.
6. Select OK twice and Close to exit the windows.

Create a User Account for Scanning;

1. Right-Click My Computer on the PWS desktop and select Manage.
2. Select Local Users and Groups and then double-click the Users folder.
3. Select the Action menu item and select New User (Figure 1).

Figure 1 (new user)
4. Enter a new User Name and Password in the appropriate fields.

- You can put a statement such as Password is in the Description field to remind you if you forget the password some day. The password is case sensitive so be accurate.

5. Uncheck User must change password at next logon.
6. Select Password Never Expires.
7. Select Create, then Close.
8. The new user will be displayed in the list - Close the Computer Management window.

Create and configure the Shared folder on the PWS;

1. Create a new folder on your C:/ drive (Named Scan in these examples).
2. Right-click the new folder and select Sharing and Security from the menu.
3. Compare the next two illustrations with the screen displayed on your PWS. Use the instructions associated with the screen that matches your PWS.

If you see Figure 2;

- Select Share the folder on the network and Allow network users to change my files.

Figure 2 (Scan Properties (Sharing))

If not successful;

a. Select the Scan folder and then select Tools at the top of the screen.
b. Select Folder Options and then select the View tab.
c. Uncheck Use simple file sharing (Recommended) from the list and click the Apply and OK buttons.
d. Continue to step 4.

If you see Figure 3;
a. Select the Scan folder and then select Tools at the top of the screen
b. Select Folder Options and then select the View tab
c. Uncheck Use simple file sharing (Recommended) from the list and click the Apply and OK buttons.
d. Continue to step 4.

Figure 3 (Scan Properties (General))
4. Select the Sharing Tab, select the Share this folder radio button and click the Permissions button. (If the Sharing tab is not displayed, go to 10) (Figure 4)

Figure 4 (Scan Properties (Sharing))
5. Select the Add button and then select the Advanced button.
6. Select Find Now. When the user list is displayed, highlight the user that you just created (Figure 5).

- If your User is not in the list, Select the Locations button, find the name of your PWS, (normally the top item) highlight it and select OK. Return to step 6. (Remember your PWS name for later.)

Figure 5 (Select Users or Groups)
7. Select OK twice
8. You should be at the Permissions window for your folder. Check the box(es) to allow Change and Read permissions for your user account (Figure 6).

Figure 6 (Permission for Scan)
9. Select Apply and then OK.
10. Click the Security tab in the Scan folder properties window.
11. If your new user account is visible in the upper text box, Highlight it and then check the boxes to allow all permissions to the folder.
12. If your user account is not listed,
a. Select Add, Advanced, and Find Now.
b. Select your new user from the list displayed.

- If your user is not displayed, Select Locations, find the name of your PWS, (top item in list) highlight it and select OK. Select Find Now - your new user should now be in the list. Highlight the user.
c. Select OK twice and then check the Full Control box to allow all permissions to the folder.

13. Select Apply and OK.
14. The Scan folder should now be available to accept Scanned files via the SMB protocol.

Preparing the WC 7132

TCP/IP Configuration

Print and save a system settings list to determine the IP configuration of the machine and to use for restoring the settings later. The TCP/IP settings can be found on page 3 under the heading Communication Settings in the TCP/IP section.

If the selection for Get IP Address is set to DHCP/Autonet, go to step 5
If the selection for Get IP Address is not set to DHCP/Autonet, start at step 1.

1. On the Machine UI, press the Login button and enter the tools password five one's (11111) and press Confirm on the touch screen.
2. Select System Settings/System Settings/Network Settings/Protocol Settings on the LCD touch screen.
3. Select Get IP Address and then Change Settings.
4. Select the button for DHCP/Autonet. Select Save, then Close several times and then Exit to leave the tools mode.
5. Power off the WC 7132 and disconnect the customer's network cable from the machine. Power the machine back on.
6. Connect the PWS to the machine via a network crossover cable. Ensure the PWS is powered on.
7. Wait a minute or so for the two devices to establish a connection before proceeding to the next section.

Scan to the PWS via SMB

1. From the machine UI, press the All Services button.
2. Select Scan to FTP/SMB on the touch screen:

- If the selection is not available, it can be programmed in tools in the following path; System Settings/ System Settings/Common Settings/Screen-Button Settings/ All Services.

3. The Scan to FTP/SMB window displays the Transfer Protocol to be used for scanning. If it is set to SMB continue to step 4. If set to FTP perform step a.
a. Press the FTP button. In the next screen, press SMB and press Save.
4. Select Browse
a. If a communication error occurs, exit out of Scan to FTP/SMB, wait 30 seconds and start from step 1 again.
5. When the connection is established, the window will display any available workgroups found on the network. Select the PWS's workgroup and press Next.

- To find the PWS workgroup name, right-click MyComputer, select Properties and click the Computer Name tab.

6. Computers registered within the selected workgroup will be displayed on the next screen. Select your PWS Name and press Next.
7. Enter the User name by selecting the User Name button. The LCD will display a Keyboard to be used for input. When finished, press Save. Enter the Password in the same fashion.
a. The user name and password are the same as the user name and password that was created on the PWS earlier in this procedure.
b. The User name and Password are case-sensitive.
c. You can enter any special characters by selecting the button for More Characters on the keyboard for entering the Password.
8. Select Confirm in the window displaying your selections.
9. A window may be displayed showing any shared folders on the PWS, select your scan folder and press Save.
10. When the Ready to Scan message is displayed, insert a document in the Document handler and press the green Start button.

Confirm the File Transfer

To confirm that the file transfer worked;

1. Browse to your scan folder on the PWS.
2. A new folder should be displayed in the Scan folder
3. Open the folder to see the contents. Most image files (PDF, Jpeg, tiff) can be opened by double-clicking them. Open the file and compare it to the document that was scanned.
The existence of the image file in the scan folder demonstrates the ability of the machine to scan the document, convert the scanned image into a file, and transport the file via a network connection to a location external to the machine. Though this procedure verifies SMB transfer, the basic functions are the same for FTP and E-mail.

At this point, scan problems that occur when connected to the customer's network are most likely to be caused by configuration or setup problems that should be supported via the customer IT personnel, the Xerox Customer Support Center, or Xerox Network Analysts.

Remember to change the WC 7132 network configuration back to the settings shown on the saved System Settings list. Use the procedure shown in Preparing the WC 7132 to find the entry point for making the changes.

GP 15 Clearing a 092-310 Fault Code (ADC fail)

Procedure

The following NVM locations that are related to 092-310 Fault Code (ADC fail):

NVM location	Description
$752-095$	ADC Sensor failure
$752-096$	ADC shutter is kept opened (a failure reported when ADC shutter does not close)
$752-097$	ADC shutter is kept closed (a failure reported when ADC shutter does not open)
$752-098$	A failure related to Yellow TC (Toner Concentration) patch
$752-099$	A failure related to Magenta TC (Toner Concentration) patch
$752-100$	A failure related to Cyan TC (Toner Concentration) patch
$752-101$	A failure related to Black TC (Toner Concentration) patch
$752-102$	A failure related to Yellow ADC patch
$752-103$	A failure related to Magenta ADC patch
$752-104$	A failure related to Cyan ADC patch
$752-105$	A failure related to Black ADC patch
$752-106$	A failure related to Yellow patch density while performing long setup opera- tion
$752-107$	A failure related to Magenta patch density while performing long setup operation
$752-108$	A failure related to Cyan patch density while performing long setup opera- tion
$752-109$	A failure related to Black patch density while performing long setup opera- tion
$752-121$	The count of ADC fails
$752-094$	ADC Sensor failure (a failure reported when the count of ADC related fails is reached to a specified number of times)

1. The NVM location 752-121 is incriminated by 1 each time any failures of $752-095$ to 752 109 occurs. When the count of 752-121 exceeds " 3 ", the fault code 092-310 (ADC fail) is displayed on the UI and the machine stops. The fault code 092-310 can be cancelled by machine power off/on. After the fault code 092-310 is cleared, the machine will allow print ing of 100 more pages and performs ADC setup operations. If there are no ADC related failures occurring while printing 100 pages, then the machine will be resumed. However, the count of 752-121 will not be cleared. If there is an ADC related failure occurring while printing 100 pages, then the machine will display the fault code 092-310, and fault code 092-310 will not be cleared by machine power off/on.
2. If the toner condition is normal status (i.e. when toner is not empty status): when the count of NVM value 752-121 exceeds "50", then the machine stops, and the fault code 092-310 cannot be cleared. Then, "1" will be set to the NVM location 752-094

If toner condition is pre-near status (i.e. order toner status): when the count of 752-121 exceeds " 8 ", then the machine stops, the fault code $92-310$ cannot be cleared. Then, " 1 " will be set to the NVM location 752-094

When " 1 " is set to $752-094$, the NVM $752-121$ needs to be cleared to " 0 ". When, NVM $752-121$ is cleared to " 0 ", NVM 752-094 will be automatically cleared to " 0 ". Then, the fault code 092-310 can be cleared.
However, to resolve the fault code 092-310 completely, you need to find out the cause of any failure of NVM locations 752-095 to 752-109.

Procedure Diagram

(Figure 1)

Figure 1 Procedure Diagram

Space Requirements

Installation space requirements are shown in Figure 1 (WorkCentre 7132 w/out Finisher), Figure 2 (WorkCentre 7132 w/Finisher).

Figure 2 Space Requirement - WorkCentre 7132 w/Finisher

Figure 1 Space Requirement - WorkCentre 7132 w/out Finisher

Product Specs.

Product Codes

Table 1 Product Codes WorkCentre 7132

No.	Item	Product Code
1	IOT/IIT 110V With OCT, 520 sheet tray, MSI, Duplex	AYX
2	IOT/IIT GSA 110V WITH OCT, 520 sheet tray, MSI, Duplex	AYXN
3	IOT/IIT 110V With DADF + TTM	AYW
4	IOT/IIT 110V With DADF + Stand	AYV
5	IOT/IIT 110V With Platen + Stand	AYU
6	IOT/IIT 220V WITH OCT, 520 sheet tray, MSI, Duplex	AYN
7	IOT/IIT 220V With DADF + TM	AAP
5	2 TM	$59 F$
6	TTM	$00 G$
7	Finisher	00 H

Component Weights

Table 2 Component Weights	
Component	Weight (approx.)
DC (Platen)	$60 \mathrm{~kg}(132 \mathrm{lb})$.
IIT and Platen	$15 \mathrm{~kg}(33 \mathrm{lb})$.
2 Tray Module	$23 \mathrm{~kg}(51 \mathrm{lb})$.
Tandem Tray Module	$31 \mathrm{~kg}(68 \mathrm{lb})$.
Exit2	$2 \mathrm{~kg} \mathrm{(4} \mathrm{lb)}$.
Duplex Module	$1.8 \mathrm{~kg} \mathrm{(4lb)}$.
DADF	$9.8 \mathrm{~kg}(30 \mathrm{lb})$.
Finisher	$30 \mathrm{~kg}(66 \mathrm{lb})$.

Paper Capacities

Specification	Paper Trays 1-3	Tray 5 (Bypass)
Paper Sizes	- Min: 139.7W x 182L - Max: 297W x 432Lmm	Paper - Min: $89 \mathrm{~W} \times 98.4 \mathrm{~L}$ mm (postcard) - Max: $297 \mathrm{~W} \times 431.8 \mathrm{~L} \mathrm{~mm} / 12 \times 19 \mathrm{in}$.
Paper Weights	$\begin{aligned} & \hline \text { Range: 60-216 gsm (Tray } 2 \\ & \text { and 3) } \\ & \text { Tray 1: 60-105 gsm } \\ & \hline \end{aligned}$	Range: 60-216 gsm

Table 3 Paper Capacities

Specification	Paper Trays 1-3	Tray 5 (Bypass)
Capacities 20 lb . (80 gsm)	TTM: 2620 sheets total: Tray 1: 520 sheets Tray 2: 900 sheets Tray 3: 1200 sheets 2TM: 1560 sheets total: Tray 1: 520 sheets Tray 2: 520 sheets Tray 3: 520 sheets	100 sheets

Copy Speed

- Plain paper; simplex; fed from Tray 1-3
- Letter size LEF: 8/32ppm
- Letter size SEF: 8/16ppm
- Legal size: 8/32ppm
- \quad A3/11x17 in.: 4/16ppm

FCOT/FPOT

First Copy Output Time (original on platen); 8.5" x 11" (A4); Tray 1;

- 27 sec . or less for color
- 16 sec. or less for monochrome

First Print Output Time (does not include ESS process time for prints); 8.5" x 11" (A4); Tray 1;

- 26 sec. max for color
- 15 sec . max for monochrome

Voltage Requirements

- Single phase (two wires plus ground)
- $110-127 \mathrm{VAC} / 60 \mathrm{~Hz}(99-135 \mathrm{VAC}, 50 / 60+/-3 \mathrm{~Hz})$
- 220-240 VAC/50 Hz (198 to 254 VAC, $50 / 60+/-3 \mathrm{~Hz}$)

Power Consumption (5 minute average)

- Machine Running: 1.33 kVA - NASG; 1.92 kVA ESG max.
- off Mode 1.5W~3.2W (Reference)

Environmental Data and Requirements

Ambient Temperature and Humidity requirement:

- Minimum: $10^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$ at 15% humidity
- Maximum: $32^{\circ} \mathrm{C} / 90^{\circ} \mathrm{F}$ at $70 \%\left(28^{\circ} \mathrm{C} / 82^{\circ} \mathrm{F}\right.$ at 85% humidity) humidity

IIT/DADF Specifications

Table 4 DADF Specifications

Table 4 DADF Specifications	
Document Size: Platen	Max size: $297 \times 420 \mathrm{~mm}, 11 \times 17 \mathrm{in}$. Max scannable area: $297 \times 420 \mathrm{~mm}$

Table 4 DADF Specifications

Document Size: DADF	$\begin{aligned} & 5.5^{" ~} \times 8.5 " \text { (A5) LEF to } 11^{\prime \prime} \times 17^{\prime \prime} \text { SEF (A3) } \\ & \text { Max: } 297 \times 432 \mathrm{~mm} \\ & \text { Min: } 139.7 \times 210 \mathrm{~mm} \end{aligned}$
Document Weight: DADF	Min: $50 \mathrm{gsm} / 16 \mathrm{lb}$ Max: $128 \mathrm{gsm} / 32 \mathrm{lb}$ (Duplex mode)
Document Capacity: DADF	50 sheets 90 gsm .
R/E Capability:	Variable Percentages: 25% to 400% in 1% increments Preset Percentages: - 25% - 50% - 64.7% (11×17 in. to 8.5×11 in.) - 78.5% (8.5×14 in. to 8.5×11 in.) - 100% - 129.4% (8.5×11 in. to 11×17 in.) - 220% (3.5×5 in. to 8.5×11 in.) - 400% Presets can be changed in Tools mode.

Common Tools

Table 1 Common Tools
Description Part Number Screw Driver (-) 3 x 50 600 T 40205 Screw Driver (+) $\times 100$ 600 T 01989 Screw Driver (+) NO.1 499 T 00356 Stubby Driver (+) (-) 600 T 40210 Screw Driver (-) 100MM 499 T 00355 Spanner and Wrench 5.5 x 5.5 600 T 40501 Spanner and Wrench 7x 7 600 T 40502 Hex Key Set 600 T 02002 Box Driver 5.5MM 600 T 01988 Side Cutting Nipper 600 T 40903 Round Nose Pliers 600 T 40901 Digital Multi-meter Set 600 T 02020 Interlock Cheater 600 T 91616 Silver Scale 150MM 600 T 41503 CE Tool Case 600 T 01901 Magnetic Screw Pick-up Tool 600 T 41911 Scriber Tool 600 T 41913 Magnetic pickup 600 T 41911 Loupe 600 T 42008 Flash Light 600 T 01824 Brush 600 T 41901 Tester Lead Wire (red) 600 T 09583 Tester Lead Wire (black) 600 T 02030 Spring Hook (T Style) 600 T 41907

Product Tools and Test Patterns
Table 1 Tools and Test Patterns

Description	Part Number
Geometric Test Pattern	082E 08220
HVPS test probe (1/10X)	600T 01653
HVPS test probe adapter	600T 01996
Copy Paper Carrying Case	600 T 01999
Copy Paper Zip Lock Bag	600T 02000
Colotech +-90 gsm - A3	003R 94642
Service and Machine NVM Log	700P 97436
Serial cable	600T 02058
USB cable, 6 ft //2 meter Firmware Upload	600 T 02231
Network Interface (Crossover) cable	600 T 02252
Parallel printer cable	117E 19340
PWS power cord adapter	600T 02018
L Probe	600 T 02177
Machine Resident Disk Kit (Machine Settings Floppy)	300 K 63850
A3 (11" x 17") Test Pattern	082E 02000
A3 Test Pattern	082P 521
A4 Test Pattern	082E 02010
8.5 " $\times 11^{\prime \prime}$ Test Pattern	082E 02020
8.5 " $\times 14^{\prime \prime}$ Test Pattern	082P 524
SIR 542.00 Solid area density Scale	082E 08230
SIR 494.00 Visual Scale	082P 00448

Log Book Storage

A protected out-of-sight space exists at the left front corner, to the left of the center output tray. Fold the log and insert into this space.

Figure 1 Log Book Storage Compartment

Cleaning Materials

Table 1 Cleaning Materials

Description	NASG Part Number	ESG Part Number
Cleaning fluid (8oz., Formula A)	043P 00048	008R 90034
Film remover (8 oz.)	043P 00045	008R 90176
Lens/mirror cleaner	043P 00081	008R 90178
Lint-free (white) cleaning cloth	019P 03025	019P 03025
Lint-free Optics cleaning cloth	499T 90417	499T 90417
Cleaning towels	035P 03191	600S 04372
Drop cloth	035P 01737	035P 01737
Cotton Swab	035P 02162	035P 02162

Machine Consumables

Table 1 Toner Cartridge
Name Part Number Black Toner (Metered) 006R 01262 World wide Yellow Toner (Metered) 006R 01263 World wide Magenta Toner (Metered) 006R 01264 World wide Cyan Toner (Metered) 006R 01265 World wide Black Toner (Sold) 006R 01266 NA/ESG Yellow Toner (Sold) 006R 01267 NA/ESG Magenta Toner (Sold) 006R 01268 NA/ESG Cyan Toner (Sold) 006R 01269 NA/ESG Black Toner (Sold) 006R 01270 DMO/W Yellow Toner (Sold) 006R 01271 DMO/W Magenta Toner (Sold) 006R 01272 DMO/W Cyan Toner (Sold) 006R 01273 DMO/W

Table 2 (Xero) Drum Cartridge

Part Number
$013 R 00622$

Table 3 Staple Cartridge

Part Number
008R 12915

Table 4 Waste Toner Bottle

Part Number
$008 R 13021$

Table 5 Fuser 110V
Part Number
$008 R 13022$

Table 6 IBT Belt Cleaner
Part Number
$001 R 00588$

Table 7 2nd BTR

Part Number
$008 R 13026$

Table 8 Odor Filter Kit

Part Number

 008R13025
Glossary of Terms

Table 1

Term	Description
A3	Paper size 297 millimeters (11.69 inches) x 420 millimeters (16.54 inches).
A4	Paper size 210 millimeters (8.27 inches) x 297 millimeters (11.69 inches).
AC	Alternating Current is type of current available at power source for machine.
ACT	Advanced Customer Training: teaches customers to perform some of service that is normally performed by Xerox Service Representative.
A/D	Analog to Digital refers to conversion of signal.
ADJ	Adjustment Procedure
ARZ	Argentina
Bit	Binary digit, either 1 or 0, representing an electrical state.
CCD	Charge Coupled Device (Photoelectric Converter)
CD	$1:$ Circuit Diagram; 2: Compact Disc
Chip	Integrated Circuit (IC)
CRU	Customer Replaceable Unit
CVT	Constant Velocity Transport
DADF	Duplexing Automatic Document Feeder
DC	Direct Current is type of power for machine components. Machine converts AC power from power source to DC power.
dC	Diagnostics Code.
DHCP	Dynamic Host Configuration Protocol
DIS	Disconnect
DMA	Direct Memory Access
DMM	Digital Multimeter is generic name for meter that measures voltage, current, or elec- trical resistance.
ESMTP	Extended Simple Mail Transfer Protocol
FIFO	First In First Out
FS	Fast Scan (direction) - Inboard to Outboard
DMO	Developing Markets Operations potential.
DNS	Domain Name System
DPI	Dots Per Inch
DSL	Digital Subscriber Line - Digital telephone line signal in non-voice frequency range
DSN	Database Source Name
DTMF	Dual-tone multifrequency, also known as Touch Tone
Duplex	2 -sided printing or copying
EHLO	Extended HELLO
EME	Electromagnetic Emissions are emitted from machine during normal operation and

Table 1

Term	Description
FTT	Fail To Train - Sent by receiving Fax - request to reduce send rate
GND	Ground
HDD	Hard Drive
HFSI	High Frequency Service Item
HELLO	Hello (HELO) identifies sender-SMTP to the receiver-SMTP
HVPS	High Voltage Power Supply
Hz	Hertz (Cycles per second)
IIT	Image Input Terminal - Scanner/CCD portion of the machine
I/O	Input/Output
IOT	Image Output Terminal - ROS/Xero/paper handling/fusing portion of the machine
IQ	Image Quality
JBIG	Joint Bi-level Image Experts Group, an image compression scheme
JCL	Job Control Language
KBPS	Kilo Bites Per Second
KC	1000 copies
KO	Key Operator
LCD	Liquid Crystal Display
LDAP	Lightweight Directory Access Protocol
LE	Lead Edge of copy or print paper, with reference to definition of term TE
LED	Light Emitting Diode
LEF	Long Edge Feed
LTR	Letter size paper (8.5 x 11 inches)
LUT	Look Up Table - array of NVM locations that store process control data
LVPS	Low Voltage Power Supply
LZW	Lempel, Ziv, Welchan, an image compression scheme
MF	Multi-Function
MN	Multinational
NIC	Network Interface Card
NA	North America
NAAO	North American Agent Operations
NARS	North American Reseller Sales
NG	Not Good, No Good
NO	Number
NVM	Non Volatile Memory
OEM	Original equipment manufacturer
OGM	On-going Maintenance
Panther	Continuous data protection protocol or utility
PC	Personal Computer
PCL	Printer Control Language
PDF	Portable Document Format
PDL	Page Description Language

Table 1

Term	Description
$\begin{aligned} & \text { Phase A, } \\ & \text { B, C, D, E } \end{aligned}$	Phase A is Fax call set up, Phase B is pre-message processing, Phase C is message transmission, Phase D is post message protocols, Phase E is Release Fax call
PJ	Plug Jack (electrical connections)
PJL	Printer Job Language
PL	Parts List
PO	Part of (Assembly Name)
POP	Post Office Protocol
PWB	Printed Wiring Board
PWS	Portable Workstation for Service
RAM	Random Access Memory
RAP	Repair Analysis Procedure for diagnosis of machine status codes and abnormal conditions.
R/E	Reduction/Enlargement refers to features selection or components that enable reduction or enlargement.
REP	Repair Procedure for disassembly and reassembly of component on machine
RIS	Raster Input Scanner
ROM	Read Only Memory
ROS	Raster Output Scanner. Device that transfers digitally processed image, using laser light, to photoreceptor.
SAD	Solid Area Density
SCP	Service Call Procedure
SEF	Short Edge Feed
Self-test	An automatic process that is used to check Control Logic circuitry. Any fault that is detected during self-test is displayed by fault code or by LEDs on PWB.
SIMM	Single Inline Memory Module used to increase printing capacity
SMB	Server Message Block
SMTP	Simple Mail Transfer Protocol
Simplex	Single sided copies
SSL	Secure Socket(s) Link
SUB	Sub-addressed - indicates that the following facsimile information field (FIF) information is sub-addressed in the called subscriber's domain.
SW	Software
TCP/IP	Transmission Control Protocol/Internet Protocol
TE	Trail Edge of copy or print paper, with reference to definition of term LE
TIFF	Tag Image File Format
UM	Unscheduled Maintenance
UI	User Interface
USB	Universal Serial Bus
V. 8	A part of the initial Fax transmission phase when attributes are worked between sending and receiving fax machines
W/	With - indicates machine condition where specified condition is present
W/O	Without - indicates machine condition where specified condition is not present

Table 1

Term	Description
XBRA	Xerox Brazil
XE	Xerox Europe - also referred to as ESG (European Solutions Group)
XING	Xerox International Group
XLA	Xerox Latin America
XMEX	Xerox Mexico
XOG	Xerox Office Group
XPJL	X Printer Job Language

Change Tag Introduction

Important modifications to the copier are identified by a tag number which is recorded on a tag matrix. The tag matrix for the IOT (Processor) is molded into the inside of the Front Door.

This section describes all of the tags associated with the copier, as well as multinational applicability, classification codes, and permanent or temporary modification information.

Classification Codes

A tag number may be required to identify differences between parts that cannot be interchanged, or differences in diagnostic, repair, installation, or adjustment procedures.

A tag number may also be required to identify the presence of optional hardware, special nonvolatile memory programming, or whether mandatory modifications have been installed. Each tag number is given a classification code to identify the type of change that the tag has made The classification codes and their descriptions are listed in the table below.

Table 1

Table 1	
Classification Code	Description
M	Mandatory tag
N	Tag not installed in the field
O	Optional tag
R	Repair tag

TAG: 1
CLASS: M
USE:

MFG SERIAL NUMBERS:

NAME: Front Auger

PURPOSE: To replace the defective Front Auger.
KIT NUMBER: 605K91980
PARTS LIST ON: PL 6.1
Plug/Jack LocationsPlug/Jack Locations7-3
7.1 Plug/Jack Locations-a-finisher
7.1.1 Plug/Jack Locations7-35
7.1.2 Plug/Jack Illustrations 7-36
Wirenets
7.3.1 Wire Net AC POWER (HOT) 7-39
7.3.2 Wire Net AC POWER (NUT) 7-40
7.3.3 Wire Net +3.3VDC (Standby, Standby RTN) -41
7.3.4 Wire Net +3.3VDC (Main, Main RTN) 7-42
7.3.5 Wire Net +5VDC (Standby, Standby RTN) -43
7.3.6 Wire Net +5VDC (Main)-1 7-44
7.3.7 Wire Net +5VDC (Main)-2 $7-45$ -45
7.3.8 Wire Net +5VDC-3
7.3.8 Wire Net +5VDC-3
7.3.9 Wire Net +5VDC-4 7-47
7.3.10 Wire Net +5VDC-5 7-48
3.11 Wire Net +5VDC-6 -49
7.3.12 Blank 7-50 -50
7.3.13 Blank
7.3.14 Wire Net DC COM (+5VRTN)-1 -52
7.3.15 Wire Net DC COM (+5VRTN)-2 -53
7.3.16 Wire Net DC COM (+5VRTN)-3 7-54
7.3.17 Wire Net DC COM (+5 VRTN) -4 7-54
$7-55$
7.3.18 Wire Net DC COM (+5VRTN)-5 -56
7.3.19 Wire Net DC COM (+5VRTN)-6 7-57
7.3.20 Wire Net DC COM (+5VRTN)-7 7-58
7.3.21 Blank 7-59
7.3.22 Wire Net +24VDC-1 7-60
7.3.23 Wire Net +24VDC-2 7-61
7.3.24 Wire Net +24VDC-3 7-62
7.3.25 Wire Net +24VDC-4 7-63
7.3.26 Wire Net +24VDC-5 7-64
7.3.27 Wire Net +24VDC-6 7-65
7.3.28 Wire Net DC COM (+24VRTN)-1 7-66
7.3.29 Wire Net DC COM (+24VRTN)-2 7-67
7.3.30 Wire Net DC COM (+24VRTN)-3 -68
7.3.31 Blank 7-69
7.32 Finisher Wire Net +5VDC 7-70
7.3.33 Finisher Wire Net DC COM(+5VRTN) 7-71
7.3.34 Finisher Wire Net +24VDC -72
7.3.35 Finisher Wire Net DC COM (+24VRTN) 7-73
7.2 Wirenets-a-finisher
7.2.36 A-Finisher Wire Net +5VDC 7-75
7.2.37 A-Finisher Wire Net DC COM(+5VRTN) 7-76
7.2.38 A-Finisher Wire Net +24VDC
7-77
7-77
7.2.39 A-Finisher Wire Net DC COM (+24VRTN) 7-78
BSDs
Chain 1 Standby Power 7-79
Chain 2 User Interface -84
Chain 3 Machine Run Control 7-88
Chain 4 Start Print Power. 7-95
Chain 5 Document Transportation 7-103
Chain 6 Imaging 7-109
Chain 7 Paper Supply 7-114
Chain 8 Paper Feed and Transportation 7-125
Chain 9 Xerographics 7-132
Chain 10 Copy Transportation and Fusing 7-142
Chain 12 Finishing 7-149
Chain 13 Nohad 7-158
Chain 16 Printer 7-159
Chain 17 FAX 7-160
7.3 BSDs-a-finisher
Chain 15 Finisher-A
CH15.1 A-Finisher DC Power and Interlock Switching 7-161
CH15.2 PWBS Communication (IOT-A-Finisher). 7-162
CH15.3 A-Finisher Transportation 7-163
CH15.4 Tamping and Offset 7-164
CH15.5 Staple Control 7-165
CH15.6 Set Eject (1 OF 2) 7-166
CH15.7 Set Eject (2 OF 2) 7-167
CH15.8 Stacker Tray Control 7-168

Plug/Jack Locations

How to use the Plug/Jack Location List

The Plug/Jack Location List below is provided to locate plugs, jacks, or other terminating devices. Locate the desired termination device in the first column (Connector Number) of the list. Refer to the second column (Figure Number) to determine the figure number of the electrical termination device. Refer to the (Item Number) column to determine the item number in the adjacent Figure Number column. The fourth column supplies the title of the Figure.

NOTE: Connectors numbered "CN" and "FS" are listed after the " P and J " connectors.

Connector Number	Figure Number	Item Number	Figure Title
P/J1	Figure 1	8	Control Panel
P/J1	Figure 16		Power Unit
P/J2	Figure 16		Power Unit
P/J2	Figure 25	10	Finisher Rear Location
P/J3	Figure 16		Power Unit
P/J4	Figure 16		Power Unit
J11/T11	Figure 16		Power Unit
J12/T12	Figure 16		Power Unit
P/J50	Figure 15		AC Input
P/J56	Figure 3		IOT Front View
P/J57	Figure 3		IOT Front View
P/J68	Figure 3		IOT Front View
P/J69	Figure 3		IOT Front View
FS72	Figure 15		AC Input
FS73	Figure 15		AC Input
FS74	Figure 15		AC Input
FS75	Figure 15		AC Input
P/J100	Figure 9	2	L/H Lower, Tray 1 Feeder
P/J101	Figure 9	3	L/H Lower, Tray1 Feeder
P/J101A	Figure 17	2	Tray2/3 Feeder(2TM)
P/J101A	Figure 19	2	Tray2/3 Feeder(TTM)
P/J101B	Figure 17	2	Tray2/3 Feeder(2TM)
P/J101B	Figure 19	2	Tray2/3 Feeder(TTM)
P/J102A	Figure 17	3	Tray2/3 Feeder(2TM)
P/J102A	Figure 19	3	Tray2/3 Feeder(TTM)
P/J102B	Figure 17	3	Tray2/3 Feeder(2TM)
P/J102B	Figure 19	3	Tray2/3 Feeder(TTM)
P/J103A	Figure 17	12	Tray2/3 Feeder(2TM)
P/J103A	Figure 19	9	Tray2/3 Feeder(TTM)

Table 1 Plug/Jack List

Connector Number	Figure Number	Item Number	Figure Title
P/J103B	Figure 17	12	Tray2/3 Feeder(2TM)
P/J103B	Figure 19	9	Tray2/3 Feeder(TTM)
P/J103	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J105	Figure 9	4	L/H Lower, Tray1 Feeder
P/J105	Figure 9	9	L/H Lower, Tray1 Feeder
P/J106	Figure 8		Regi Sensor, Regi Clutch
P/J107	Figure 7	9	Duplex Unit, MSI
P/J108	Figure 7	10	Duplex Unit, MSI
P/J109	Figure 8		Regi Sensor, Regi Clutch
P/J111	Figure 5	8	Exit2
P/J112	Figure 5	6	Exit2
P/J115	Figure 5		Exit2
P/J116	Figure 5	2	Exit2
P/J117	Figure 13		IOT Rear Location
P/J118	Figure 13		IOT Rear Location
P/J119	Figure 9	7	L/H Lower, Tray1 Feeder
P/J120	Figure 6	1	No. 1 OCT, Fuser Assembly
P/J121	Figure 6		Fuser
P/J123	Figure 7	2	Duplex Unit, MSI
P/J124	Figure 7	1	Duplex Unit, MSI
P/J125	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J126	Figure 11		Sensor Bar, Waste Container
P/J127	Figure 3		IOT Front View
P/J128	Figure 14		MCU PWB
P/J133	Figure 9	10	L/H Lower, Tray1/2 Feeder
P/J134	Figure 3		IOT Front View
P/J135	Figure 6		Fuser
P/J136	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J137	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J138	Figure 3		IOT Front View
P/J139	Figure 3		IOT Front View
P/J140	Figure 4		ROS Unit
P/J141	Figure 3		IOT Front View
P/J142	Figure 3		IOT Front View
P/J143	Figure 3		IOT Front View
P/J144	Figure 3		IOT Front View
P/J160	Figure 4		ROS Unit
P/J200	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J201	Figure 9	1	L/H Lower, Tray1 Feeder
P/J202	Figure 8		Regi Sensor, Regi Clutch

Connector Number	Figure Number	Item Number	Figure Title
P/J203	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J205	Figure 7	7	Duplex Unit, MSI
P/J207	Figure 5	4	Exit2
P/J208	Figure 5	5	Exit2
P/J209	Figure 5	7	Exit2
P/J210	Figure 5	3	Exit2
P/J211	Figure 13		IOT Rear Location
P/J212	Figure 7	6	Duplex Unit, MSI
P/J213	Figure 13		IOT Rear Location
P/J214	Figure 13		IOT Rear Location
P/J215	Figure 13		IOT Rear Location
P/J217	Figure 13		IOT Rear Location
P/J218	Figure 13		IOT Rear Location
P/J219	Figure 4		ROS Unit
P/J220	Figure 5	1	Exit 2
P/J220A	Figure 17	1	Tray2/3 Feeder(2TM)
P/J220A	Figure 19	1	Tray2/3 Feeder(TTM)
P/J220B	Figure 17	1	Tray2/3 Feeder(2TM)
P/J220B	Figure 19	1	Tray2/3 Feeder(TTM)
P/J221	Figure 13		IOT Rear Location
P/J222	Figure 13		IOT Rear Location
P/J226	Figure 13		IOT Rear Location
P304	Figure 10		ESS
J330	Figure 10		ESS
J331	Figure 10		ESS
J333	Figure 10		ESS
J334	Figure 10		ESS
P/J136	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J137	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
J338	Figure 10		ESS
J340	Figure 10		ESS
J343	Figure 10		ESS
J344	Figure 10		ESS
P351	Figure 10		ESS
P380	Figure 10		ESS
P353	Figure 12	2	Fax Box Assembly
P354	Figure 12	3	Fax Box Assembly
P356	Figure 12	4	Fax Box Assembly
P/J380	Figure 12	1	Fax Box Assembly
J356	Figure 12	4	Fax Box Assembly

Connector Number	Figure Number	Item Number	Figure Title
J359	Figure 12	5	Fax Box Assembly
J360	Figure 12	6	Fax Box Assembly
P/J380	Figure 12		FAX Box
P382	Figure 10		ESS
P/J387	Figure 10		ESS
P/J388	Figure 10		ESS
P/J389	Figure 14		MCU PWB
P/J390	Figure 14		MCU PWB
P/J400	Figure 14		MCU PWB
P/J401	Figure 14		MCU PWB
P/J402	Figure 14		MCU PWB
P/J405	Figure 14		MCU PWB
P/J406	Figure 14		MCU PWB
P/J407	Figure 14		MCU PWB
P/J408	Figure 14		MCU PWB
P/J409	Figure 14		MCU PWB
P/J410	Figure 14		MCU PWB
P/J411	Figure 14		MCU PWB
P/J412	Figure 14		MCU PWB
P/J413	Figure 14		MCU PWB
P/J415	Figure 14		MCU PWB
P/J416	Figure 14		MCU PWB
J416	Figure 25	8	Finisher Rear Location
P/J417	Figure 14		MCU PWB
P/J420	Figure 14		MCU PWB
P/J421	Figure 14		MCU PWB
P/J422	Figure 14		MCU PWB
P/J423	Figure 14		MCU PWB
P/J424	Figure 14		MCU PWB
P/J425	Figure 14		MCU PWB
P/J426	Figure 14		MCU PWB
P/J450	Figure 14		MCU PWB
P/J451	Figure 14		MCU PWB
P/J452	Figure 14		MCU PWB
P/J453	Figure 14		MCU PWB
P/J500	Figure 3		HVPS, IOT Front View
P/J502	Figure 25	11	Finisher Rear Location
P/J505	Figure 25	12	Finisher Rear Location
P/J510	Figure 16		Power Unit
P/J511	Figure 16		Power Unit

Connector Number	Figure Number	Item Number	Figure Title
P/J512	Figure 16		Power Unit
P/J513	Figure 16		Power Unit
P/J514	Figure 16		Power Unit
P/J540	Figure 7	3	Duplex Unit, MSI
P/J541	Figure 7	4	Duplex Unit, MSI
P/J541	Figure 18	2	2TM Rear Location
P/J541	Figure 20	1	TTM Rear Location
P/J542	Figure 7	5	Duplex Unit, MSI
P/J548	Figure 18	1	2TM Rear Location
P/J548	Figure 20	11	TTM Rear Location
P/J549	Figure 18	7	2TM Rear Location
P/J549	Figure 18	9	2TM Rear Location
P/J549	Figure 20	10	TTM Rear Location
P/J549	Figure 20	12	TTM Rear Location
P/J552	Figure 18	8	2TM Rear Location
P/J552	Figure 20	9	TTM Rear Location
P/J554	Figure 18	3	2TM Rear Location
P/J554	Figure 20	2	TTM Rear Location
P/J223	Figure 13	5	IOT Rear Location
P/J601	Figure 11		Sensor Bar, WasteContainer, IOT Left Side
P/J611	Figure 9	6	L/H Lower, Tray1 Feeder
P/J603	Figure 3		HVPS, IOT Front View
P/J604	Figure 3		HVPS, IOT Front View
P/J605	Figure 8		Regi Sensor, Regi Clutch
P606	Figure 5	10	Exit 2
P/J612	Figure 9	5	L/H Lower, Tray1 Feeder
P/J609	Figure 7	8	Duplex Unit, MSI
P/J610	Figure 7	11	Duplex Unit
P/J611	Figure 9		L/H Lower, Tray1 Feeder
P/J612	Figure 9		L/H Lower, Tray1 Feeder
P/J613	Figure 9		L/H Lower, Tray1 Feeder
P/J614	Figure 6		Fuser
P/J616	Figure 2		IIT
P/J617	Figure 3		HVPS, IOT Front View
P/J619	Figure 16		LVPS
P/J618	Figure 4		ROS Unit
P/J621	Figure 6		Fuser
P/J661A	Figure 17	8	Tray2/3 Feeder(2TM)
P/J661A	Figure 20	4	TTM Rear Location
P/J661B	Figure 17	9	Tray2/3 Feeder(2TM)

Connector Number	Figure Number	Item Number	Figure Title
P/J661B	Figure 19	7	TTM Rear Location
P/J700	Figure 2	11	IIT
P/J702	Figure 2	6	IIT
P/J703	Figure 2	5	IIT
P/J710	Figure 2	14	IIT
P/J719	Figure 2	4	IIT
P/J720	Figure 2	9	IIT
P/J721	Figure 2	1	IIT
P/J722	Figure 2	13	IIT
P/J723	Figure 2	8	IIT
P/J725	Figure 2	2	IIT
P/J727	Figure 2	15	IIT
P/J728	Figure 2	7	IIT
J750	Figure 2	3	IIT
P750	Figure 22	15	DADF 2 of 2
P/J751	Figure 22	16	DADF 2 of 2
P/J752	Figure 22	14	DADF 2 of 2
P/J753	Figure 22	13	DADF 2 of 2
P/J754	Figure 22	12	DADF 2 of 2
P/J755	Figure 22	11	DADF 2 of 2
P/J756	Figure 22	5	DADF 2 of 2
P/J757	Figure 22	4	DADF 2 of 2
P/J758	Figure 22	3	DADF 2 of 2
P/J759	Figure 22	2	DADF 2 of 2
P/J760	Figure 22	1	DADF 2 of 2
P/J761	Figure 22	17	DADF 2 of 2
P/J764	Figure 22	9	DADF 2 of 2
P/J765	Figure 22	10	DADF 2 of 2
P/J766	Figure 21	3	DADF 1 of 2
P/J767	Figure 21	18	DADF 1 of 2
P/J769	Figure 22	8	DADF 2 of 2
P/J770	Figure 22	7	DADF 2 of 2
P/J771	Figure 21	14	DADF 1 of 2
P/J772	Figure 21	15	DADF 1 of 2
P/J774	Figure 21	13	DADF 1 of 2
P/J775	Figure 21	16	DADF 1 of 2
P/J776	Figure 21	17	DADF 1 of 2
P/J777	Figure 21	7	DADF 1 of 2
P/J778	Figure 21	6	DADF 1 of 2
P/J779	Figure 21	5	DADF 1 of 2

Connector Number	Figure Number	Item Number	Figure Title
P/J780	Figure 21	12	DADF 1 of 2
P/J781	Figure 21	11	DADF 1 of 2
P/J782	Figure 21	10	DADF 1 of 2
P/J785	Figure 22	18	DADF 2 of 2
P/J786	Figure 22	6	DADF 2 of 2
P/J787	Figure 21	9	DADF 1 of 2
P/J788	Figure 21	8	DADF 1 of 2
P/J791	Figure 21	4	DADF 1 of 2
P/J820	Figure 17	4	Tray2/3 Feeder(2TM)
P/J820	Figure 19	5	Tray2/3 Feeder(TTM)
P/J821	Figure 17	7	Tray2/3 Feeder(2TM)
P/J821	Figure 19	6	Tray2/3 Feeder(TTM)
P/J822	Figure 18	5	2TM Rear Location
P/J822	Figure 20	7	TTM Rear Location
P/J824	Figure 17	5	Tray2/3 Feeder(2TM)
P/J824	Figure 19	4	Tray2/3 Feeder(TTM)
P/J825	Figure 17	6	Tray2/3 Feeder(2TM)
P/J825	Figure 20	3	TTM Rear Location
P/J826	Figure 18	6	2TM Rear Location
P/J826	Figure 20	8	TTM Rear Location
P/J841	Figure 18	4	2TM Rear Location
P/J841	Figure 20	5	TTM Rear Location
P/J842	Figure 17	10	Tray2/3 Feeder(2TM)
P/J842	Figure 20	6	TTM Rear Location
P/J869	Figure 25	13	Finisher Rear Location
P/J871	Figure 24	16	Finisher Front Location
P/J7261	Figure 2	10	IIT
P/J7262	Figure 2	12	IIT
P/J8379	Figure 23	2	H-Transport Assembly
P/J8380	Figure 23	1	H-Transport Assembly
P/J8381	Figure 23	3	H-Transport Assembly
P/J8382	Figure 23	4	H-Transport Assembly
P/J8390	Figure 26	4	Finisher PWB
P/J8800	Figure 25	7	Finisher Rear Location
P/J8801	Figure 25	6	Finisher Rear Location
P/J8802	Figure 25	4	Finisher Rear Location
P/J8803	Figure 25	3	Finisher Rear Location
P/J8805	Figure 24	1	Finisher Front Location
P/J8806	Figure 24	4	Finisher Front Location
P/J8807	Figure 24	5	Finisher Front Location

Coble 1 Plug/Jack List			
Connector Number	Figure Number	Item Number	Figure Title
P/J8808	Figure 24	6	Finisher Front Location
P/J8809	Figure 24	17	Finisher Front Location
P/J8810	Figure 24	7	Finisher Front Location
P/J8811	Figure 24	11	Finisher Front Location
P/J8812	Figure 24	12	Finisher Front Location
P/J8813	Figure 24	14	Finisher Front Location
P/J8814	Figure 25	2	Finisher Rear Location
P/J8815	Figure 25	1	Finisher Rear Location
P/J8817	Figure 24	10	Finisher Front Location
P/J8818	Figure 24	8	Finisher Front Location
P/J8819	Figure 24	9	Finisher Front Location
P/J8820	Figure 24	15	Finisher Front Location
P/J8822	Figure 25	5	Finisher Rear Location
P/J8823	Figure 24	3	Finisher Front Location
P/J8824	Figure 24	2	Finisher Front Location
P/J8825	Figure 24	13	Finisher Front Location
P/J8827	Figure 25	9	Finisher Rear Location
P/J8843	Figure 26	7	Finisher PWB
P/J8844	Figure 26	6	Finisher PWB
P/J8846	Figure 26	3	Finisher PWB
P/J8847	Figure 26	5	Finisher PWB
P/J8848	Figure 26	1	Finisher PWB
P/J8849	Figure 26	2	Finisher PWB
P/J8850	Figure 26	10	Finisher PWB
P/J8851	Figure 26	8	Finisher PWB
P/J8852	Figure 26	9	Finisher PWB
CN1	Figure 1	5	Control Panel
CN2	Figure 1	9	Control Panel
CN3	Figure 1	4	Control Panel
CN4	Figure 1	6	Control Panel
CN5	Figure 1	3	Control Panel
CON CN3	Figure 1	11	Control Panel
CP CN1	Figure 1	7	Control Panel
F1	Figure 21	2	DADF 1 of 2
F2	Figure 21	1	DADF 1 of 2
FS812	Figure 17	11	Tray2/3 Feeder(2TM)
FS812	Figure 19	8	Tray2/3 Feeder(TTM)
FS813	Figure 17	11	Tray2/3 Feeder(2TM)
FS813	Figure 19	8	Tray2/3 Feeder(TTM)
INV CN1	Figure 1	10	Control Panel

| Table 1 Plug/Jack List | | |
| :--- | :--- | :--- | :--- |
| Connector
 Number Figure
 Number Item
 Number
 FigV CN2 Title
 Figure 1 1 Control Panel
 LCD CN1 Figure 1 2
 Control Panel
 SJ1 Figure 5 9 | Exit 2 | |

Figure 1 Control Panel (j0st7201)

j0st7204

Figure 4 ROS Unit (j0st7204)

j0st7205
Figure 5 Exit 2 ($\mathrm{j} 0 \mathrm{st7205)}$

Figure 6 Fuser Assembly (j0st7206)

Figure 7 Duplex Unit, MSI (j0st7207)

Figure 8 Regi. Sensor, Regi. Clutch (j0st7208)

Figure 9 L/H Lower, Tray1/2 Feeder (j0tp7209)

Figure 10 ESS (j0tp7210)

Figure 11 Left Side of IOT (j0st72bb)

j0st7212
Figure 12 Fax Box Assembly (j0st7212)

jOtp7213
Figure 13 IOT Rear Location (j0tp7213)

j0st7215

Figure 15 AC Input (j0st7215)

Figure 16 LVPS (j0st7216)

Figure 17 Tray 2/3 Feeder (2TM) (j0tp7217)

j0tp7218
Figure 18 2TM Rear Location (j0tp7218)

Figure 19 Tray 2/3 Feeder (TTM) (j0tp7219)

Figure 20 TTM Rear Location (j0tp7220)

Figure 21 DADF 1 of 2 (j0st7221)

Figure 22 DADF 2 of 2 (j0st7222)

Figure $\mathbf{2 3} \mathrm{H}$-Transport Assembly (j0st7223)

Figure 24 Finisher Front Location (j0st7224)

j0st7225

Figure 25 Finisher Rear Location (j0st7225)

Figure 26 Finisher PWB (j0tp7226)

7.1.1 Plug/Jack Locations

How to use the Plug/Jack Location List

The Plug/Jack Location List below is provided to locate plugs, jacks, or other terminating devices. Locate the desired termination device in the first column (Connector Number) of the list. Refer to the second column (Figure Number) to determine the figure number of the electrical termination device. Refer to the (Item Number) column to determine the item number in the adjacent Figure Number column. The fourth column supplies the title of the Figure.

NOTE: Connectors numbered "CN" and "FS" are listed after the "P and J" connectors.

Plug/Jack Location List

Connector Number	Figure Number	Item Number	Figure Title
P/J8700	Figure 28	2	
P/J8701	Figure 28	1	
P/J8702	Figure 28	11	
P/J8703	Figure 28	10	
P/J8704	Figure 28	13	
P/J8705	Figure 28	12	
P/J8706	Figure 28	8	
P/J8707	Figure 28	3	
P/J8708	Figure 28	17	
P/J8709	Figure 28	16	
P/J8710	Figure 28	9	
P/J8711	Figure 28	4	
P/J8721	Figure 29	2	
P/J8722	Figure 29	1	
P/J8723	Figure 29	6	
P/J8724	Figure 27	1	
P/J8725	Figure 29	11	
P/J8726	Figure 27	7	
P/J8727	Figure 27	9	
P/J8728	Figure 27	8	
P/J8729	Figure 27	6	
P/J8730	Figure 27	2	
P/J8731	Figure 27	4	
P/J8732	Figure 27	3	
P/J8733	Figure 28	14	
P/J8734	Figure 28	15	
P/J8735	Figure 27	5	
P/J8736	Figure 29	5	
J8737A	Figure 29	9	

Table 1 Plug/Jack List (A-Finisher)			
Connector Number Figure Number Item Number Figure Title J8737B Figure 29 9 J8738A Figure 29 10 J8738B Figure 29 10 P/J8739 Figure 28 7 P/J8740 Figure 28 5 P/J8741 Figure 28 6 J8742A Figure 29 7 J8742B Figure 29 8 CN3 Figure 29 4 CN4 Figure 29 3			

7.1.2 Plug/Jack Illustrations

Figure 2 A-Finisher PWB Location (jOfa71002)
Figure 1 A-Finisher Front Location (jOfa71001)

Figure 3 A-Finisher Bottom Location (j0fa71003)

7.3.1 Wire Net AC POWER (HOT)

7.3.1 WIRE NET AC POWER (HOT)
220/249 VDC MODEL ONLY
(2) optional heater

Figure 1 Wire Net AC POWER (HOT)

7.3.2 Wire Net AC POWER (NUT)

7.3.2 WIRE NET AC POWER (NEUTRAL)

(1) optional heater

Figure 1 Wire Net AC POWER (NUT)

7.3.3 Wire Net +3.3VDC (Standby, Standby RTN)

WIRE NET +3.3VDC (STANDBY)

WIRE NET +3.3VDC (STANDBY RTN)

7.3.4 Wire Net +3.3VDC (Main, Main RTN)

WIRE NET +3.3VDC (MAIN)

WIRE NET +3.3VDC (MAIN RTN)

Figure 1 Wire Net +3.3VDC (Main, Main RTN)

7.3.5 Wire Net +5VDC (Standby, Standby RTN)

WIRE NET +5.0VDC (STANDBY)

WIRE NET +5.0VDC (STANDBY RTN)

Figure 1 Wire Net +5VDC (Standby, Standby RTN)

7.3.6 Wire Net +5VDC (Main)-1

WIRE NET +5 VDC (MAIN) -1

Figure 1 Wire Net +5VDC (Main)-1

7.3.7 Wire Net +5VDC (Main)-2

WIRE NET +5VDC (MAIN) - 2

7.3.8 Wire Net +5VDC-3

WIRE NET +5VDC (MAIN) $\mathbf{- 3}$

Figure 1 Wire Net +5VDC-3

7.3.9 Wire Net +5VDC-4

WIRE NET +5VDC (MAIN) - 4
(FROM WIRE NET +5VDC (MAIN) - 3)

(SEE WIRE NET +5VDC (MAIN) -5)

Figure 1 Wire Net +5VDC-3

7.3.10 Wire Net +5VDC-5

WIRE NET + 5VDC (MAIN) - 5

Figure 1 Wire Net +5VDC-5

7.3.11 Wire Net +5VDC-6

WIRE NET + 5VDC (MAIN) - 6
(FROM WIRE NET +5VDC (MAIN) -5)

7.3.12 Blank

This Frame Intentionally Left as Blank

Figure 1 Blank

7.3.13 Blank

This Frame Intentionally Left as Blank

Figure 1 Blank

7.3.14 Wire Net DC COM (+5VRTN)-1

WIRE NET DC COM (+5VRTN) - 1

Figure 1 Wire Net DC COM (+5VRTN)-1

7.3.15 Wire Net DC COM (+5VRTN)-2

WIRE NET DC COM (+5VRTN) - 2

7.3.16 Wire Net DC COM (+5VRTN)-3

Wire Net DC COM (+5VRTN) - 3
(FROM WIRENET DC COM (+5VRTN) -1)

Figure 1 Wire Net DC COM (+5VRTN)-3

7.3.17 Wire Net DC COM (+5VRTN)-4

WIRE NET DC COM (+5VRTN) - 4
(FROM WIRE NET DC COM (+5 VRTN) - 3)

(SEE WIRE NET DC COM (+5VRTN) -5)

Figure 1 Wire Net DC COM (+5VRTN)-4

7.3.18 Wire Net DC COM (+5VRTN)-5

WIRE NET DC COM (+5VRTN)-5

Figure 1 Wire Net DC COM (+5VRTN)-5

7.3.19 Wire Net DC COM (+5VRTN)-6

WIRE NET DC COM (+5VRTN) - 6

7.3.20 Wire Net DC COM (+5VRTN)-7

WIRE NET DC COM (+ SVRTN) - 7
(FROM WIRE NET DC COM (+5VRTN) -6)

7.3.21 Blank

This Frame Intentionally Left as Blank

Figure 1 Blank

7.3.22 Wire Net +24VDC-1

WRE NET +24VDC-1

Figure 1 Wire Net +24VDC-1

7.3.23 Wire Net +24VDC-2

WIRE NET + 24VDC-2

7.3.24 Wire Net +24VDC-3

WIRE NET + $24 \mathrm{VDC}-3$

T720024A-ELN

Figure 1 Wire Net +24VDC-3

7.3.25 Wire Net +24VDC-4

WIRE NET + $24 \mathrm{VDC}-4$

Figure 1 Wire Net +24VDC-4

7.3.26 Wire Net +24VDC-5

WIRE NET + $24 \mathrm{VDC}-5$
(FROM WIRE NET +24VDC-4)

7.3.27 Wire Net +24VDC-6

WIRENET + 24 VDC -6

Figure 1 Wire Net +24VDC-6

7.3.28 Wire Net DC COM (+24VRTN)-1

WIRE NET DC COM (+24 VRTN)-1

Figure 1 Wire Net DC COM (+24VRTN)-1

7.3.29 Wire Net DC COM (+24VRTN)-2

WIRE NET DC COM (+24VRTN)-2

Figure 1 Wire Net DC COM (+24VRTN)-2

7.3.30 Wire Net DC COM (+24VRTN)-3

WIRENET DC COM (+24VRTN) -3

7.3.31 Blank

This Frame Intentionally Left as Blank

7.3.32 Finisher Wire Net +5VDC

FINISHER WIRE NET +5VDC

Figure 1 Finisher Wire Net +5VDC

7.3.33 Finisher Wire Net DC COM(+5VRTN)

FINISHER WIRE NET DC COM $(+5 \mathrm{VRTN})$

(A)

Figure 1 Finisher Wire Net DC COM(+5VRTN)

7.3.34 Finisher Wire Net +24VDC

FINISHER WIRE NET +24VDC

7.3.35 Finisher Wire Net DC COM (+24VRTN)

FINISHER WIRE NET DC COM (+24VRTN)

7.2.36 A-Finisher Wire Net +5VDC

2.36 A-Finisher Wire Net +5VDC

7.2.37 A-Finisher Wire Net DC COM(+5VRTN)

2.37 A-Finisher Wire Net DC COM (+5 VRTN)

Figure 1 A-Finisher Wire Net DC COM(+5VRTN)

7.2.38 A-Finisher Wire Net +24VDC

2.38 A-Finisher Wire Net +24VDC

Figure 1 A-Finisher Wire Net +24VDC

7.2.39 A-Finisher Wire Net DC COM (+24VRTN)

2.39 A-Finisher Wire Net DC COM (+24VRTN)

Chain 1 Standby Power

Figure 1 1.1 MAIN POWER ON (t701701a-eln)

Figure 2 1.2ADC POWER DISTRIBUTION (t701702a-eln)

NOTE:
(1) Optional Equipment

CONN NO.	PIN NO.	VOLTAGE
P510	$1-5$	24 V
	$6-10$	24 V RTN
P511	$1-2$	3.3 V MAIN
	$3-4$	3.3 V MAIN RTN
	5	3.3 V STBY RTN
	6	3.3 S STBY
P512	$1-2$	5 V STBY
	$3-4$	$5 V$ STBY RTN
	$5-7$	5 V MAIN
	$8-10$	5 V MAIN RTN
P514	1	24 V RTN
	2	24 V

Figure 3 1.2B DC POWER DISTRIBUTION (t701703a-eln)

Figure 4 1.3 POWER INTERLOCK SWITCHING (t701704a-eln)

Figure 5 1.4 INTERLOCK SWITCHING (7701705a-eIn)

6
Figure 1 2.1 CONTROL PANEL (LEFT) (t702711a-eIn)

t702712a-eln
Figure $\mathbf{2}$ 2.2 CONTROL PANEL SWITCHES(RIGHT) (t702712a-eIn)

Figure 3 2.3 CONTROL PANEL(LENS) (t702713a-eln)

Figure 4 2.4 LCD CONTROL (t702714a-eln)

Chain 3 Machine Run Control

Figure 1 3.1 PWBS COMMUNICATION (ESS-IOT, ESS-IIT/IPS) (t703721a-eIn)

4
-

5
-

6

Figure 2 3.2 PWBS COMMUNICATION(ESS-UI) (t703722a-eln)

(1) Dip Switch is used to distinguish between 2-Tray Module and Tandem Tray Module.
(2) Diag display (High/Low) is the opposite of voltage level.

2-Tray Module	Tandem Tray Module
$\begin{aligned} & \text { ON } \underset{\text { OFF }}{\text { OFI }} \text { In } \end{aligned}$	
ON OFF	

Figure 3 3.3 PWBS COMMUNICATION (OPTION:IOT-TRAY MODULE, IOT-DUPLEX) (7703723a-eIn)

t703724a-eln
Figure 4 3.4 PWBS COMMUNICATION (OPTION:IOT-FINISHER) (t703724a-eIn)

5

6

Figure 5 3.5 PWBS COMMUNICATION (IIT/IPS-DADF) (t703725a-eln)

-

5

6

Figure 6 3.6 ELECTRIC BILLING (t703726a-eln)

6

Figure 73.7 Accessory Foreign Interface

Figure 1 4.1A FUSER DRIVE / MAIN DRIVE CONTROL (t704731a-eln)

T704732A-ELN
Figure 2 4.1B FUSER DRIVE / MAIN DRIVE (t704732a-eln)

Figure 3 4.2A DRUM / IBT AUGER DRIVE CONTROL (Motor Control) (t704733a-eln)

Figure 4 4.2B DRUM / IBT AUGER DRIVE CONTROL (Motor Control) (t704734a-eln)

Figure 5 4.2C DRUM / IBT AUGER DRIVE CONTROL (Clutch Control) (t704735a-eln)

Figure 6 4.2D DRUM / IBT AUGER DRIVE CONTROL (t704736a-eIn)

Figure 7 4.3A DEVELOPER DRIVE CONTROL (t704737a-eIn)

Figure 8 4.3B DEVELOPER DRIVE CONTROL (t704738a-eIn)

Chain 5 Document Transportation

Figure 15.1 DOCUMENT SIZE SENSING (t705741a-eln)

Figure 25.2 DOCUMENT SETTING (t705742a-eln)

Figure 35.3 DOCUMENT FEED AND TRANSPORTATION (1 OF 2) (j0st90503)

(1) Diag display (High/Low) is the opposite of voltage level.

Figure 4 5.4 DOCUMENT FEED AND TRANSPORTATION (2 OF 2) (t705744a-eln)

t705745a-eln
Figure 5 5.5 DOCUMENT FEED AND TRANSPORT MECHANISN (t705745a-eln)

t705746a-eln
Figure 6 5.6 DOCUMENT EXIT TRANSPORTATION (t705746a-eln)

Chain 6 Imaging

t706751a-eln
Figure 1 6.1 PLATEN DOCUMENT SETTING (t706751a-eln)

T706752A-ELN
Figure $\mathbf{2}$ 6.2 IMAGE INPUT (t706752a-eln)

Figure 3 6.3 CARRIAGE SCAN (t706753a-eln)

Figure 4 6.4 LASER CONTROL AND SCANING (t706754a-eln)

Figure 5 6.5 ROS MOTOR CONTROL (t706755a-eln)

Chain 7 Paper Supply

- 1. Paper Size Switch senses paper size based on voltage corresponding to combined resistance. ON/OFF combination patterns, voltage values corresponding to paper sizes each are as follows.
4

Paper size	S1	S2	S3	S4	S5	Voltage value(V) J412-3
NO TRAY	OFF	OFF	OFF	OFF	OFF	4.66 ± 0.05
A5 S/5.5" $\times 8.5^{\prime \prime} \mathrm{S}$	OFF	OFF	ON	OFF	OFF	4.01 ± 0.05
B5 S	OFF	OFF	ON	ON	ON	3.69 ± 0.05
$8.5^{\prime \prime} \times 13^{\prime \prime} \mathrm{S}$	OFF	ON	OFF	ON	OFF	3.07 ± 0.05
$8.5^{\prime \prime} \times 14^{\prime \prime} \mathrm{S}$	OFF	ON	OFF	ON	ON	
A4 S	OFF	ON	ON	OFF	OFF	2.75 ± 0.05
$8.5^{\prime \prime} \times 11^{\prime \prime} \mathrm{S}$	OFF	ON	ON	OFF	ON	
A4 L	ON	OFF	ON	OFF	OFF	1.52 ± 0.05
A3	ON	OFF	ON	ON	OFF	1.21 ± 0.05
B5 L/Executive L	ON	ON	OFF	OFF	ON	0.91 ± 0.05
8K S (GCO), (TFX)	ON	ON	OFF	ON	OFF	0.60 ± 0.05
B4	ON	ON	OFF	ON	ON	
$8.5^{\prime \prime} \times 11^{\prime \prime} \mathrm{L}$	ON	ON	ON	OFF	OFF	0.30 ± 0.05
$16 \mathrm{~K} \mathrm{~S} \mathrm{(GCO)}, \mathrm{(TFX)}$	ON	ON	ON	OFF	ON	
$11^{\prime \prime} \times 17^{\prime \prime}$	ON	ON	ON	ON	ON	0.00 ± 0.05

(2) Diag display (High/Low) is the opposite of voltage level.

Figure 1 7.1 TRAY 1 PAPER SIZE SENSING (t707761a-eIn)

Figure 2 7.3 TRAY 2 PAPER SIZE SENSING (t707763a-eIn)

Figure 3 7.4 TRAY 3 PAPER SIZE SENSING (t707764a-eIn)

6

Figure 4 7.5 TRAY 2 PAPER SIZE SENSING (OPTION:TANDEM TRAY MODULE) (t707765a-eln)

6

Figure 5 7.6 TRAY 3 PAPER SIZE SENSING (OPTION:TANDEM TRAY MODULE) (t707766a-eln)

Figure 6 7.7 TRAY 1 PAPER STACKING (t707767a-eln)

Figure 7 7.9 TRAY 2 PAPER STACKING (OPTION:2TRAY MODULE) (t707769a-eln)

Figure 8 7.10 TRAY 3 PAPER STACKING (OPTION:2TRAY MODULE) (t707770a-eln)

Figure 9 7.11 TRAY 2 PAPER STACKING (OPTION:TANDEM TRAY MODULE) (t707771a-eln)

Figure 10 7.12 TRAY 3 PAPER STACKING (OPTION:TANDEM TRAY MODULE) (t707772a-eln)

Figure 11 7.13 MPT PAPER STACKING (OPTION:MPT) (7707773a-eln)

Chain 8 Paper Feed and Transportation

t708781a-eln
Figure 1 8.1 TRAY1-4 AND MPT PAPER FEEDING (t708781a-eln)

Figure 28.2 TRAY2 TRANSPORTATION (t708782a-eln)

Figure 38.3 2TRAY MODULE TRANSPORTATION (OPTION:2TRAY MODULE) (t708783a-eln)

Figure 5 8.5 TANDEM TRAY MODULE TRANSPORTATION (OPTION:TANDEM TRAY MODULE) (t708785a-eln)

t708786a-eln
Figure 6 8.6 TANDEM TRAY MODULE PAPER TRANSPORT DRIVE CONTROL (OPTION:TANDEM TRAY MODULE) (t708786a-eln)

Figure 7 8.7 REGISTRATION (t708787a-eln)

Chain 9 Xerographics

t709791a-eln
Figure 19.1 CRU LIFE CONTROL (t709791a-eIn)

Figure 2 9.2 CHARGING AND EXPOSURE (t709798a-eIn)

Figure 3 9.3 DEVELOPER HOUSING/TONER CARTRIDGE POSITIONING (t709795a-eln)

Figure 4 9.4A DEVELOPMENT AND TONER DISPENSE CONTROL (t709799a-eIn)

Figure 5 9.4B DEVELOPMENT AND TONER DISPENSE CONTROL (T709793a-eln)

Figure 6 9.5 FIRST IMAGE TRANSFER (t709794a-eln)

Figure 7 9.6 PR DRUM CLEANING (t709800a-eln)

Figure 8 9.7 SECOND IMAGE TRANSFER AND STRIPPING (t709796a-eln)

Figure 9 9.8 IBT CLEANING (t709797a-eln)

Figure 10 9.9 WASTE TONER REMOVAL (t709801a-eln)

Chain 10 Copy Transportation and Fusing

Figure 1 10.1 UNFUSED PRINT (t710808a-eln)

Figure 2 10.2 FUSING HEAT CONTROL (t710801a-eln)

Figure 3 10.3 FUSING (t710802a-eIn)

Figure 4 10.4 EXIT TRANSPORTATION (t710803a-eIn)

10.5 EXIT TRANSPORTATION MECHANISM

Figure 5 10.5EXIT TRANSPORTATION MECHANISM (t710804a-eln)

Figure 6 10.6 DUPLEX (OPTION:DUPLEX) (t710805a-eln)

Figure 7 10.7 OFFSET CONTROL (EXIT2) (t710807a-eln)

Chain 12 Finishing

-
t712811a-eln
Figure 1 12.1 FINISHER DC POWER AND INTERLOCK SWITCHING (t712811a-eln)

Figure $\mathbf{2}$ 12.2 HORIZONTAL TRANSPORTATION (t712812a-eln)

Figure 3 12.3 FINISHER TRANSPOETATION (t712813a-eIn)

Figure 4 12.4 TAMPING AND OFFSET (t712814a-eIn)

Figure 5 12.5 STAPLE POSITIONING (t712815a-eln)

Figure 6 12.6 STAPLE CONTROL (t712816a-eln)

Figure 7 12.7 SET EJECT (t712817a-eln)

Figure 8 12.8 STACKER TRAY CONTROL (1 OF 2) (t712818a-eln)

Figure 9 12.9 STACKER TRAY CONTROL (2 OF 2) (t712819a-eln)

Chain 13 Nohad

4

5

6

Figure 1 13.1 Nohad (t713801a-eln)

Chain 16 Printer

Figure 1 16.1 PRINTER (t716821a-eln)

Chain 17 FAX

6

CH15.1 A-Finisher DC Power and Interlock Switching

Figure 1 A-Finisher DC Power and Interlock Switching (j0fa731501)

CH15.2 PWBS Communication (IOT-A-Finisher)

4 FAIL CODE
024-916 Mix Stack Full

- 024-917 Stacker Tray Staple Set Over Count 024-928 Scratch Sheet Compile

5
-

6

Figure 1 PWBS Communication (IOT-A-Finisher) (j0fa731502)

CH15.3 A-Finisher Transportation

Figure 1 A-Finisher Transportation (j0fa731503)

CH15.4 Tamping and Offset

Figure 1 Tamping and Offset (j0fa731504)

CH15.5 Staple Control

Figure 1 Staple Control (j0fa731505)

CH15.6 Set Eject (1 OF 2)

Figure 1 Set Eject (1 OF 2) (j0fa731506)

CH15.7 Set Eject (2 OF 2)

Figure 1 Set Eject (2 OF 2) (j0fa731507)

CH15.8 Stacker Tray Control

Figure 1 Stacker Tray Control (j0fa731508)

8.1 Fax Kit

For the FAX Kit Installation Instructions, go to the 0900 Install Information location of the SGS and select FAX Kit Installation Guide.

8.2 Foreign Interface

For the Foreign Interface Installation Instructions, go to the 0900 Install Information location of the SGS and select Foreign Interface Installation and Setup Guide.

